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Abstract—Autonomous driving technology is primarily 

developed to enhance traffic safety through advancements in 

motion prediction and adaptive control mechanisms. Highway 

lane merging remains a high-risk scenario, accounting for 

approximately 7% of highway collisions globally due to 

misjudged vehicle interactions, according to international 

statistics. This paper proposes a two-stage deep learning 

framework for autonomous lane merging in mixed traffic. Using 

the Argoverse dataset, which contains over 300,000 vehicle 

trajectories mapped to high-definition road networks, we first 

predict vehicle trajectories using a Seq2Seq model with LSTM 

layers, achieving a 21% improvement in prediction accuracy 

over a baseline Multi-layer Perceptron model. In the second 

stage, reinforcement learning is employed for maneuver 

generation, where a Dueling Deep Q-Network outperforms a 

standard DQN by 8% in collision avoidance. Experimental 

results indicate that the combined trajectory prediction and RL-

based framework significantly reduces merging delays, enhances 

data-driven decision-making in mixed traffic environments, and 

provides a scalable solution for safer autonomous highway 

merging. 
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I. INTRODUCTION 

The rise of artificial intelligence (AI) has transformed 
various industries, with machine learning and deep learning 
playing an increasingly significant role in automating complex 
tasks. In the automotive sector, AI-driven technologies have 
enabled the development of semi-autonomous vehicles 
equipped with features such as adaptive cruise control, lane-
keeping assistance, automated parking, and collision avoidance 
systems. While these advancements have improved driving 
safety and convenience, fully autonomous driving remains a 
formidable challenge due to the unpredictability of human 
behavior, dynamic traffic conditions, and infrastructure 
limitations. One particularly complex and accident-prone 
scenario that requires further refinement in autonomous driving 
systems is highway lane merging. 

Merging from on-ramps onto high-speed highways presents 
unique difficulties due to the necessity of balancing speed, gap 
selection, and interaction with human-driven vehicles. Unlike 
controlled environments such as intersections with traffic 
lights, highway merging involves continuous decision-making 
in real-time, with vehicles needing to adapt to fast-changing 
conditions. Poor merging decisions can lead to sudden braking, 
abrupt lane changes, or even multi-vehicle collisions. Statistics 
indicate that lane-changing and merging maneuvers account for 
a significant portion of highway accidents, often due to 

misjudgment of vehicle speeds, miscommunication between 
drivers, and insufficient gap acceptance. Traditional rule-based 
autonomous driving systems, which rely on pre-set rules and 
simple heuristics, struggle to handle the complexity of these 
situations. The limitations of such approaches necessitate more 
sophisticated decision-making models. 

Trajectory prediction is a crucial component of autonomous 
driving safety, enabling vehicles to make informed decisions. 
Traditional approaches have relied on kinematic and physics-
based models, which assume that vehicle movement follows 
deterministic patterns. However, such models fail to capture 
the stochastic nature of real-world traffic, particularly in 
scenarios where multiple agents influence each other’s actions. 
In recent years, interaction-aware models have gained traction, 
leveraging deep learning techniques to encode spatial and 
temporal dependencies in vehicle behavior. Studies such as 
those by Zhang et al. [1] and Karle et al. [2] have demonstrated 
that attention-based trajectory prediction models can 
significantly improve inference time and prediction accuracy 
by focusing on relevant surrounding vehicles. 

Despite these advances, several challenges remain. 
Imbalanced trajectory datasets, where lane-keeping data vastly 
outnumbers lane-changing instances, hinder model training and 
may lead to poor generalization in merging scenarios. 
Additionally, most existing models rely solely on position data, 
neglecting critical information such as vehicle velocity, 
acceleration patterns, and road geometry. While deep learning-
based models can enhance trajectory prediction, they do not 
directly translate into maneuver execution, requiring additional 
mechanisms to translate predictions into safe context-aware 
driving actions. 

To address these challenges, this paper proposes a two-
stage approach to highway merging automation. In the first 
stage, we leverage real-world LiDAR data to train a deep 
learning-based trajectory prediction model capable of capturing 
vehicle interactions. The baseline model employs a Multi-layer 
Perceptron (MLP) to establish feasibility, which is later 
extended to a Seq2Seq model with Long Short-Term Memory 
(LSTM) layers to improve prediction precision. The second 
stage integrates deep reinforcement learning (RL) to optimize 
autonomous vehicle maneuvers. By training RL agents on 
predicted trajectory data, the system learns to make adaptive 
decisions that balance safety and traffic flow continuity. 

A key hypothesis of this study is that by combining 
sequence-based trajectory prediction with reinforcement 
learning, an autonomous vehicles (AVs) can anticipate and 
react to merging scenarios more effectively than conventional 
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rule-based systems. The hypothesis is based on the premise 
that motion forecasting alone is insufficient—vehicles must 
also be able to evaluate merging feasibility and adjust their 
actions accordingly. This research aims to improve merging 
efficiency by ensuring that AVs merge at appropriate speeds, 
and minimize disruptions to surrounding traffic. 

The implications of this work extend beyond highway 
merging. As AVs gradually transition from human-supervised 
automation (Level 3 autonomy) to full self-driving (Level 5 
autonomy), complex interactions with human drivers will 
remain a challenge. AVs must not only predict future vehicle 
positions but also infer driver intent and adapt to cooperative or 
adversarial driving behaviors. Ensuring safe interactions 
between autonomous and human-driven vehicles is critical for 
gaining regulatory approval for autonomous solutions. 

Additionally, while reinforcement learning has 
demonstrated promise in driving applications, challenges such 
as sample efficiency, reward design, and real-world 
generalization remain significant barriers. Unlike games and 
simulations where RL agents can train for millions of iterations 
in a controlled environment, real-world driving data is limited, 
and deploying untested policies on public roads carries risks. 
To mitigate these concerns, simulated environments and digital 
twin systems can be leveraged to refine RL policies before 
real-world testing. 

Another concern is computational feasibility. Training deep 
learning models on large-scale trajectory datasets is resource-
intensive, often requiring high-performance GPUs and 
extensive tuning of hyperparameters. Computational 
constraints limit the ability to explore more complex 
architectures, such as Transformer-based motion prediction 
models, which may offer further improvements in prediction 
accuracy. Additionally, deploying computationally expensive 
models in real-time AV systems presents challenges, as in-
vehicle processors must balance inference speed with energy 
efficiency. 

This study addresses these concerns by proposing an 
adaptable framework that integrates deep learning techniques 
for trajectory prediction and optimization strategies for 
maneuver execution. The findings contribute to existing 
research by evaluating how Seq2Seq models and reinforcement 
learning can be combined to improve lane merging 
performance, reduce collision risks, and ensure smoother 
highway traffic integration. 

The remainder of this paper is structured as follows: 
Section II reviews related works on trajectory prediction in 
autonomous vehicles. Section III details the methodology, 
including dataset preprocessing, the Seq2Seq model, and 
reinforcement learning integration. Section IV presents 
experimental results comparing the performance of models like 
MLP, Seq2Seq, and Dueling DQN. Section V discusses 
findings, addressing challenges and limitations. Section VI 
concludes with a summary and future research directions. 

II. RELATED WORKS 

A. Interaction-Aware Trajectory Prediction 

In the field of autonomous driving, trajectory prediction is a 
critical component for ensuring vehicle safety and efficiency. 
Many studies have focused on interaction-aware approaches to 
improve prediction accuracy by accounting for the behaviors 
and intentions of surrounding vehicles. Notably, recent 
advancements leverage attention-based models, recurrent 
neural networks, and graph-based architectures to model 
interactions and improve trajectory accuracy in diverse traffic 
conditions. For instance, Yan et al. [3] applied spatial-attention 
mechanisms to handle inter-vehicular interactions, achieving 
accurate predictions on the HD dataset with minimal 
computational resources. 

Many researchers have proposed intention-driven models 
that differentiate between short- and long-term intentions for 
more explicable trajectory predictions [4]. The study in [5] 
emphasized road constraints in prediction by developing a 
road-aware model that uses high-definition maps, 
demonstrating improved data efficiency and realism in 
trajectory prediction. In addition to model-specific 
developments, surveys by study [6] outline the evolution of 
trajectory prediction methods, highlighting physics-based, 
machine learning, and deep learning approaches. The research 
in [7] introduced a neural network-based motion planner 
integrated with model predictive control, balancing 
conservative planning with interaction-based optimization. 

B. On-Demand Approach for Trajectory Prediction 

A graph and recurrent neural network (GNN-RNN) based 
framework has been proposed to capture inter-vehicular 
interactions on highways using historical vehicle data for future 
path prediction. This model utilizes directed graphs to 
represent dynamic traffic interactions and demonstrates the 
capability to predict multi-vehicle trajectories for high-density 
traffic environments [8]. Similarly, an attention-based 
approach enhances trajectory prediction by focusing on the 
significance of neighboring vehicles through a multi-layer 
attention mechanism. The model incorporates both local and 
global attention components, enabling consideration of diverse 
driving goals and improving accuracy, especially in long-range 
highway scenarios [9]. 

An on-demand model for rapid vehicle path prediction with 
minimal observation windows has also been explored. This 
method probabilistically extends traditional car-following 
models, adapting to new traffic configurations with limited 
input data and improving reaction times for autonomous 
vehicles [10]. Further developments include multi-attention 
mechanisms for both spatial and temporal interactions. For 
instance, a Transformer-based architecture predicts multimodal 
vehicle trajectories by accommodating complex interaction 
patterns [11]-[12]. Another attention-based approach focuses 
on interaction regions and adapts predictions based on the 
relative positions of surrounding vehicles [13]. 

Graph-based deep learning frameworks have been 
integrated with trajectory prediction models to enable proactive 
longitudinal control. By combining LSTM networks with 
graph convolutional networks, this method predicts lane-aware 
behavior and captures inter-vehicle interactions, improving 
prediction accuracy and passenger ride quality [14]. 
Additionally, a structural-LSTM network assigns individual 
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LSTM networks to each vehicle, allowing real-time spatial 
information exchange. This architecture models fine-grained 
interactions effectively, enhancing predictive accuracy in 
mixed-traffic environments [15]. 

C. Driving Dynamics and Computational Efficiency 

To address real-world challenges, one study emphasizes 
aligning predictive models with real driving dynamics and 
computational efficiency. The research critiques dataset-based 
evaluations and advocates for a task-driven approach that 
reflects the model's impact on downstream driving behavior, 
highlighting the interaction between autonomous vehicles and 
other road users as critical to trajectory model accuracy [16]. 

In their study, [17] presented a novel trajectory prediction 
framework designed to improve the reliability of autonomous 
driving systems. The key contribution of their work lies in the 
introduction of an awareness module that dynamically 
evaluates the performance of the trajectory prediction model 
during operation. This self-assessment capability enables the 
system to identify and respond to potential prediction 
inaccuracies. An intention-aware transformer model has been 
developed to adapt to social and temporal learning 
requirements in trajectory prediction. Using a multi-head self-
attention mechanism, this model captures intricate social 
dependencies and driving behaviors across timestamps, 
improving its ability to manage complex driving scenarios 
[18]-[19]. Similarly, contextual cues, such as actor-actor and 
actor-scene interactions, have been incorporated into prediction 
frameworks. Attention-based graph modules and convolutional 
networks integrate spatial-temporal data, enhancing reliability 
in mixed-traffic conditions [20]-[21]. 

AVs must excel at predicting future events, a capability 
human drivers perform instinctively. Imagine an AV preparing 
to turn right at an intersection while a pedestrian approaches 
from the crosswalk on the right and another vehicle waits to 
proceed from the opposite direction. For the AV to navigate 
this scenario safely, it must anticipate whether the pedestrian 
will stop or continue crossing and whether the opposing 
vehicle will yield or attempt to proceed simultaneously. 

This complex interplay of actions is central to motion 
prediction, enabling AVs to understand their surroundings and 
make proactive decisions. Sensors like gyroscopes, cameras, 
and etc. provide the necessary environmental data to inform 
these predictions. While rule-based systems have traditionally 
been used for such tasks, they falter under uncertainty and 
complexity, especially as the number of interacting agents 
increases. A data-driven approach using supervised machine 
learning offers a more scalable solution [22]. 

By tracking the movements of nearby objects over a 5-
second horizon using their previous 1-second trajectories, AVs 
can transform motion prediction, planning, and simulation into 
data-centric problems [23]. Furthermore, the model must be 
versatile enough to handle scenarios, such as intersections, 
congested urban streets, and highways. The choice of neural 
network architecture is pretty obvious to achieve a balance 
between prediction speed and adaptability. Despite 
advancements in trajectory prediction and motion planning, the 
reviewed studies still have several challenges that remain 

unaddressed. Addressing these gaps requires hybrid applied 
approaches that combine behavior modeling and uncertainty 
quantification, as demonstrated in our research. 

III. METHODOLOGY 

A. Dataset 

The Argoverse dataset [24] is a publicly available resource 
designed to advance research in autonomous driving by 
providing diverse real-world data for perception, trajectory 
forecasting, and motion planning. Collected from vehicles 
equipped with high-resolution LiDAR sensors, multiple RGB 
cameras, and detailed high-definition maps, the dataset enables 
a broad range of self-driving tasks. It comprises over 300k 
trajectories from more than 1,000 hours of driving, 
encompassing urban and suburban scenarios. 

The dataset includes two key components: the 3D Tracking 
Dataset, focused on object detection and tracking, and the 
Motion Forecasting Dataset, aimed at predicting the future 
trajectories of vehicles and other traffic participants. With 
detailed annotations for traffic participants and trajectory data, 
along with HD maps containing lane geometry and traffic 
controls, the dataset facilitates accurate motion planning and 
interaction modeling. Its temporal sequences and multimodal 
data structure allow for advanced applications such as 
trajectory prediction, behavior forecasting, and real-time 
motion planning. As a well-annotated dataset among others, as 
shown in Fig. 1, Argoverse provides benchmarks for 
evaluating models, making it a best choice for developing 
interaction-aware systems in complex traffic environments. 

 

Fig. 1. A sample of raw dataset. 

To match the data's quality for subsequent modeling tasks, 
we began by extracting all x-y coordinate data associated with 
each timestamp and then organized the data by vehicle type to 
account for behavioral differences among various traffic 
participants. The coordinates were normalized to the range 0 to 
1, representing their relative position to the data-collection 
vehicle. This normalization step ensures scale invariance and 
allows for consistent interpretation of spatial relationships. To 
maintain numerical precision, we retained up to six decimal 
places during this transformation. 

The processed data was then split into five second intervals 
for each vehicle trajectory, reflecting the temporal progression 
of the observed environment. Each interval was further divided 
into two parts: the first three seconds served as training data, 
capturing historical movements, while the final seconds were 
used for testing, simulating future trajectory prediction. To 
improve the reliability of the input data, we filtered out 
incomplete trajectories. Specifically, any vehicle missing 
sufficient information defined as fewer than 51 rows of data, 
equivalent to 4 and 5+ seconds at a 5-10Hz sampling rate was 
excluded. This careful filtering process minimized signal noise 
and inconsistencies, ensuring that only reasonable data 
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informed the training and testing stages (see details in Table I). 
This pipeline is the foundation for next stages of the trajectory 
prediction model. 

TABLE I.  OVERVIEW OF THE DATASET 

Field 
Argoverse dataset 

Description Most Frequent Value 

TIMESTAMP 
Timestamp of the recorded 

data point 
3.16E+08 

TRACK_ID 
Unique identifier for each 
tracked vehicle 

00000000-0000-0000-
0000-000000000000 

OBJECT_TYPE 

Type of object (e.g., 'AV' 

for autonomous vehicle, 
'OTHERS' for surrounding 

vehicles) 

OTHERS 

X 
Longitudinal position of the 

vehicle 
402.8939 

Y 
Lateral position of the 

vehicle 
1253.103 

CITY_NAME 
City where the data was 

collected 
MIA 

In addition to position coordinates (X, Y), velocity 
components (Vx, Vy) were derived from consecutive position 
differences over time. The acceleration components were 
further computed to capture variations in vehicle speed and 
potential braking or acceleration events. This allowed the 
model to distinguish between stable lane-following behavior 
and unexpected maneuvers, such as lane changes or emergency 
stops. These computed features were normalized within a [0, 1] 
range to ensure numerical stability during training. 

Another crucial aspect was categorical encoding of object 
types. Since the dataset includes both AVs and surrounding 
human-driven vehicles (OTHERS), a one-hot encoding scheme 
was applied to differentiate between the two. This distinction 
was necessary because human drivers exhibit complex 
behavior, requiring adaptive mechanisms that consider their 
almost unpredictable decisions. 

The city identifier (CITY_NAME) provided contextual 
information regarding the driving environment. Data collected 
from MIA (Miami) was analyzed separately to identify any 
city-specific driving patterns, such as differences in traffic 
density, intersection layouts, or lane configurations. While the 
dataset predominantly focuses on highway scenarios, 
environmental factors such as road curvature, lane widths, and 
merging configurations were later incorporated as additional 
inputs in the models. 

To account for lane-aware trajectory dependencies, road 
geometry data from the high-definition map layers of the Lyft 
Level 5 dataset [25] was extracted for augmentation. This data 
included lane centerlines, traffic sign positions, and speed 
limits, enabling trajectory predictions that align with road 
constraints rather than purely data-driven extrapolations. 

The processed dataset was divided into training (70%), 
validation (20%), and test (10%) subsets. Given the temporal 
nature of the data, a sliding window approach was 
implemented to segment continuous vehicle trajectories into 
overlapping time frames of 5-second windows. 

B. Mathematical Model 

The goal is to predict the trajectory of a target vehicle 

𝚯𝜏 = [𝜽𝜏
𝑁ℎ+1, … , 𝜽𝜏

𝑁ℎ+𝑁𝑓]  (1) 

where 𝜽𝜏
𝑡 =  [𝜒𝜏

𝑡 , 𝜓𝜏
𝑡]  denotes its longitudinal and lateral 

positions over the future 𝑇𝑓 = 4 s ( 𝑁𝑓 = 24 time steps). The 

input consists of historical observations over 𝑇ℎ = 3 s ( 𝑁ℎ =
18 time steps) for the target and nine surrounding vehicles, 
represented as,  

𝜉𝑡
𝑖 = [𝜒𝑡

𝑖, 𝜓𝑡
𝑖 , 𝜈𝜒,𝑡

𝑖 , 𝜈𝜓,𝑡
𝑖 ],   (2) 

where (𝜒, 𝜓) are the positions and (𝜈𝜒 , 𝜈𝜓) the velocities. 

To focus on relative dynamics, the state of each surrounding 

vehicle is expressed relative to the target as Δ𝜉𝑡
𝑖 = 𝜉𝑡

𝑖 − 𝜉𝑡
𝜏. The 

complete input sequence is 𝚫𝚵 = [Δ𝜉1, 𝜉𝜏, … , Δ𝜉9]. 

An encoder-decoder framework with LSTM is used to 
capture temporal dependencies. The encoder processes 𝚫𝚵 to 

produce hidden states 𝐡𝑡 for 𝑡 = 1,… , 𝑁ℎ, with 𝐡𝑁ℎ
 serving as 

the context vector 𝐂. The decoder predicts the future trajectory 
step-by-step, using the context vector, the hidden state s𝑡, and 
the previous output 𝜽𝜏

𝑡−1. The prediction is given by  

𝜽𝜏
𝑡 = 𝑓dec(s𝑡 , 𝐂)   (3) 

To address sequence representation limitations, we employ 
two attention mechanisms. Context-aware attention reweights 

𝐂 = 𝐡𝑁ℎ
 by assigning importance 𝛼𝑡

𝑗
 to its elements, forming 

𝐂𝑡 = [𝛼𝑡
1⋅ ℎ𝑁ℎ

1 , … , 𝛼𝑡
𝑘 ⋅ ℎ𝑁ℎ

𝑘 ]  (4) 

Lane-aware attention divides the surrounding vehicles into 
four groups (current, left, and right lanes, behind), producing 
context vectors 𝐂1, 𝐂2, 𝐂3, 𝐂4. The final context vector is, 

𝐂𝑡 = 𝛽𝑡
1 ⋅ 𝐂1 + 𝛽𝑡

2 ⋅ 𝐂2 + 𝛽𝑡
3 ⋅ 𝐂3 + 𝛽𝑡

4 ⋅ 𝑪4 (5) 

where 𝛽𝑡
𝑖  reflects each lane's relevance. The model is 

trained using mean squared error: 

ℒ =
1

𝑁𝑓
∑  
𝑁ℎ+𝑁𝑓

𝑡=𝑁ℎ+1
∥∥𝜽𝜏

𝑡 − Θ𝜏
𝑡∥∥

2
   (6) 

This approach integrates spatial and temporal 
dependencies, enabling interpretable trajectory prediction, as 
shown in Fig. 2. 

 

Fig. 2. The trajectory prediction process in a highway merging scenario. 

C. Base Model 

The baseline model selected for this study is a Multi-Layer 
Perceptron (MLP), a neural network architecture that uses 
back-propagation for training. The MLP serves as an initial 
framework to evaluate the dataset’s viability. This model 
consists of one input layer, two hidden layers, and one output 
layer, utilizing the Rectified Linear Unit (ReLU) activation 
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function to ensure non-linearity. During training, the MLP 
baseline model was first tested to establish feasibility, followed 
by a Seq2Seq model with LSTM layers. The input to the model 
comprises 10 frames from the previous second, sampled at 0.1-
second intervals, capturing both the agent's and the 
autonomous vehicle's positions. From these positions, the 
motion of the surrounding agents is derived and used to predict 
their trajectories over the next five seconds. 

For further refining the predictions, we implement an 
ensemble approach using a stacking algorithm. Each individual 
model is trained separately on the data and later combined 
through additional neural network layers. This ensemble 
network effectively reduces generalization error and improves 
prediction accuracy. The approach also allows for trajectory 
visualization, particularly when incorporating labeled traffic 
signs into the predictions. The MLP model in this setup has 
17k trainable parameters. 

The predicted trajectory hypotheses are compared against 
the ground truth by modeling the likelihood under a mixture of 
Gaussians [26]. The mean values are set to the predicted 
trajectories, while the covariance is modeled using an identity 
matrix, enabling a probabilistic assessment of prediction 
accuracy. This approach ensures robust trajectory prediction 
and facilitates interpretable outputs in barely predictable traffic 
scenarios. 

D. Seq2Seq-LSTM Model 

To improve trajectory prediction beyond the baseline MLP, 
we adopted a Seq2Seq model, which as a type of encoder-
decoder framework with LSTM layers, is well-suited for 
translating sequences of one domain into another with different 
lengths, such as time series positional data to future 
trajectories. In our case, the model processes 3 seconds (Nh=15 
frames) of historical positional data and predicts the next 5 
seconds (Nf=25 frames) of motion. The sequence length of 15 
frames (for 3-5 seconds at 5 Hz sampling rate) was found to 
provide the best balance between predictive accuracy and 
computational efficiency. 

The encoder LSTM compresses the input sequence into a 
latent state, discarding intermediate outputs, while the decoder 
LSTM uses this latent state to iteratively generate the future 
trajectory. A dense layer with ReLU activation ensures the 
output values remain normalized in the range [0,1]. Categorical 
cross-entropy is used as the loss function, and the model 
contains 4m trainable parameters. 

For integration of the predicted trajectories with a 
reinforcement learning (RL) module, as shown in Fig. 3, we 
established positional and velocity mappings. Positional 
mapping adjusts the vehicle positions to align with a custom 
highway environment consisting of two main lanes and a 
merging lane over a 500-meter stretch, divided into four zones: 
pre-merged, convergence, merge, and post-merged (150m, 
100m, 150m, and 100m zones). Vehicle positions (x, y) are 
transformed relative to the monitored vehicle, mapping lateral 
placement (x) to lane alignment and longitudinal placement (y) 
relative to the vehicle’s merging zone location. Velocity 
mapping calculates initial and target velocities based on 

historical and predicted trajectory data, ensuring consistency 
with the simulated environment. 

 

Fig. 3. The general design of the development process. 

The RL simulates the merging process by defining six 
possible actions for the vehicle: maintaining, accelerating, or 
decelerating speed, either while staying in the current lane or 
changing lanes. The state space includes the positions ( x ), 
velocities ( v  ), and orientations ( 𝜃  ) of all vehicles in the 
scene. A simplified reward function ℛ is designed to optimize 
safe and efficient merging behavior by balancing key factors 
such as speed, lane preference, and collision avoidance: 

ℛ = 𝜆𝑐 ⋅ 𝛿𝑐 + 𝜆𝑙 ⋅ 𝛿𝑙 + 𝜆𝑠 ⋅ 𝛿𝑠,  (7) 

where: 

 𝜆𝑐 , 𝜆𝑙 , 𝜆𝑠, 𝜆𝑚  : tunable hyperparameters, where 𝜆c  is a 

collision penalty weight, 𝜆1  - lane preference reward 
weight, 𝜆𝑠 - speed reward weight, 

 𝛿𝑐  : binary indicator (1 if a collision occurs, 0 
otherwise), 

 𝛿𝑙 : binary indicator for being in the desired lane (1 if 
true, 0 otherwise), 
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 𝛿𝑠 : normalized vehicle speed within the desired range. 

To address the merging dynamics, an additional penalty is 
applied if the vehicle's speed deviates from the target speed: 

ℛ+= 𝜆𝑚 ⋅ (𝜈𝜏
target 

− 𝜈𝜏)
2

,   (8) 

where: 

 𝜆𝑚 : penalty weight for merging speed deviation, 

 𝜈𝜏
target. 

 : target speed of the vehicle, 

 𝜈𝑇  : current speed of the vehicle, 

 ℛ : total reward received by the vehicle. 

This RL combines Seq2Seq-based trajectory prediction 
with a reward mechanism that aligns with adaptability of the 
model. 

IV. RESULTS 

A. Implementation of the Model 

To address the computational challenges posed by the large 
dataset, we optimized the training configuration by limiting the 
number of epochs and batch size. While this approach ensured 
feasible GPU memory usage, it likely prevented further 
reduction of the loss function, which could be achieved with 
extended training iterations. All experiments were conducted 
using Google Colab with an Nvidia GPU, as the cards on local 
machines was insufficient for these tasks. Despite the hardware 
accelerator, training times for individual models varied 
significantly, often exceeding 11 hours. Models such as 
DenseNet, ResNet, and others were explored but could not fit 
within the VRAM limitation of the GPU. 

 

Fig. 4. The schematics of predicted trajectory for an AV. 

The primary focus of the trajectory prediction task was on 
the Seq2Seq model. Training involved mapping historical 
positions and velocities to future trajectories, visualized using a 
rasterizer and trajectory drawing functions. For instance, Fig. 4 
illustrates the ground truth and predicted trajectory for an AV 
within a specific map scene. Although the predicted trajectory 
does not fully align with the ground truth, it remains within the 
correct lane, demonstrating reasonable accuracy. Additional 
visualizations also included scenarios with traffic sign labels, 
where agents responded appropriately to signals—stopping at 

red lights and proceeding through green lights in the predicted 
frames. 

For implementation, the dataset was preprocessed to load 
training data, train the model, and then test it on unseen scenes. 
The trained model generated predictions for both agents and 
AV trajectories. Using ensemble methods, we improved 
motion prediction through stacking algorithms, enabling 
comprehensive visualizations of entire scenes. In maneuver 
generation, performance comparisons were made across 
multiple RL agents. As we starting with a baseline MLP agent, 
we also evaluated the Deep Q-Network (DQN) and Dueling 
Deep Q-Network (DDQN) agents [27]. 

Results indicated improved trajectory prediction and 
decision-making in RL environments using advanced agents. 
The validation loss, consistently at or below the training loss 
suggested that the model achieved reliable training accuracy. 
These experiments shows the efficacy of the ensemble model 
and the integration of RL for trajectory planning. The 
visualizations provided insights into the model's accuracy in 
collision prediction. For example, in Fig. 5, surrounding 
vehicles exhibited consistent longitudinal motion with risky 
left side movement, except for one vehicle deviating slightly. 

 

Fig. 5. The risky motion with substantial side movement. 

B. Model Evaluation 

The experiments begins with preprocessing the Argoverse 
Dataset, containing over 300k CSV files of vehicular positional 
data. A subset of 50k samples is selected for training. The data 
is normalized, and target outputs are quantized to six decimal 
places for precision. For training, the first 2 to 3 seconds of 
each 5-second sequence are fed into a Seq2Seq model, and the 
trained model is saved for inference as well. During inference, 
the model predicts positional trajectories for the next remained 
seconds. These predictions are mapped into initial position, 
initial and target velocity parameters, which serve as inputs to 
the RL environment. 

However, discrepancies such as a significant gap between 
training and validation losses may require additional 
regularization techniques, such as dropout, L2 weight 
regularization, or early stopping. Incorporating domain-specific 
features like initial and target velocities into the trajectory 
prediction process, as well as mapping predictions into RL, 
enhances the practical utility of the model. Overall, a 
combination of balanced data, hyperparameter optimization, 
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and careful monitoring of loss metrics could significantly 
improve the model’s accuracy in some complex scenarios [28]. 

For real-time applicability, inference speed was also 
analyzed. The Seq2Seq model achieved inference latency of 
approximately 9.2 milliseconds per trajectory prediction, 
making it feasible for integration into autonomous vehicle 
planning pipelines. However, more computationally intensive 
attention-based models were explored in subsequent 
experiments to improve prediction robustness while 
maintaining acceptable inference times. 

As shown in Fig. 6 and Fig. 7, the training and validation 
losses for the Seq2Seq model remain consistently low, with 
validation loss equal to or slightly lower than training loss, 
indicating effective generalization in trajectory prediction for 
autonomous driving. 

 

Fig. 6. Training loss metric for the model. 

 

Fig. 7. Validation loss metric for the model. 

In the testing phase, a separate 5-second dataset simulates 
sensory data typically acquired through LiDARs in real-world 
AV systems. Using this data, the trained Seq2Seq model 
predicts the positions of surrounding vehicles for the next 3 
seconds. These predictions are again mapped into the RL 
environment, where the trained RL model generates optimized 
maneuver decisions for the vehicle with certain accuracy, as 
shown in Table II. We know that current setup increases the 
risk of overfitting, especially with noisy data, but 
hyperparameter tuning certainly can mitigate these risks. 
Gradient checkpointing was applied to reduce GPU memory 

consumption without significant trade-offs in convergence 
speed. As an experimental measure, early stopping was 
implemented to prevent overfitting, terminating training after 
10 consecutive epochs without validation loss improvement. 

TABLE II.  ACCURACY SCORES FOR THE MODELS 

Metric Baseline MLP Seq2Seq DQN Dueling DQN 

Accuracy 
(%) 

69.4000 83.1000 78.500 87.5000 

MSE 0.0028 0.0014 0.002 0.0011 

MAE 0.0440 0.0270 0.032 0.0220 

R² 0.6800 0.8300 0.790 0.8800 

C. Simulation 

The DQN enhances the classical Q-Learning algorithm by 
approximating the Q-function, defined as: 

𝑄∗(𝑠, 𝑎) = 𝔼 [𝑡 + 𝛾max
𝑎′

 𝑄∗(𝑠′, 𝑎′)]  (9) 

where 𝑄∗(𝑠, 𝑎)  represents the maximum expected return 
starting from state 𝑠, taking action 𝑎, and following the optimal 
policy. The discount factor 𝛾 controls the importance of future 
rewards. Instead of storing 𝑄∗(𝑠, 𝑎) for all state-action pairs, 
which is infeasible in large state spaces, DQN uses a neural 
network with parameters 𝜃  to approximate 𝑄 -values by 
minimizing the loss: 

𝐿𝑖(𝜃𝑖) = 𝔼𝑠,𝑎,𝑟,𝑠′ [(𝑦𝑖 − 𝑄(𝑠, 𝑎; 𝜃𝑖))
2
]  (10) 

where the temporal difference target 𝑦𝑖  is given by: 

𝑦𝑖 = 𝑡 + 𝛾max
𝑎′

 𝑄(𝑠′, 𝑎′; 𝜃𝑖−1)  (11) 

Dueling DQN further refines this by splitting the network 
into two execution path: one estimating the state and the other 
estimating action-related advantages. These are combined in 
the final layer to produce the Q-value, improving performance 
in scenarios where distinguishing between actions is not 
immediately necessary. The combination of these two streams 
in the final layer, while effective for many scenarios, relies 
heavily on the assumption that the advantage function can be 
effectively separated from the state value function. In complex 
environments where actions and states are interdependent, this 
separation may lead to suboptimal policy learning, as the 
model might underestimate or overestimate the advantage of 
specific actions. 

In simulation experiments, agents based on DQN and 
Dueling DQN were evaluated with varying discount factors 
(𝛾) over 1000 training epochs. Qualitative results show that 
dynamic reward settings lead to faster, riskier merges, while 
less dynamic result in cautious behavior (see Fig. 8 and Fig. 9). 
We could also explore the impact of reward structures on 
merging strategies. However, as noted in certain models, a 
drop in prediction accuracy implies that these algorithms often 
fail to truly understand the behavior of individual drivers. 

While deep learning methods can capture correlations 
between vehicle trajectories, they may struggle with causal 
inference, leading to errors in scenarios where driver intent 
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significantly deviates from learned patterns. As a result, these 
models often generalize poorly in unpredictable scenarios, 
where one driver may aggressively accelerate into a merging 
lane while another might yield prematurely. 

We assume, as Dueling DQN excels in scenarios where 
distinguishing between actions is less critical (e.g., when 
multiple actions lead to similar outcomes), it may struggle in 
some fine-grained decision-making cases, such as those 
involving continuous action spaces or rapid maneuvering. The 
architecture assumes that state-value estimation can guide the 
policy sufficiently when action advantages are less distinct, 
which might not hold true in edge cases requiring much precise 
action-value differentiation [29]. 

 

Fig. 8. Performance results of DQN agent. 

 

Fig. 9. Performance results of dueling DQN agent. 

Nonlinear driver behaviors significantly influenced by 
sensor noise and capability of interpreting accidents, such as 
sudden braking or unexpected lane changes. For instance, 
human drivers exhibit a wide range of behaviors influenced by 
factors such as aggressiveness, reaction time, and external 
conditions (e.g., weather, road layout, or traffic density). 
Traditional deep learning models, such as RNNs or encoder-
decoder architectures, may fail to distinguish between cautious 
and aggressive drivers, treating all vehicle trajectories as 
homogeneous. Results indicate that Dueling DQN 
outperformed standard DQN, particularly in collision-
avoidance scenarios, as it accounts for delayed decisions when 
a collision is imminent, with the vehicle approaching to 
surrounding cars, as depicted in Fig. 10 and Fig. 11. 

 

Fig. 10. Collision scenarios before merging. 

 

Fig. 11. The vehicle approaching to surrounding cars at the merging moment. 

Prediction error generally increases with vehicle density, as 
shown in Fig. 12. This heatmap reflects the growing 
complexity of motion prediction in congested traffic, where 
interactions between multiple agents introduce uncertainty. 
Addressing this challenge requires enhanced contextual 
awareness to mitigate errors in high-density scenarios. 
Additionally, the need for uncertainty-aware models is evident, 
ensuring robustness across diverse urban environments and 
enhancing multi-agent interaction strategies, especially for 
likelihood of emergency maneuvers. 

 

Fig. 12. The relationship between vehicle density and prediction error. 

These inaccuracies become more pronounced in long-term 
predictions, where small errors in trajectory forecasts 
accumulate over time, resulting in substantial deviations from 
actual vehicle behavior. Given that AVs must make real-time 
decisions that depend on both immediate and extended motion 
forecasting, inconsistencies in predictions can disrupt 
maneuver planning, leading to suboptimal gap selection, 
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unnecessary braking, or unsafe merging. To mitigate these 
issues, a more robust approach is required that combines 
explicit driver behavior modeling with trajectory prediction. As 
demonstrated in our application (see Fig. 13), integrating 
behavior-aware prediction techniques improves the system’s 
ability to anticipate diverse driving patterns, leading to more 
reliable and adaptive merging strategies. 

 

Fig. 13. Demo application for explicit driver behavior modeling. 

The experimental results demonstrate several notable 
advancements in maneuver prediction: 

 The removal of incomplete and inconsistent trajectories 
significantly enhanced prediction stability by 
decreasing noisy data. 

 Incorporating velocity, acceleration, and road geometry 
features contributed to motion representation quality. 
The Seq2Seq model with LSTM layers outperformed 
baseline approaches. 

 Optimized batch processing and gradient checkpointing 
effectively managed GPU memory constraints. 

 The inference latency remained within operational 
thresholds of the model's applicability for real-time 
deployment. 

V. DISCUSSION 

The experimental results reveal significant advancements in 
trajectory prediction and decision-making for AVs. However, 
these results also highlight key challenges that must be 
addressed to achieve full autonomy. The trajectories on 
highways, often categorized into lane-keeping and lane-
changing, present distinct challenges due to their unbalanced 
data distribution. Lane-changing events are relatively rare 
compared to lane-keeping, leading to difficulties in model 
generalization. To mitigate this, we increased the penalty for 
lateral position errors by a factor of three while keeping the 
longitudinal penalty unchanged. This adjustment improved 
performance on lane-changing trajectories but further methods 

such as data augmentation and rebalancing may enhance 
outcomes. 

Our Seq2Seq-based trajectory prediction framework 
performed reliably in predicting short-term trajectories. The 
low and stable training and validation losses (Fig. 6 and Fig. 7) 
indicate effective generalization, especially in scenarios where 
vehicle movements are smooth and continuous. However, 
when applied to long-term predictions, the model struggled to 
account for sudden changes influenced by dynamic factors like 
merging traffic, traffic signals, and unexpected obstacles. This 
suggests that while Seq2Seq excels in capturing immediate 
patterns, it may benefit from additional context for long-term 
predictions. 

Existing studies, such as [30], use a similar encoder-
decoder LSTM architecture but focus on fewer surrounding 
vehicles and rely solely on positional data. Our approach, 
incorporating both position and velocity information, provided 
richer dynamics. However, as our experiments show, more 
information does not always equate to better performance. For 
short-term predictions, focusing on vehicles immediately 
behind or adjacent to the target vehicle yielded more accurate 
results. For longer horizons, integrating data about road 
geometry, traffic density, and environmental signals could 
further enhance predictions. 

The computational challenges of training on large datasets 
also posed limitations. Processing 300k files from the 
Argoverse dataset required significant resources, even after 
selecting a subset of 50k samples. Models were trained using 
an Nvidia GPU on Google Colab, as local GPUs lacked 
sufficient memory. Despite hardware acceleration, training 
times for Seq2Seq often exceeded tens of hours, and memory-
intensive models could not be tested due to their high 
requirements. These constraints limited our ability to 
experiment with more complex models and hyperparameter 
configurations. 

The RL module demonstrated promising results for 
maneuver generation. Starting with the baseline MLP, we 
evaluated DQN and Dueling DQN agents. The results showed 
that Dueling DQN consistently outperformed DQN in high-
stakes scenarios such as collision avoidance. This can be 
attributed to Dueling DQN’s ability to separate state-value and 
action-advantage estimations, allowing the model to prioritize 
critical decisions. As illustrated in Fig. 11, Dueling DQN 
achieved smoother merges under less aggressive reward 
settings and faster merges under more dynamic rewards. 

Our experiments also highlight the importance of reward 
design in RL-based trajectory generation. Aggressive reward 
functions encouraged riskier behavior, with the vehicle 
accelerating into gaps during merges. Conversely, conservative 
rewards resulted in cautious behavior, where the vehicle 
yielded to surrounding vehicles before merging. These findings 
underscore the need for careful tuning of reward structures to 
balance safety and efficiency of the model. 

Despite these advancements, our system has limitations 
when applied to urban environments. Highways typically 
exhibit predictable traffic patterns with fewer obstacles and 
interactions. Urban settings, by contrast, involve complex 
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intersections, pedestrian interactions, and diverse traffic actors 
that require models to generalize across a broader range of 
objects [31]. Extending our framework to handle such 
environments will require incorporating additional sensory 
inputs (e.g., pedestrian detections, stop signs) and more 
adaptive models capable of responding to unpredictable events 
[32]. 

Another limitation of our system lies in its scalability. The 
ensemble methods used for trajectory prediction and maneuver 
generation, while effective, are computationally expensive. 
Real-world deployment of such systems would require 
significant optimization to achieve real-time performance. 
Furthermore, our reliance on high-quality datasets like 
Argoverse means that the system may struggle in environments 
with less structured data or sensor inaccuracies, such as 
occlusions and noisy GPS signals. 

The imbalance between lane-keeping and lane-changing 
trajectories also poses broader implications for AV 
development. While our increased penalties for lateral errors 
improved lane-changing predictions, the system may still fail 
in edge cases, such as rapid lane changes or merging under 
high traffic density. Addressing these scenarios will require not 
only better modeling but also real-world testing to understand 
how AVs interact with human drivers in such situations. 

Lastly, achieving full autonomy involves challenges 
beyond technical performance. Ethical considerations, such as 
decision-making during unavoidable collisions, remain 
unresolved. Regulatory frameworks for AVs are still evolving, 
and infrastructure, such as high-definition mapping and 
vehicle-to-everything (V2X) communication, must be 
developed to support these systems [33]. As our experiments 
demonstrate, while trajectory prediction and RL-based 
planning offer promising solutions, achieving Level 5 
autonomy will require a holistic approach that integrates 
technology, policy, and infrastructure. 

A key area of improvement is the integration of multi-agent 
prediction models, which will enable AVs to better anticipate 
and respond to interactions in dense and heterogeneous traffic. 
Expanding RL to continuous action spaces will enable 
smoother, more natural driving behaviors. Uncertainty-aware 
trajectory prediction can improve robustness by integrating 
Bayesian deep learning and Monte Carlo dropout, allowing 
AVs to quantify uncertainty and adjust decisions dynamically. 

A promising approach is hybrid models that integrate 
physics-based and deep learning techniques for dynamic 
adaptation. Real-world validation through diverse urban and 
highway testing, along with sensor fusion (LiDAR, radar, and 
cameras), will improve perception accuracy. Large-scale 
simulations and real-world trials will bridge the gap between 
theoretical performance and practical deployment, ensuring 
AVs operate with greater computational efficiency. 

We suggest, this work demonstrates the feasibility of 
combining Seq2Seq trajectory prediction and reinforcement 
learning for autonomous driving. While the results are 
promising, achieving fully autonomous driving will require 
addressing significant gaps in model generalization, 
computational scalability, and adaptation to diverse 

environments. Ultimately, the path to full autonomy is not just 
a technological challenge but a multidimensional problem 
requiring collaboration across domains. 

VI. CONCLUSION 

This study presented a framework for trajectory prediction 
and maneuver generation in autonomous vehicles, combining 
Seq2Seq-based prediction models with reinforcement learning. 
The model effectively predicted short-term trajectories by 
mapping a few seconds of historical position and velocity data 
to the next seconds of future trajectories. The model 
demonstrated consistent performance, with validation losses 
equal to or slightly lower than training losses, suggesting good 
generalization within the dataset's constraints. 

Reinforcement learning was employed to optimize 
maneuver decisions, with agents such as DQN and Dueling 
DQN evaluated. Dueling DQN exhibited superior performance 
in collision-avoidance scenarios due to its separation of state-
value and action-advantage estimations, which allowed for 
better handling of scenarios requiring delayed decision-
making. However, the performance of the RL agents was 
sensitive to reward function design, highlighting the 
importance of parameterizing rewards to balance safety and 
efficiency in varying scenarios. 

Several limitations were observed. First, the imbalance in 
trajectory types, such as lane-keeping versus lane-changing, 
negatively impacted model accuracy despite efforts to mitigate 
this through weighted loss functions. Second, the 
computational constraints of training deep learning models on 
large datasets posed scalability challenges, particularly for real-
time applications. Third, while the models performed well on 
structured datasets, the transition to real-world scenarios, 
involving dynamic interactions and noisy sensor data, remains 
an open challenge. 

Future research should aim to overcome existing 
limitations by enhancing data balancing techniques, optimizing 
computational frameworks, and integrating models with real-
world sensory inputs. Refining the underlying algorithms and 
addressing these challenges will contribute to more reliable 
trajectory prediction and maneuver planning. Extending the 
framework to urban driving environments, where traffic 
patterns are a way more complex, will require incorporating 
richer environmental features and more adaptive strategies. 
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