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Abstract—With the development of science and technology, 

industrial construction has entered the era of 4.0 intelligent 

construction, and various algorithms have been widely applied in 

the modularization of production products. This study focuses on 

the modular optimization problem of complex products and 

establishes a hybrid genetic algorithm based on the ant colony 

algorithm framework. The new algorithm incorporates visibility 

analysis of the genetic algorithm, using the obtained solution as the 

pheromone source for the new algorithm to quickly obtain the 

optimal solution. The results showed that the algorithm could 

quickly achieve modularization of complex industrial products, 

adapt to products with a large number of parts and complex 

compositions, and obtain the optimal solution. The new algorithm 

reduced the running time of modular complex products by 35.06% 

compared to the particle swarm optimization algorithm. The new 

algorithm optimized the product design process for core 

components, reducing production costs by 23.46% and increasing 

production efficiency by 39.20%. Consequently, the novel 

algorithm modularizes complex products, thereby enhancing 

production efficiency and providing a novel intelligent method for 

the design process of complex products. 

Keywords—Industry 4.0; genetic algorithm; ant colony; complex 

products; modularization; production efficiency 

I. INTRODUCTION 

In recent years, technological advancements have made 
traditional manufacturing unable to meet the current society's 
production needs for complex products [1]. Industry 4.0 is not 
only an upgrade to traditional supply chain automation and 
monitoring, but also builds a highly interconnected ecosystem 
and intelligent driven products through deep integration of 
intelligent technology [2]. The core concept is to utilize 
advanced information and communication technology to 
promote the transformation of the manufacturing industry 
towards a more flexible, efficient, and personalized intelligent 
manufacturing model [3]. In this context, the hybrid Genetic 
Algorithm (GA) has become a powerful tool for solving 
multidimensional and nonlinear optimization problems in the 
design of Complex Products Modularization (CPM) due to its 
unique advantages of strong global search capability, flexible 
genetic mechanism, and compatibility [4]. The objective of 
modular design is to disaggregate complex products into a 
series of relatively autonomous and functionally distinct 
modules. Through the combination and reconstruction of 
diverse modules, the design process can rapidly adapt to market 

demands, enhancing design efficiency and product flexibility 
[5]. 

In response to the demand from various sectors of society 
for the construction of industrial responsibility products in the 
context of Industry 4.0, a large number of scholars have 
conducted extensive research on CPM. Li Y et al. proposed a 
CPM method that combines modularity and design change 
propagation scope to reduce the impact of design change 
propagation. This method constructed the adjacency matrix of 
a weighted directed network model and solved the model using 
non-dominated sorting GA. The results of verifying the 
modularity of the driver's cab of a specific electronic sanitation 
vehicle showed that this method was practical and effective [6]. 
Wang X et al. proposed a moderated mediation model to 
address the issue of product modularization in R&D 
outsourcing practices. Based on survey data from 273 Chinese 
manufacturing enterprises, hypotheses were tested using 
hierarchical regression and PROCESS macro-models. The role 
of product modularization in R&D outsourcing practice was 
more effective when the trust level of R&D outsourcing 
partners was high [7]. Wang S et al. proposed a sub-item 
method oriented towards core components to address the 
challenges of structural modeling difficulties and unreasonable 
modular solutions in CPM for complex product sub-item 
problems. The new method simplified the structural model of 
complex products, further reduced the difficulty of modeling, 
and improved the efficiency of solving module partitioning 
schemes [8]. Forti A W et al. proposed a new structural matrix 
modularization method to solve the problem of difficult 
integration of multi-component products in the automotive 
industry, which combines the use of quality function 
deployment and design attribute matrix indication matrix. This 
systematic modular process has effectively played a role, 
making cross-functional teamwork easier [9]. 

The application value of hybrid algorithms as an efficient 
optimization strategy in CPM design is becoming increasingly 
prominent. Zhao J et al. proposed a multi-ACA approach that 
combines community relationship networks to address the 
challenge of balancing solution accuracy and convergence 
speed in large-scale TSP for the Ant Colony Algorithm (ACA). 
It improved the accuracy of the solution by collecting the route 
information of all ants and constructing a route relationship 
network. The performance of the new algorithm in large-scale 
TSP was significantly better than other improved algorithms 
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[10]. Arasteh B et al. proposed a hybrid method based on a grey 
wolf optimization algorithm to solve the problems of poor CPM 
quality, low success rate, and limited stability in existing 
methods, to achieve sub-items of complex products. The new 
algorithm improved the clustering quality and outperformed 
other heuristic algorithms in terms of modularity and 
convergence speed [11]. Liu C et al. proposed an improved 
discrete imperialist competitive hybrid algorithm to address 
product design compatibility and quality issues, considering a 
nonlinear programming approach that maximizes the per capita 
contribution margin of reliability loss. This hybrid algorithm 
has improved the solution quality by 6%~17% and 5%~14% 
compared to GA and simulated annealing algorithms [12]. 

In summary, the combination of modularity and the scope 
of design change propagation effectively reduces the impact of 
design changes. The trust-based product modularization 
method has improved the modularization efficiency of R&D 
outsourcing. These methods provide multidimensional ideas for 
solving CPM. In terms of CPM, most algorithms have only 
implemented modularity, and there has not been much research 
on achieving high-efficiency production. Based on this, this 
study proposes a new hybrid genetic ACA. To adapt to the rapid 
modularization with fewer components, this study innovatively 
integrates operations such as mixing, crossover, and mutation 
into ACA to quickly obtain visibility. To better obtain the 
optimal solution, the genetic part of the solution is used as a 
pheromone to enable the ant colony to quickly obtain the 
optimal solution. Pheromones are chemical substances that are 
synthesized by ants in ACAs and serve to guide other ants in 
navigating their environment. The issue of information 
redundancy in multi-part problems has been addressed by the 
adoption of ant colony solving, which has supplanted genetic 
solving. This development has enabled the implementation of a 
novel algorithm capable of adapting to CPM in multi-part 
scenarios, thereby facilitating the enhancement of production 
efficiency for complex products. The article is divided into five 
sections in total. The first section introduces the research status 
and importance of CPM under the background of Industry 4.0. 
The second section elaborates on the framework of Hybrid 
Genetic Ant Colony Optimization (HGACO) algorithm and its 
application in CPM. The third section verifies the performance 
of HGACO algorithm through experiments and compares it 
with other algorithms for analysis. The fourth section discusses 
the article and provides personal insights and opinions. The 
fifth section summarizes the research conclusions and proposes 
future research directions. 

II. METHODS 

A. Establishment of Hybrid Genetic Ant Colony Algorithm 

In the era of Industry 4.0, traditional design methods cannot 
meet modern needs. This study designs an innovative HGACO 
method based on the ACA framework. Through a unique 
encoding and decoding mechanism, HGACO optimizes the 
decomposition process of product components. Simplifying 
complex products will be beneficial for industrial production. 
GA solving product modularization problems requires the use 
of various genetic components on chromosomes. The 
dimensions of each component are represented by chromosome 
length, forming an initial group [13]. The size of the fitness 

function determines the quality of an individual. The fitness 
function is transformed from the objective minimum function, 
as shown in Eq. (1). 
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In Eq. (1), ( )F t  is the fitness function. 
mQ  is the shortest 

path. The formula for selecting arithmetic factors using the 
turntable method is shown in Eq. (2). 
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In Eq. (2), ( )f t  and 
maxC  are the values and maximum 

values of the fitness function. The initial population uses a 
random method to generate multiple chromosomes. The size of 
chromosomes represents the size of a population. Genetic 
individuals are screened, and the selected excellent individuals 
are subjected to subsequent crossover mutations. The selection 
method adopts the turntable method, and the probability of 
being selected is determined by the ratio size of individuals, as 
shown in Eq. (3). 

1




Z

a

a N

a

a

f
P

f
     (3) 

In Eq. (3), 
aP  is the probability of being selected, 

zN  is 

the individual fitness value, and 
1


ZN

a

a

f  is the population 

fitness value. The selected excellent individuals are subjected 
to crossover operations to generate new offspring individuals. 
The crossover probability is shown in Eq. (4). 
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In Eq. (4), 
bP  is the crossover probability. 

df  and 
pf  

are the maximum and average fitness values of the population. 

b

df  is the party with a higher fitness value participating in the 

crossover process.   and   are constants. After selection 

and crossover, to enhance the comprehensive performance of 
the algorithm’s retrieval ability, mutation is also required. The 
mutation probability is shown in Eq. (5). 
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In Eq. (5), 
cP  is the mutation probability, 

bf  is the 

fitness value of the mutated individual, and   and   are 

constants. The calculation process of GA is shown in Fig. 1.
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Fig. 1. Ga solution flow chart. 

In Fig. 1, in the overall process of GA solving, step 1 is to 
read the problem being solved and set the corresponding 
parameters. Step 2 is to set the fitness function to calculate the 
fitness value, and initialize the population to produce parental 
chromosome individuals. The next step is to operate on 
individuals based on the selection, crossover, and mutation 
probability formulas, using the turntable method to select the 
transformed individuals. If the individual has reached the 
maximum number of evolutions, the solution value is directly 
output, otherwise it returns to the mutation step. GA is 
integrated into ACA, which is an exploratory algorithm with 
features of group cooperation, simultaneous computation, and 
forward selection. Each ant moves according to a fixed rule [14]. 
The number of ants is shown in Eq. (6). 
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In Eq. (6), N  is the number of ants. ( )aM t  is the number 

of ants at time t. The information of each path of ants during the 
transfer process varies, and the probability calculation method 
of ant movement is shown in Eq. (7). 
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In Eq. (7), x

abP  is the probability that ant x  moves from 

point t  to point b  at time a .  p

ab
 is the number of 

pheromones from point a  to point b  under the information 

heuristic factor p . q

ab
 is the visibility from point a  to 

point b . 
xxl  is a point that ants have not passed through. 

After the ant completes a path selection, the pheromones on 
other paths are shown in Eq. (8) [15]. 
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In Eq. (8), abt  is the number of pheromones from point 

a  to point b  after the t -th cycle.   is the residual 

coefficient of pheromones.  abt  is the residual value of 

pheromones. The pheromone changes of Ant x  from point a  

to point b  during a path iteration are shown in Eq. (9). 
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In Eq. (9),  x

ab
 is the pheromone change of ant x  from 

point a  to point b  in one path iteration. k  is the intensity 

of pheromones. ( )H C  is the sum of ant journeys after 

multiple iterations. Fig. 2 shows the calculation process of ACO. 

In Fig. 2, the system first initializes the data by randomly 
placing ants at various points and then begins the loop. 
According to the formula for calculating the probability of ant 
movement, the ants are moved. The points that ants pass 
through are marked. The ant colony cycle model is used to 
determine whether ants have passed through all points. If they 
have not passed through all points, the number of cycles is 
increased by 1. If the ant passes through all points, the 
pheromone is updated according to the pheromone calculation 
formula. If the calculated path is the shortest path, the path is 
updated; otherwise, the ant is asked to select a new point and 
output the shortest path. ACA lacks pheromones in the early 
stage, so the process of searching for the optimal solution is 
relatively slow. GA has high adaptability and fast running speed, 
but it is prone to generating redundant junk information. By 
integrating two algorithms, GA can solve the problem of the 
slow operation of ACA in the early stage. In the later stage, the 
accumulation of pheromones in ACA reaches a certain level, 
which increases the running speed and avoids the situation 
where GA continues to run and generate a large amount of junk 
information. The key to mixing GA and ACA is to find the time 
point for mixing. The appropriate timing can enable HGACO 
to achieve optimal performance. The process of the HGACO 
algorithm is shown in Fig. 3. 
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Fig. 2. Flow chart of ACA solution. 
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Fig. 3. Flow chart of HGACO. 

In Fig. 3, the HGACO algorithm first calculates the optimal 
solution through the GA part, converting the optimal solution 
into pheromones while leaving some visibility information. 
Visibility information refers to the quality information of 
solutions in GAs, which is used to guide ACAs to quickly find 
the optimal solution. The visibility data are numbered to 
represent the spatial numbering in the CPM problem-solving 
process. The pheromones transformed into the optimal solution 
are transmitted to the ACA section, and the optimal solution is 
obtained through the mechanism of simultaneous calculation in 
the ACA section. Finally, the optimal solution obtained by the 
HGACO algorithm is outputted. By utilizing the HGACO 
algorithm, modular processing of complex products can assist 
in production design. Complex products often have a large 
number of parts. Modular processing can simplify these parts 
and reduce the complexity of encoding and decoding. 

B. CPM Design 

The use of HGACO algorithm for CPM can solve the 
production efficiency problem in the context of Industry 4.0. 
The main factor affecting production efficiency is that product 

quality requirements are often high, and most products are 
customized with complex structures [16]. These reasons make 
product production relatively slow in the design process. After 
disassembling the information on these customized products, 
the indicators of each part can be obtained. The various 
components are interrelated. Fig. 4 is a complex product 
decomposition structure diagram. 

In Fig. 4, the internal relationships within the structure of 
complex products are complex. Various large devices are 
composed of different components. Components are composed 
of different components, and components are composed of 
multiple part modules, which contain multiple small parts. The 
components at different levels are connected in a complex 
manner through serial and parallel connections. The logistics 
list is used to organize components at different levels, 
determine their mutual demand relationships, and thus form 
integration. The adaptation relationship between different 
components will affect the quality performance of the product. 
There are various indicators of product quality. Reliability is 
the most important quality indicator. Fig. 5 shows the serial 
structure between the parts. 
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Fig. 5. Series system result model diagram. 

In Fig. 5, A1, A2, A3, A4, B1, B2, B3, and B4 respectively 
represent the component numbers. In a serial system, each 
component module is sequentially connected to form a linear 
sequence. The reliability of each component module directly 
affects the performance of its subsequent modules. 
Consequently, the overall reliability of the system depends on 
the reliability of each component module. The characteristic of 
this structure is that the failure of any component module may 
lead to the failure of the entire system. Multiple serial 
components together form a component module. In actual 
production, these component modules form a propagation mode 
of parallel connections. Parallel connected components further 
form components, and most of the components are interleaved 
in series and parallel. Among them, the reliability between 
component modules affects each other. The overall reliability 
of complex products is shown in Eq. (10). 
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In Eq. (10), ( )D x  represents the overall reliability of the 

product system. K  is the reliability coefficient. 
mX  is the 

reliability prediction of the m -th component. x  is the 

reliability standard.   is a quadrature sum operation. The 

reliability of the system decreases with the increase of the 
number of components, and the decrease in system reliability is 
reflected in the failure rate [17]. The lower the failure rate of 
components, the higher the reliability of the system. The 
calculation method for failure rate is shown in Eq. (11). 
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In Eq. (11), m
 is the overall failure rate of the system. 

a  is the failure rate of each component. Based on the 

calculation method of failure rate, the average time for system 
failure is shown in Eq. (12). 
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In Eq. (12), 
bfT  is the average time between failures, 

which is inversely proportional to the overall failure rate of the 
system. If one of the components is adjusted and integrated into 
parallel mode, the overall reliability calculation method of the 
system will be adjusted as shown in Eq. (13). 
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In Eq. (13), D  is the system reliability with parallel 

features, and (0,1)D . 
aD  is the reliability of the a -th 

component. n  is the total number of parts. The calculation 

method of the first derivative of the reliability of the system as 
a whole based on the number of parts is given by Eq. (14). 
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In Eq. (14), 
dD

dn
 is the first derivative of system reliability. 

With parallel connections in the system, as the number of parts 
increases, the system becomes significantly more reliable. The 
expression for the second derivative is given by Eq. (15). 
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Complex products often contain a large number of 
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component modules. Different component modules form 
various complex system structures. Serial and parallel modes 
are often mixed together, making the factors affecting system 
reliability more complex [18]. There is interaction between the 
components of the product. The impact of interaction is called 
the influencing factor. There is no interactive influence 
relationship between the components that make up the parallel 
state, and there is no subsequent performance impact. The 
influence relationship between the components that form a 
mixed state of serial and parallel is relatively complex, and 
when improving the system, it is greatly affected by the 

interference variables of the components. The coupling 
between different levels can improve the overall quality of the 
system by selecting the quality, quantity, and shape of parts [19]. 
Based on the analysis of serial and parallel quality performance 
of parts, this study uses the HGACO algorithm to integrate 
component modules in a hybrid structure and analyze the 
impact mechanisms of multiple component systems in the 
hybrid structure. By reallocating different components and 
configuring quality performance parameters, more precise and 
improved system modules are obtained [20]. Fig. 6 shows the 
technical process of using the HGACO algorithm for CPM. 
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Fig. 6. Technical flow chart of modular design of complex products. 

In Fig. 6, the first step is to conduct a quantitative analysis 
of product requirements, including functional description, size, 
and cost requirements. Subsequently, design constraints for 
variables such as cost and appearance. During the design 
process, it is also necessary to explain the constraints. After 
obtaining a series of required parameters, a basic cost and profit 
model for complex products is constructed. The study is 
predicated on the fundamental model to optimize the design of 
the HGACO algorithm. Ultimately, the HGACO algorithm is 
utilized for calculation to obtain the optimal functional module 
configuration scheme. 

III. RESULTS 

A. Performance Analysis of Mixed Genetic ACA 

Simulation experiments are designed to analyze the 
performance of the HGACO algorithm and solve the CPM 
analysis problem. The experimental language is Java, and the 
model solving is Matlab. The operating environment is 
Windows 10, the CPU is Intel Core i7-2600 3.40 Ghz, and the 
RAM is 4GB. The performance of an algorithm mainly depends 
on its control parameters. The control parameters are mainly 
divided into Iterations (GM), Mutation Rate (PM), Population 
Numbers (PS), and Crossover Rate (PC). The Analysis of 
Variance (ANOVA) of the algorithm under different parameter 
controls reflects its performance, with smaller values indicating 
better performance and greater stability. Fig. 7 shows the 
variance of PS and GM corresponding to the HGACO 
algorithm at different levels. 

The statistical significance of the variance data in Fig. 7 is 
shown in Table I. In Fig. 7 (a), PS increases with the increase 
of the number of levels. When PS is 36, the variance has its 
minimum value, and as PS continues to expand, there is no 
significant change in variance. In Fig. 7 (b), when GM is less 
than 80, the variance shows a stable downward trend, but when 
GM is greater than 80, the variance suddenly increases. This is 
because when the iteration parameters are too high, the 
HGACO algorithm is prone to lagging due to the concentration 
of pheromones, leading to an increase in ANOVA. Therefore, 
the optimal PS is 36 and the optimal GM is 80. There are 
crossover and mutation processes in the HGACO algorithm, 
and the corresponding PC and PM also have an impact on the 
variance. Fig. 8 shows the corresponding variances of PC and 
PM at different levels. 

In Fig. 8 (a), the ANOVA transformation is less affected by 
PC, and the variance is minimized when PC is 0.90. In Fig. 8 
(b), the variance is minimized when PM is 0.20. This is because 
cross-selection makes it easier to generate offspring with 
significant differences from the parent, while mutation 
operations have relatively less impact on offspring, so the 
mutation probability is less affected by hierarchy and has little 
effect on variance. The PC of the HGACO algorithm is 0.90, 
and the PM is 0.20. This condition has the best effect on 
generating the optimal population for the algorithm. Fig. 9 
shows the initial values of the independent variables and the 
distribution of the independent variables after multiple 
iterations in the HGACO algorithm. 
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Fig. 7. The Variance of PS and GM of the algorithm at different levels. 
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Fig. 8. The Variance of PC and PM of the algorithm at different levels. 
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Fig. 9. Distribution of independent variables under different cycles. 
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TABLE I STATISTICAL ANALYSIS OF VARIANCE DATA 

PS  GM  

Population Size variance Population Size variance 

5 0.78 20 0.83 

7 0.75 27 0.8 

10 0.71 33 0.75 

13 0.67 40 0.71 

18 0.65 47 0.68 

21 0.63 53 0.62 

24 0.60 60 0.58 

28 0.58 66 0.55 

31 0.56 70 0.48 

36 0.54 75 0.45 

38 0.55 80 0.41 

41 0.56 87 0.44 

44 0.57 92 0.46 

48 0.58 100 0.48 

P 0.0001 P 0.00005 

F 12.34 F 15.67 

95% Confidence intervals [0.59,0.67] 95% Confidence intervals [0.50,0.72] 

Standard deviations 0.07 Standard deviations 0.19 

In Fig. 9 (a), the initial value distribution of the ant colony 
is quite scattered and needs to undergo a self changing cycle. In 
Fig. 9 (b), when the number of iterations reaches 10, the 
independent variable distribution of the HGACO algorithm 
begins to converge towards the vicinity of the first independent 
variable 

1 1x  and the second independent variable 
2 1x . 

In Fig. 9 (c), when the number of self-variable loops reaches 20, 
the independent variables of the algorithm converge well. The 
independent variables of the algorithm gradually converge and 
reach a convergence state. Continuing to increase the number 
of loops will cause an unnecessary burden on the computational 
part of the algorithm. Therefore, the optimal number of 
iterations for the HGACO algorithm is 20, which results in the 
best convergence. After determining that the HGACO 
algorithm can achieve optimal performance under the above 
parameter conditions, it is necessary to analyze other 
performance indicators of the algorithm. The most intuitive 
way to determine whether an algorithm is optimal is to compare 
its performance with other algorithms under the same 
conditions. 

B. Performance Comparison of Modularization of Complex 

Products using different Algorithms 

In the previous section, various optimal parameters are 
determined through performance analysis of the HGACO 
algorithm. To validate the performance of the HGACO 
algorithm, the Swarm Behavior Heuristic Algorithm (SBH) and 
the traditional Particle Swarm Optimization (PSO) algorithm 
are compared with the proposed HGACO algorithm. This 
experiment compares the algorithm performance under CPM 
using algorithms. The modularization process is to use different 
algorithms to modularize complex products with m  parts and 

n  associations, where }10,20,3 0{ 0,4 ,50m  corresponds to 

{20,40,60,80,100}n  and the problem scale is represented as 

mnx . The training and validation running times of each 

algorithm on the DSM dataset are displayed in Fig. 10. 

In Fig. 10 (a), during the training process, the initial running 
time of the HGACO algorithm is relatively long. However, as 
the number of parts increases, the running time of HGACO is 
shorter than that of PSO, while the running time of SBH always 
remains linear. This is because HGACO has insufficient 
pheromones at the beginning, and the process of cross-selection 
and mutation takes a long time. However, with the extension of 
training and the accumulation of pheromones, the speed at 
which HGCAO seeks the optimal solution increases. In Fig. 10 
(b), due to the training of HGACO, it can maintain a relatively 
short running time throughout the validation process. The 
average running time of HGACO has been reduced by 35.06% 
compared to PSO. Table I shows the maximum modular value 
standard deviation and mean of HGACO, SBH, and PSO during 
the modular process. 

In Table Ⅱ, when there are few parts, all algorithms can 
obtain reasonable solutions, with an average value generally 
within 10. As the data size increases, the average values 
obtained by PSO and SBH show significant discrepancies, with 
some solutions even reaching 48900, which is clearly 
unreasonable. Due to the different solving rules of the 
algorithms, the model solutions obtained by PSO and SBH do 
not meet the requirements when there are too many parts. 
Therefore, only when the optimal solution of HGACO is within 
a reasonable range in all cases, can it meet the requirements. 
The production efficiency, duration, and cost of modularizing 
four complex products

1C ,
2C ,

3C , and 
4C  using three 

algorithms are shown in Fig. 11. 
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Fig. 10. Algorithm training and validation run time on DSM data set. 

TABLE II COMPARISON OF DIFFERENT ALGORITHMS ON MODULARITY VALUES 

 HGACO  PSO  SBH  

Problem Scale Mean Standard Deviation Mean Standard Deviation Mean Standard Deviation 

1020x  5.87 4.52 4.52 6.25 5.65 6.58 

2040x  7.82 7.16 7.16 8.02 2158 1589 

3060x  6.21 5.55 145 165 23.1 18.5 

4080x  4.59 6.21 3.54 3.51 256 298 

50100x  6.51 8.51 48900 36580 10.1 9.99 
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Fig. 11. Production data after modularization of complex products by algorithms. 

In Fig. 11 (a), the production costs of modularizing different 
products using the HGACO algorithm are 19.98 yuan, 15.84 
yuan, 9.21 yuan, and 21.02 yuan, respectively. The production 
costs after modularization using the SBH algorithm are 24.89 
yuan, 17.94 yuan, 13.25 yuan, and 23.55 yuan, respectively. 
Compared with the SBH algorithm, the HGACO algorithm 
reduces the production costs of different products by 24.69%, 
13.25%, 43.87%, and 12.03%, respectively, saving an average 
of 23.46% of production costs. In Fig. 11 (b), the optimal 
solution obtained by HGACO can significantly improve 
efficiency. After modularizing complex production, the average 
production time is 125 hours, while the average production time 
under the PSO algorithm is 76 hours. Compared with the ABC 
algorithm, the HGACO algorithm reduces production time by 
39.20%, resulting in a 39.20% increase in production efficiency. 
This is because HGACO has made product design simpler and 
more efficient after CPM. Enterprises can carry out intelligent 

production based on simpler design solutions. Therefore, by 
modularizing complex production and solving it, HGACO can 
significantly improve the production efficiency of complex 
products and reduce production costs. 

IV. DISCUSSION 

With the advancement of Industry 4.0, CPM design has 
become a key means to improve production efficiency and 
reduce costs. The conventional manufacturing paradigm proves 
challenging in meeting the demands of intricate product 
development. Conversely, CPM exhibits a capacity to 
expeditiously adapt to market fluctuations, enhancing design 
efficiency and product adaptability. In recent years, numerous 
scholars have devoted themselves to studying CPM and 
proposed various algorithms, such as GA, ACA, and PSO. 
While these methods have proven advantageous in addressing 
modular problems, they are not without limitations. These 
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limitations include but are not limited to, insufficient 
applicability and low operational efficiency in multi-
component complex products. To improve the operational 
efficiency of CPM, a CPM optimization method based on 
HGACO has been proposed. This method combines the global 
search capability of GA and the pheromone optimization 
mechanism of ACA. The transformation of the solution of GA 
into a pheromone, followed by its transmission to ACA, results 
in the rapid convergence and efficient optimization of the 
system. In the experimental section, the superiority of the 
HGACO algorithm is verified by comparing its performance 
with other algorithms. With respect to the duration of execution, 
the HGACO algorithm exhibits a longer execution time during 
the initial training stages. However, as the number of 
components increases, the execution time of the HGACO 
algorithm experiences a gradual decrease in comparison to the 
PSO algorithm. This is primarily due to the necessity for 
HGACO to amass a sufficient quantity of pheromones during 
the initial training phases to facilitate ant colony navigation. As 
pheromones are accumulated, the efficacy of the algorithm for 
search purposes undergoes a substantial enhancement. A 
comparison of modular values reveals that the HGACO 
algorithm can obtain reasonable modular values under different 
problem scales. In contrast, the PSO and SBH algorithms 
demonstrate significant deviations in the standard deviation and 
mean of modular values when there are a large number of 
components. This indicates that the HGACO algorithm has 
higher stability and adaptability when dealing with complex 
products. The underlying rationale pertains to the efficacy of 
the HGACO algorithm in circumventing local optima through 
the integration of crossover and mutation operations of GAs. 
This is complemented by the utilization of the pheromone 
mechanism of ACA, which facilitates the acceleration of global 
search, thereby ensuring the maintenance of optimal 
performance in complex environments. 

In summary, the HGACO algorithm has shown significant 
advantages in the modular design of complex products. It not 
only outperforms traditional algorithms in terms of running 
time but also demonstrates excellent stability and adaptability 
in modular values. These results indicate that the HGACO 
algorithm can effectively address the challenges in CPM design. 
Despite the demonstrated efficacy of the HGACO algorithm in 
experimental and practical test results, its performance may be 
constrained by the increasing complexity of products and the 
scale of production systems that accompany the advancement 
of Industry 4.0. The performance of the HGACO algorithm is 
crucial in handling large-scale complex products. Future 
research needs to further enhance the scalability of algorithms, 
enabling them to efficiently handle large-scale complex 
products. By using distributed computing and parallel 
processing techniques, the computational tasks of algorithms 
can be allocated to multiple processors or computing nodes, 
significantly improving the execution efficiency of algorithms 
to meet more complex industrial needs. 

V. CONCLUSION 

This study mainly focused on the modular processing and 
analysis of complex products using algorithms in the context of 
Industry 4.0. A new HGACO algorithm has been proposed to 
further improve production efficiency. This study first extracted 

the problem, then initialized the parameters, and solved it 
through GA selection, crossover, and mutation. The obtained 
solution was utilized as a pheromone and visibility information 
to input into the ACA part to quickly obtain the optimal solution. 
Finally, experimental verification and comparison were 
conducted on the optimal solutions obtained by different 
algorithms. When the PS of the HGACO algorithm was 36, GM 
was 80, PC was 0.90, and PM was 0.20, the variance was 
minimized, indicating that the algorithm has the best 
performance at this time. When the number of cycles reached 
20, HGACO just converged and could adapt to complex 
products with different numbers of parts, and could obtain 
reasonable optimal solutions. By using HGACO to modularize 
the responsible products, the running time was reduced by 
35.06% compared to the PSO algorithm. HGACO has 
improved the production efficiency of complex products by 
39.20% while reducing production costs by 23.46%. In 
summary, the comprehensive performance of HGACO is 
superior to other traditional algorithms, providing a theoretical 
basis for manufacturing enterprises to solve configuration 
problems and improve production efficiency for complex 
products. Although this study has solved the optimal solution 
problem of CPM, there are still some issues, such as the need 
to consider weighting for the requirements of different complex 
parts. Therefore, further research should be conducted on the 
multi-condition constraint weighting of the algorithm in the 
future. 
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