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Abstract—Effective resource estimation is essential in cloud 

computing to minimize operational costs, optimize performance, 

and enhance user satisfaction. This study proposes a 

comprehensive framework for virtual machine optimization in 

cloud environments, focusing on predictive resource management 

to improve resource efficiency and system performance. The 

framework integrates real-time monitoring, advanced resource 

management techniques, and machine learning-based predictions. 

A simulated environment is deployed using PROXMOX, with 

Prometheus for monitoring and Grafana for visualization and 

alerting. By leveraging machine learning models, including 

Random Forest Regression and LSTM, the framework predicts 

resource usage based on historical data, enabling precise and 

proactive resource allocation. Results indicate that the Random 

Forest model achieves superior accuracy with a MAPE of 2.65%, 

significantly outperforming LSTM's 17.43%. These findings 

underscore the reliability of Random Forest for resource 

estimation. This research demonstrates the potential of predictive 

analytics in advancing cloud resource management, contributing 

to more efficient and scalable cloud computing practices. 
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I. INTRODUCTION 

Cloud computing and virtualization technologies have 
revolutionized modern computing, offering organizations 
significant advantages in terms of flexibility, scalability, and 
operational efficiency [1]. By enabling seamless access to 
applications and data through online platforms, these 
technologies ensure constant and universal availability [2]. This 
has facilitated remote work, improved collaboration among 
geographically dispersed teams, and accelerated responses to 
dynamic customer needs, making them indispensable for 
modern enterprises [3]. 

The proliferation of cloud technologies has led to significant 
transformations in IT infrastructure [4]. Emerging paradigms 
such as hybrid clouds, edge computing, and serverless 
architectures are redefining how resources are provisioned and 
utilized. These innovations promise greater adaptability to 
workload demands but simultaneously introduce complexities in 
managing and predicting resource needs effectively. 

Resource utilization remains one of the most pressing 
challenges in cloud environments. Infrastructure is often over-
provisioned to accommodate peak demands, leading to 
inefficiencies and inflated costs. Conversely, underutilized 
resources represent wasted computational potential, 

underscoring the need for dynamic and predictive strategies to 
balance workloads effectively [5]. Addressing this challenge is 
critical for optimizing costs and meeting performance 
expectations in competitive industries. 

Sustainability has also become a pivotal consideration in 
cloud computing. Data centers are among the most energy-
intensive facilities globally, contributing significantly to carbon 
emissions [6]. Optimizing resource allocation can reduce energy 
consumption, enabling organizations to align their operations 
with environmental sustainability goals. These efforts are 
increasingly essential as industries strive to meet regulatory 
standards and societal expectations for greener technologies. 

Another key challenge is the high operational cost associated 
with cloud services. Consumption-based pricing models, 
coupled with additional charges for storage and bandwidth, can 
complicate budget management, particularly for organizations 
with fluctuating workloads [7]. Without effective strategies, 
these financial burdens can hinder the full adoption and 
utilization of cloud services. 

Suboptimal application performance further exacerbates 
these challenges [8]. Factors such as resource contention among 
virtual machines (VMs) [9], network latency, and inefficiencies 
in resource management negatively impact user experience and 
productivity. These issues can lead to service interruptions, 
extended downtimes, and reduced competitiveness. Identifying 
and addressing performance bottlenecks is essential for 
maintaining application reliability and responsiveness [10]. 

Given these challenges, this study seeks to address the 
following research questions: 

 How can real-time monitoring and predictive modeling 
enhance resource allocation in cloud environments? 

 What impact do machine learning-based predictive 
models have on improving cloud resources utilization 
efficiency? 

 How can dynamic resource allocation strategies reduce 
costs while maintaining optimal system performance? 

Based on these questions, the main objectives of this 
research are: 

 To develop a framework that integrates real-time 
monitoring with predictive modeling to enhance 
resource efficiency. 
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 To evaluate the effectiveness of machine learning-based 
predictive models in improving CPU utilization and 
system reliability. 

 To design and validate dynamic resource allocation 
techniques that balance workload demand while 
minimizing costs. 

In our previous study [11], we identified CPU utilization as 
a critical area for improving operational efficiency. However, 
the limitations in predictive accuracy highlighted the need for 
more advanced methodologies. Building on these findings, this 
study presents a comprehensive framework that addresses CPU 
utilization while tackling broader challenges related to resource 
allocation, cost management, and system performance. By 
integrating real-time monitoring, machine learning-based 
predictive modeling, and dynamic resource allocation 
techniques, the proposed framework seeks to optimize resource 
efficiency, reduce costs, and enhance system reliability. 

This research provides data-driven strategies that adapt to 
workload fluctuations, improving both resource utilization and 
performance. It emphasizes proactive measures to address 
inefficiencies and enhance cloud systems, contributing to 
sustainable and scalable cloud computing practices. 

The remainder of this article reviews related literature in 
Section II, details the methodology for data collection and 
analysis in Section III, Section IV presents the results, and 
discussion. Finally, the paper is concluded in Section V.  

II. RELATED WORK 

VM optimization is crucial for enhancing resource 
utilization and performance in cloud computing environments. 
Numerous researchers have developed various optimization 
algorithms and techniques to address this challenge. 

Zheng, Huang, Li, and Wang [12] proposed a Cloud 
Resource Prediction and Migration Method specifically 
designed for container-based environments. By leveraging 
machine learning to predict resource demands, their method 
implemented a migration strategy to balance workloads across 
containers, thereby improving system performance. Although 
their work centers on container systems, it provides valuable 
insights into predictive modeling that can be extended to VM 
environments. 

Kumawat, Handa, and Kharbanda [13] presented a 
framework for cloud resource optimization tailored for content 
processing platforms. Using Decision Tree Regression, their 
approach dynamically assigned instance types based on 
predicted resource needs, demonstrating the effectiveness of 
predictive modeling in resource management. However, their 
work was limited to specific applications, unlike broader 
approaches applicable across diverse VM workloads. 

Shen and Chen [14] developed a Resource-Efficient 
Predictive Provisioning System for cloud environments. This 
system utilized resource demand forecasting to optimize 
allocation and prevent over-provisioning. Their work provides a 
general framework for improving resource efficiency, but its 
emphasis is on provisioning rather than VM-specific 
optimization. 

Abbas et al. [15] proposed an ANN-based bidding strategy 
for resource allocation in cloud computing, utilizing a double 
auction framework to optimize pricing for IoT applications. 
Their findings underscored the accuracy of ANN in predicting 
resource demands and highlighted its potential in complex cloud 
markets. 

Ariza, Jimeno, Villanueva-Polanco, and Capacho [16] 
applied deep learning models for provisioning resources in 
cloud-based e-learning platforms. Their approach predicted 
CPU and memory usage based on real-world data, illustrating 
how predictive modeling can efficiently adjust resource 
allocations in response to dynamic demands. 

In a related study, Han, Schooley, Mackenzie, David, and 
Lloyd [17] investigated resource contention in multi-tenant 
cloud environments. By employing Random Forest models, they 
predicted resource contention caused by co-located VMs and 
proposed strategies to mitigate performance degradation. Their 
study supports the application of machine learning in optimizing 
VM resource allocation. 

Huang, Costero, Pahlevan, Zapater, and Atienza [18] 
developed CloudProphet, a machine learning-based tool for 
predicting performance in public cloud environments. By 
identifying metrics closely correlated with VM performance, 
their work emphasized the importance of accurate metric 
selection for resource management. 

Wiesi et al. [19] contributed to cloud optimization by using 
machine learning models such as GRU, LSTM, and Random 
Forest to predict workloads in dynamic and seasonal 
environments. Their findings highlighted the role of precise 
forecasting in improving resource utilization and sustainability. 

Ndayikengurukiye et al. [20] proposed the Multi-Objective 
Seagull Optimization Algorithm Virtual Machine Placement 
(MOSOAVMP) to optimize VM placement in cloud data 
centers. Their approach focused on reducing energy 
consumption, resource wastage, and SLA violations while 
improving overall efficiency. Simulation results demonstrated 
significant performance gains over state-of-the-art algorithms, 
highlighting the effectiveness of this bio-inspired approach for 
multi-objective optimization. 

Another significant contribution comes from Zhang et al. 
[21] introduced an Extended Coupled Hidden Markov Model 
(ECHMM) for predicting resource requirements by analyzing 
historical monitoring data and resource correlations. Although 
their work focuses on resource prediction, its application in real-
time VM optimization remains an open area for exploration. 

Building upon these contributions, our study integrates real-
time monitoring tools (Prometheus and Grafana) with predictive 
modeling techniques such as Random Forest and ANN to 
address gaps in VM optimization. Unlike prior studies, our 
approach emphasizes dynamic adaptability to changing 
workloads while achieving significant accuracy improvements 
for CPU and memory utilization. This integration provides a 
scalable and efficient solution for resource management across 
diverse cloud applications, offering valuable insights for 
adaptive cloud infrastructure management. 
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III. APPROACH AND METHODOLOGY 

Our approach to managing and optimizing VM resources 
combines real-time performance monitoring, data processing, 
and predictive modeling. The proposed methodology ensures 
efficient resource utilization, minimizes performance 
bottlenecks, and reduces operational costs by integrating 
advanced machine learning techniques with robust monitoring 
and storage solutions. 

A. System Architecture 

The system architecture, illustrated in Fig. 1, consists of 
three main components: VM Monitoring, Data Export and 
Storage, and Predictive Modeling. These components work in 

unison to provide real-time insights, store historical data, and 
enable accurate forecasting for proactive resource allocation. 

The first component, VM Monitoring, involves collecting 
real-time performance metrics such as CPU usage, memory 
utilization, disk I/O, and network traffic using Prometheus [22], 
an open-source system designed for time-series data collection. 
Prometheus integrates seamlessly with the PROXMOX VE 
virtualization platform, enabling the continuous collection of 
VM metrics [23]. To visualize this data, Grafana is employed, 
offering customizable dashboards that provide actionable 
insights into usage patterns, bottlenecks, and anomalies [24]. 
This setup ensures proactive resource management by enabling 
administrators to monitor performance trends in real-time. 

 

Fig. 1. Resource management and optimization architecture.

To ensure data persistence and facilitate further analysis, 
performance metrics collected by Prometheus were periodically 
exported to Amazon S3, a reliable and scalable cloud-based 
storage solution [25]. Automated scripts managed this process, 
ensuring reliable backups and accessibility for predictive 
modeling tasks. IAM policies were applied to secure access to 
the stored data, which forms the foundation for forecasting 
future resource demands and optimizing resource allocation 
strategies. 

The final component, Predictive Modeling, leverages 
machine learning models to analyze historical performance data 
and anticipate future resource utilization. This enables informed 
decisions for VM configuration adjustments, ensuring efficient 
resource usage and avoiding performance bottlenecks. 

B. Predictive Modeling 

Predictive modeling lies at the core of this methodology, 
enabling accurate resource demand forecasting to optimize VM 
allocation. Two techniques were utilized: Random Forest 
Regression and LSTM networks, each chosen for their 
robustness and ability to handle complex, nonlinear 
relationships in resource usage patterns. 

Random Forest Regression is an ensemble learning method 
that combines multiple decision trees [26]. The algorithm 

creates several decision trees, each trained on a random subset 
of the data, and aggregates their predictions to produce the final 
output [27]. 

This approach reduces overfitting and captures complex 
interdependencies among variables. Hyperparameters such as 
the number of trees and maximum depth were fine-tuned to 
balance prediction accuracy and computational efficiency. 

LSTM Networks, a type of recurrent neural network, are 
designed to capture temporal dependencies in sequential data 
[28] [29]. They process time-series data by utilizing memory 
cells with three gates: the Forget Gate, which determines which 
information to discard; the Input Gate, which decides what new 
information to incorporate; and the Output Gate, which regulates 
the information passed to the next layer. 

LSTM networks excel at modeling long-term dependencies, 
making them particularly suited for time-series data such as VM 
performance metrics. Hyperparameters such as the number of 
hidden units and learning rate were optimized to ensure accuracy 
and computational efficiency. 

To evaluate the predictive models, two standard metrics 
were employed: Mean Squared Error (MSE) and Mean Absolute 
Percentage Error (MAPE). MSE measures the average squared 
difference between actual and predicted values, as given by: 
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These metrics provided robust insights into the precision and 
reliability of the models, ensuring their effectiveness in VM 
resource optimization. 

IV. RESULTS AND DISCUSSION 

The performance of the Random Forest Regression and 
LSTM models was evaluated for predicting CPU usage in VM. 
Key performance metrics, including MSE and MAPE, were 
assessed alongside visual comparisons using forecasting, 
distribution, scatter, and residual plots. 

TABLE I.  MODEL PERFORMANCE 

Model MSE MAPE 

Random Forest Regression 0.0011 2.65% 

LSTM 0.0137 17.43% 

Table I summarizes the comparative performance of the 
Random Forest and LSTM models. The metrics highlight the 
superior accuracy of the Random Forest model in predicting 
CPU usage, as reflected in its lower MSE and significantly better 
MAPE, demonstrating its robustness for resource optimization 
tasks. 

The Random Forest model demonstrated exceptional 
alignment between actual and predicted CPU usage, as shown in 
the forecasting plot (Fig. 2). The predicted values closely 
tracked the observed data, even during abrupt transitions, 
showcasing the model’s ability to adapt to workload 
fluctuations. The distribution plot (Fig. 4) revealed that the 
predicted values nearly overlapped with the actual distribution, 
confirming the model's precision in capturing data variability. 
The scatter plot (Fig. 6) further substantiated these findings, with 
data points tightly clustered along the diagonal, indicating 
minimal prediction errors and a high correlation between actual 
and predicted values. Moreover, the residual plot (Fig. 8) 
presented a near-uniform distribution centered around zero, 
reflecting the model’s unbiased performance and robust 
generalization across diverse workloads. 

In contrast, the LSTM model exhibited noticeable 
discrepancies. The forecasting plot (Fig. 3) showed that while 
the model successfully captured general trends in CPU usage, its 
performance during abrupt changes was suboptimal, with 
evident prediction lags. The distribution plot (Fig. 5) illustrated 
significant deviations between actual and predicted values, with 
broader peaks and a misaligned density curve, suggesting 
difficulties in modeling the variability and complexity of 

resource utilization patterns. The scatter plot (Fig. 7) highlighted 
this challenge further, with pronounced dispersion away from 
the diagonal, signifying higher prediction errors, particularly 
under extreme workload conditions. The residual plot (Fig. 9) 
revealed non-random patterns, with clusters of over- and 
underprediction, pointing to biases in the model’s predictions 
and underscoring the need for further tuning and optimization. 

 
Fig. 2. Forecasting time series plot (Random forest). 

 

Fig. 3. Forecasting time series plot (LSTM). 

 
Fig. 4. Distribution plot (Random forest). 

 
Fig. 5. Distribution plot (LSTM). 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 2, 2025 

662 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 6. Scatter plot (Random forest). 

 

Fig. 7. Scatter plot (LSTM). 

 
Fig. 8. Residual plot (Random forest). 

 
Fig. 9. Residual plot (LSTM). 

Additionally, the residual analysis (Fig. 5) of the Random 
Forest model indicated greater robustness and reliability in 
handling varying workloads. In contrast, the LSTM model's 
underperformance highlighted the challenges of applying deep 
learning to dynamic workloads without substantial 
hyperparameter tuning and larger datasets for training. 

This study’s integration of predictive models for VM 
optimization builds upon and extends existing research. In 
comparison to Shen and Chen [14], who developed a 
provisioning system for general resource allocation, this work 

incorporates VM-specific adaptability through real-time 
monitoring. Shen and Chen’s approach lacks the dynamic 
allocation capabilities achieved here, as reflected in the superior 
MAPE of 2.65% obtained by the Random Forest model. 

Similarly, Abbas et al. [15] employed an ANN-based 
bidding strategy for IoT resource pricing, achieving high 
accuracy for specific applications. However, the computational 
complexity of ANN models limits their broader applicability. In 
contrast, the Random Forest model balances accuracy and 
efficiency, making it more practical for general VM 
optimization. 

The container-based optimization approaches of Zheng et al. 
[12] and content-specific frameworks of Kumawat et al. [13] 
demonstrate effective solutions for narrow contexts but lack the 
versatility of this study’s framework, which dynamically adapts 
to diverse workloads using real-time monitoring tools like 
Prometheus and Grafana. Moreover, while Han et al. [17] 
addressed resource contention using Random Forest models, 
their focus on co-residency prediction differs from this study’s 
broader goal of optimizing resource utilization and preventing 
performance degradation. 

Additionally, Huang et al. [18] developed CloudProphet, a 
performance prediction tool for public clouds, which focuses on 
general workload trends but lacks real-time data integration. 
This study’s use of Prometheus for live data collection ensures 
greater adaptability and real-world applicability, particularly 
under dynamic conditions. The seasonal workload prediction by 
Wiesi et al. [19], which used GRU and LSTM models, also does 
not address abrupt workload changes, further highlighting the 
Random Forest model's robustness in handling dynamic 
scenarios. 

This study also represents a significant improvement over 
our previous research. In the earlier work, simpler modeling 
techniques and less dynamic monitoring systems were used, 
leading to a MAPE of 11% for CPU utilization predictions. By 
incorporating real-time monitoring tools, such as Prometheus 
and Grafana, alongside advanced predictive modeling with 
Random Forest, this study reduced the MAPE to 2.65%. This 
fourfold improvement in predictive accuracy reflects the 
effectiveness of the enhanced framework in addressing the 
limitations identified in the earlier study. The integration of real-
time monitoring and advanced ensemble learning has enabled 
the system to capture more complex resource utilization 
patterns, offering a more reliable and adaptive solution for VM 
optimization. 

The observed differences between the two models provide 
critical insights. The Random Forest model's ensemble 
approach, which aggregates predictions from multiple decision 
trees, allows it to effectively balance accuracy and 
generalization. This characteristic is particularly advantageous 
in resource optimization scenarios where precision is vital. On 
the other hand, the LSTM model, while less accurate, has 
potential for scalability and adaptability in handling larger 
datasets or real-time applications if further refined. Its 
performance limitations in this study emphasize the need for 
hybrid modeling approaches that combine statistical methods 
and neural networks to enhance predictive accuracy. 
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The findings have significant implications for real-world 
applications. The superior performance of the Random Forest 
model makes it a reliable choice for real-time resource 
optimization in cloud computing environments, where accurate 
predictions are essential for cost efficiency and service quality. 
However, the LSTM model's potential scalability and 
adaptability warrant further exploration, particularly in 
scenarios with high variability and evolving workloads. 

Despite its advantages, this study has certain limitations. The 
accuracy of the predictive model relies on the quality and 
consistency of real-time monitoring data. Variations in cloud 
workload patterns may also introduce unexpected challenges, 
potentially affecting resource allocation precision. 

This study highlights the importance of selecting appropriate 
modeling techniques for resource prediction in cloud 
environments. By demonstrating the strengths of ensemble 
learning and identifying the limitations of deep learning in this 
context, the research provides a foundation for future work. 
Subsequent studies could explore the integration of hybrid 
models or the application of advanced deep learning 
architectures to improve predictive performance. Furthermore, 
real-world deployment of these models in diverse cloud 
infrastructures will validate their practical utility and scalability, 
contributing to more efficient resource management and 
optimization. 

V. CONCLUSION 

This research presents a comprehensive framework for 
optimizing VM performance within cloud computing 
environments by integrating advanced machine learning 
methodologies and real-time monitoring tools. The study 
highlights the exceptional efficacy of the Random Forest 
Regression model, which achieved a MAPE of 2.65%, 
significantly outperforming the LSTM model. This reduction in 
prediction error underscores the model's ability to enable precise 
resource allocation, leading to substantial improvements in 
system performance, operational efficiency, and cost-
effectiveness. 

Compared to traditional approaches and prior studies, this 
framework represents a critical advancement in cloud resource 
management. The integration of real-time monitoring tools, such 
as Prometheus and Grafana, combined with advanced predictive 
analytics, enables dynamic adaptability to workload changes 
and more efficient resource utilization. By addressing key 
limitations of earlier research, such as reliance on less adaptive 
systems or single-method approaches, this study establishes a 
new benchmark for VM optimization, particularly by 
demonstrating the robustness of ensemble learning techniques 
like Random Forest in handling complex and dynamic resource 
utilization patterns. 

While this research demonstrates significant progress, future 
work could explore the integration of the Random Forest model 
into a hybrid framework, building upon the strengths of 
ensemble learning and deep learning. Such an approach could 
leverage the Random Forest model's robust accuracy alongside 
LSTM’s ability to handle sequential patterns, creating a scalable 
and adaptive solution for even more complex cloud 
environments. Additionally, extending the framework to 

incorporate metrics like energy consumption and applying it 
across multi-cloud environments would further enhance its 
utility and relevance. Real-world deployment and validation in 
diverse cloud infrastructures will be essential for solidifying its 
practical impact and scalability. In conclusion, the proposed 
framework offers a versatile and practical solution for 
addressing the challenges of modern cloud computing 
environments, paving the way for more efficient and sustainable 
cloud operations. 
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