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Abstract—Modern network environments, especially in do-
mains like 5G and IoT, exhibit highly dynamic and nonlinear
traffic behaviors, posing significant challenges for accurate time
series analysis and predictive modeling. Traditional approaches,
including stochastic ARIMA and deep learning-based LSTM,
frequently encounter difficulties in capturing rapid signal vari-
ations and inter-channel dependencies, often due to data spar-
sity or excessive computational cost. To address these issues,
this paper proposes a Multi-Output Gaussian Process (MOGP)
framework augmented with a novel signal processing strategy,
where additional signals are generated by summing adjacent
elements over multiple window sizes. Such multi-scale enrich-
ment effectively leverages cross-channel correlations, enabling the
MOGP model to discover complex temporal patterns in multi-
channel data. Experimental results on real-world network traces
highlight that the proposed method achieves consistently lower
RMSE compared to conventional single-output or deep learning
methods, thereby underscoring its value for robust bandwidth
estimation. Our findings suggest that integrating MOGP with
multi-scale augmentation holds promise for a wide range of
predictive analytics applications, including resource allocation in
5G networks and traffic monitoring in IoT systems.
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I. INTRODUCTION

The proliferation of diverse network applications has led
to increasingly congested environments, necessitating efficient
resource allocation to maintain service quality and operational
stability [1], [2]. With the rapid growth in both the volume and
complexity of network traffic, the non-stationary and dynamic
nature of traffic patterns has become a critical focus in telecom-
munications research [3], [4]. Accurate and timely network
traffic prediction is essential to mitigate delays, prevent data
loss, and optimize resource utilization in overloaded networks
[5].

Recent advancements in traffic prediction technologies
have enabled dynamic resource allocation through accu-
rate traffic forecasting, typically categorized into short-term,
medium-term, and long-term forecasts [6]. Short-term fore-
casting focuses on real-time predictions for the next few
seconds or minutes, essential for time-sensitive applications.
In contrast, long-term forecasting relies on historical trends
over extended periods to guide strategic planning. Medium-
term forecasting, which bridges the gap between these two,
is particularly challenging due to the inherent variability in
network traffic spanning minutes to hours.

Traditional prediction models, such as the Auto-Regressive
Integrated Moving Average (ARIMA) [7], excel in capturing
linear trends but struggle with the nonlinear and dynamic
nature of modern network traffic [8], [9]. Deep learning
models, such as Recurrent Neural Networks (RNN) and Long
Short-Term Memory (LSTM) networks [6], offer superior
nonlinear forecasting capabilities but often face challenges
with overfitting, high computational demands, and large data
requirements.

Gaussian Processes (GP) [10], [11] have emerged as a
powerful tool for modeling nonlinear data and providing
uncertainty quantification, making them particularly effective
for network traffic forecasting with limited data [12], [13].
However, traditional GP methods limit their ability to adapt to
dynamic and multi-scale traffic variations. This results in pre-
diction errors over extended horizons, complicating medium-
term forecasting tasks.

To address these challenges, Building on the strengths of
existing GP-based multi-slot-ahead prediction models [12]-
[15], this study introduces a Multi-Output Gaussian Process
(MOGP) framework, incorporating an innovative signal aug-
mentation strategy. The proposed approach introduces two key
innovations: 1) the utilization of inter-channel correlations to
improve prediction accuracy and reduce error propagation over
extended periods, and 2) a signal augmentation strategy that
generates additional input features by summing adjacent data
points with varying window sizes. By enriching the input
dataset with these newly generated signals, the model captures
complex temporal dependencies and inter-channel interactions
more effectively.

The main contributions of this paper are:

• Proposed a network bandwidth prediction framework
based on Multi-Output Gaussian Process (MOGP),
combined with a signal enhancement strategy.

• Enriched the input feature space and improved pre-
diction accuracy by generating adjacent element sums
with varying window sizes.

• Validated the effectiveness of the method through
experiments on real multi-channel network traffic
datasets, significantly reducing prediction errors.

The remainder of this paper is organized as follows:
Section II reviews related methodologies and their limitations.
Section III details the proposed forecasting approach, including
the signal augmentation strategy and the MOGP framework.
Section IV presents the dataset and experimental setup. Section
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V discusses simulation results and evaluates the model’s per-
formance. Finally, Section VI concludes the paper and outlines
future research directions.

II. RELATED WORK

The evolution of network bandwidth prediction techniques
has progressed from classical statistical approaches to sophis-
ticated machine learning methods.

A. Methods Based on Probabilistic Processes

Early models like ARIMA have been extensively utilized
for time series forecasting in network traffic. These models,
though effective for linear trends, struggle with the complex
and non-stationary nature of network data [15]. Enhancements
like ARIMA/GARCH have been proposed to handle long-
term dependencies, but these methods still face challenges
in tracking rapidly changing network traffic characteristics
[5]. These methods typically focus on single time series
data, capturing patterns and periodicity over time, but have
limitations in modeling long-term dependencies.

B. Machine Learning Methods

Recent advancements have seen the application of neural
network architectures, such as LSTMs, which are adept at
capturing nonlinearities and temporal dependencies in traf-
fic data, providing significant improvements over traditional
models [16]. Despite their effectiveness, deep learning models
require substantial amounts of training data and computational
resources, which can be impractical in dynamic network en-
vironments. Additionally, methods such as Recurrent Neural
Networks (RNNs) and Convolutional Neural Networks (CNNs)
have been employed to capture temporal and spatial dependen-
cies in network traffic [17]. However, these machine learning
methods are often limited by their high computational cost and
susceptibility to overfitting in small datasets.

C. Traditional Gaussian Processes

Gaussian Processes (GP) have emerged as a powerful tool
for network traffic prediction, given their ability to model
uncertainty and non-linear dynamics of network traffic [8].
Particularly, Multi-Output Gaussian Processes (MOGP) have
shown great potential in leveraging the correlations among
multiple network channels to enhance prediction accuracy. GP
models offer the advantage of providing uncertainty measures
along with predictions, crucial for robust network management
[18]. Incorporating convolutional structures in GPs, researchers
have managed to capture spatiotemporal characteristics of
traffic data more effectively, enhancing predictive performance
[18]. These models have been particularly useful in scenarios
involving large-scale data from multiple network sensors [19].

D. Recent Advances and Our Contribution

Recent studies, such as the work by Wang et al., explore
a GP-based online learning framework for multi-slot-ahead
network traffic forecasts [13]. They emphasize the evolving
nature of network traffic and propose a dynamic kernel de-
sign using Spectrum Mixture (SM) functions and Process
Convolution (PConv) to capture complex traffic patterns over

different time scales. This approach addresses both tracking
capability and prediction horizon challenges, demonstrating
superior performance through simulations [13].

Emerging methodologies such as Graph Gaussian Pro-
cesses (Graph-GP) [4] and Multi-channel Transformer-based
models (MCformer) [20] further enhance the ability to model
spatiotemporal correlations and interdependencies in network
traffic. Graph-GP adapts well to scenarios with missing data
and non-stationary traffic, while MCformer utilizes attention
mechanisms to effectively capture multi-channel dependencies,
proving highly effective in dynamic environments.However,
these methods require extensive labeled datasets and suffer
from high computational complexity.

E. Gap in Literature

• Existing deep learning models such as RNN and
LSTM suffer from overfitting and large data require-
ments.

• Conventional GP-based methods do not efficiently uti-
lize inter-channel correlations, limiting their predictive
accuracy.

• Recent studies on multi-output regression models for
network forecasting have not explored adjacent signal
augmentation as a feature engineering technique.

• Our work extends these methodologies by introduc-
ing a signal augmentation strategy within an MOGP
framework, improving multi-step forecasting accuracy.

Our proposed method extends these traditional GP ap-
proaches by using a multi-channel framework. By generating
new signals from the original signals through summing ad-
jacent signals [7], we capture the underlying characteristics
of the data more effectively. Initially, the two channels with
the strongest correlations are selected as the original data.
Subsequently, new signals are created by using adjacent sums
with varying window sizes for each channel signal. This
approach enhances the prediction accuracy by exploiting inter-
channel correlations more effectively, resulting in a robust
framework for multi-channel network traffic forecasting.

III. PROPOSED METHOD

This section introduces the proposed Multi-Output Gaus-
sian Process (MOGP) model for network bandwidth prediction.
The method systematically integrates correlation analysis, sig-
nal transformation, and a Gaussian Process framework to im-
prove prediction accuracy. The workflow, illustrated in Fig. 1,
involves selecting highly correlated input signals, generating
new signals with varying temporal scales, and training the
MOGP model for predictive tasks.

A. Flowchart Overview of the Prediction Process

The overall workflow is illustrated in Fig. 1. The process
begins with correlation analysis to identify a subset of highly
correlated signals. These signals are then enriched by generat-
ing new signals through adjacent sums with varying window
sizes. The original and generated signals are subsequently
input into the MOGP model, which leverages their temporal
and inter-channel dependencies for bandwidth prediction.
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Fig. 1. Flowchart of the proposed prediction method.

B. Input Signal Definition and Correlation Analysis

Time Index and Signals. We define the discrete time axis
as

t = 1, 2, . . . , T. (1)

For each time t, we have M signals {S1,S2, . . . ,SM},
where

Si = {yi,1, yi,2, . . . , yi,T }, i = 1, . . . ,M, (2)

and yi,t is the value of the i-th signal at time t.

Let the output signals be denoted as

{S1,S2, . . . ,SM}, (3)

where each Si = {yi,1, yi,2, . . . , yi,T } represents a sequence
of data points over time.

1) Correlation Metric: The Pearson correlation coefficient
is used to quantify the linear relationship between two signals
Sk and Sl[21], [22]:

r(Sk,Sl) =

∑T
t=1(yk,t − ȳk)(yl,t − ȳl)√∑T

t=1(yk,t − ȳk)2
√∑T

t=1(yl,t − ȳl)2
, (4)

where ȳk and ȳl are the mean values of Sk and Sl, respectively.

C. Selection of Highly Correlated Signals

Identifying highly correlated signals is crucial for reducing
model complexity while maintaining predictive accuracy.

To identify the most relevant signals, the following selec-
tion criterion is applied. Let L be the maximum number of
signals we wish to select. We choose:

{S1,S2, . . . ,SL} = {Sk |r(Sk,Sl) > threshold,
∀Sk,Sl ∈ {S1,S2, . . . ,SM}}, (5)

where,

• r(Sk,Sl): Correlation coefficient between signals Sk

and Sl,

• threshold: Minimum correlation value required for a
signal to be included. This yields L original signals
with the highest inter-correlations,

• {Sk}: Subset of signals that meet the correlation
criterion.

D. Generation of New Signals

To enrich the input features, new signals are generated by
summing adjacent data points in the selected signals [12]. For
a signal Si of length T (i.e., Si = {yi,1, yi,2, . . . , yi,T }), and a
chosen window size w, the new signal S(w)

i,aug is computed as:

S
(w)
i,aug =

{j+w−1∑
k=j

yi,k

∣∣∣ j = 1, 2, . . . , T − w + 1
}
. (6)

where,

• yi,k: The k-th data point of the original signal Si,

• k: Index of a data point within the summation window,
ranging from j to j + w − 1,

• j: Starting index of the summation window in Si,

• w: Window size, i.e., the number of consecutive data
points to be summed,

• T : Total length (in data points) of the original signal
Si,

• S
(w)
i,aug: The newly generated signal of length T−w+1.

For example,

• For w = 2 (adjacent two-term sums):

S
(2)
i,aug = { yi,1+ yi,2, yi,2+ yi,3, . . . , yi,T−1+ yi,T }.

(7)

• For w = 3 (adjacent three-term sums):

S
(3)
i,aug =

{
yi,1 + yi,2 + yi,3, yi,2 + yi,3 + yi,4,

. . . , yi,T−2 + yi,T−1 + yi,T

}
.

(8)

Signal Length Note: Hence, if the original signal Si has
length T , the generated signal S

(w)
i,aug has length T − w + 1.

By varying w, we can capture different scales of temporal
dependencies, thereby enhancing the feature set for the Multi-
Output Gaussian Process (MOGP) model.
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E. Visualization of Signals and Generated Signals

Fig. 2 and 3 illustrate the transformation from two orig-
inal signals, S1 and S2, into their augmented versions using
window sizes w ∈ {2, 3, 4}.

a) Original Signals: Fig. 2 shows two original signals,
S1 and S2, used as the starting input for the prediction process.
The periodic nature and daily patterns of these signals are
evident, highlighting their suitability for modeling temporal
dependencies.

Fig. 2. Original signals (S1 in blue and S2 in magenta) with scaled values
over time.

b) Augmented Signals via Adjacent Sums: Given a sig-
nal Si = {yi,1, yi,2, . . . , yi,T }, we define its w-term adjacent-
sum (augmented signal) as

S
(w)
i,aug =

{
yi,1 + yi,2 + · · ·+ yi,w︸ ︷︷ ︸

w terms

, yi,2 + · · ·+ yi,w+1︸ ︷︷ ︸
w terms

, . . .
}
.

(9)
As w increases, these sums capture progressively larger local
trends. Fig. 3 shows newly generated signals (for w = 2, 3, 4)
from the original S1 and S2, demonstrating how the adjacent-
sum approach broadens temporal coverage.

Fig. 3. Newly generated signals from S1 and S2, illustrating different
window sizes w.

c) Defining MOGP(L, Ñ): Suppose we select L origi-
nal signals based on correlation analysis, and for each original
signal, we generate Ñ adjacent-sum signals (e.g. multiple
choices of w). We then denote our model by

MOGP(L, Ñ), (10)

meaning:

• L is the number of original (highly correlated) signals
chosen,

• Ñ is the total number of augmented signals generated
from those L originals,

• Altogether, there are N = L + Ñ channels in the
resulting multi-output GP.

For instance,
MOGP(2, 6) (11)

indicates two original signals and six augmented signals,
making N = 8 jointly modeled channels.

d) Example: Generating Up to Eight Channels: If Sp

and Sq are the selected original signals, then for w = 2, 3, 4
each signal spawns three augmented versions:

S(2)
p,aug, S(3)

p,aug, S(4)
p,aug, S(2)

q,aug, S(3)
q,aug, S(4)

q,aug. (12)

Thus, we obtain up to eight channels in total:

Sp, Sq︸ ︷︷ ︸
original signals

, S(2)
p,aug, S

(2)
q,aug︸ ︷︷ ︸

2-term

, S(3)
p,aug, S

(3)
q,aug︸ ︷︷ ︸

3-term

, S(4)
p,aug, S

(4)
q,aug︸ ︷︷ ︸

4-term

.

(13)
Each augmented channel reflects a different local summation
scale, thereby enriching the feature set that the Multi-Output
Gaussian Process (MOGP) exploits for multi-step prediction.
Hence, the MOGP(L, Ñ) approach systematically combines
correlated original signals with their adjacency-sum signals,
allowing finer control over both short- and long-term depen-
dencies.

F. Multi-Output Gaussian Process (MOGP) Prediction
Framework

After identifying highly correlated signals and generating
augmented signals (Sections III-D–III-E), we obtain N to-
tal channels (original + augmented). These N channels are
collectively modeled using a Multi-Output Gaussian Process
(MOGP), which exploits both temporal correlations and inter-
channel correlations to enhance predictive accuracy.

1) Input/Output Setup and Kernel:

a) Inputs X: We consider T time indices or feature
vectors x1, x2, . . . , xT ∈ X , collected in X = {x1, . . . , xT }.
(Each xt can be a scalar time step or a multi-dimensional
feature.)

b) Outputs Y: All original and augmented signals
together form N = L+ Ñ channels:

Y =
{
S1, . . . ,SL, S

(w)
1,aug, . . . ,S

(w)
L,aug

}
. (14)

We collect these N channels (each of length T ) into a multi-
channel output matrix Y ∈ RN×T . In a block sense, we may
write

Y =
[
S1, S2, . . . ,SN

]
, (15)

where each Si ∈ RT . Equivalently, to index individual data
values.
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c) MOGP Kernel: A Gaussian Process (GP) is defined
by a mean function (often taken as zero) and a covariance
(kernel) function capturing similarities among inputs. For time-
series forecasting, we frequently adopt an RBF+noise kernel
[23], [24]:

k(x, x′) = θ1 exp
(
−∥x− x′∥2

2 θ2

)
+ θ3 δ(x, x

′), (16)

where θ1, θ2, θ3 are hyperparameters, and δ(x, x′) is the
Kronecker delta for noise. In a multi-output setting, we ex-
tend this kernel to model both within-channel and cross-
channel covariances, often via a block-structured approach
(e.g. KMOGP = B ⊗ KRBF, where B is an N×N matrix of
inter-channel correlations).

2) MOGP Posterior for Single-Step and Multi-Step Fore-
casts:

a) MOGP Prior: We place a joint GP prior over all N
latent functions {fi(·)} corresponding to the N channels:

f1(X)
f2(X)

...
fN (X)

 ∼ GP
(
0, KMOGP(X,X)

)
. (17)

Observations Y are then linked to these fi(X) values (e.g. via
additive Gaussian noise).

b) Single-Step Prediction: To predict the next time
point t + 1 for each channel i, we collect all available data
up to t. Let X = {x1, . . . , xt} and Ytrain be the corresponding
outputs. Under the MOGP prior, we form the joint Gaussian
{Ytrain, f(xt+1)} and condition on Ytrain. The resulting pos-
terior mean for channel i is[13]:

ŷi(t+ 1) = µi

(
xt+1

)
, i = 1, . . . , L, (18)

where µi(·) is the i-th component of the MOGP posterior.

c) Multi-Step (K-Step) Prediction: To forecast K fu-
ture points {t+ 1, . . . , t+K} for each channel, we consider
two main strategies.

Iterative (Recursive) Approach: We repeatedly use pre-
dicted values as though they are observed for the next step:

ŷi(t+ 1) = µi

(
xt+1

)
,

ŷi(t+ 2) = µi

(
xt+2 | ŷi(t+ 1)

)
,

ŷi(t+ 3) = µi

(
xt+3 | ŷi(t+ 1), ŷi(t+ 2)

)
,

. . . , i = 1, . . . , L,

(19)

This simple approach can accumulate errors but allows
easy updates for adjacency-sum channels. Inspired by an Eq.
(21)-style logic, we can define partial sums or increments. For
instance, if

ỹi
(
t+ k

)
= fi+1

(
X∗) for k = 0, (20)

and

ỹi(t+ k) = fi+2(X
∗) − fi+1(X

∗) for k = 1, . . . ,K)
(21)

then each new adjacency-sum is obtained by subtracting the
previously predicted partial sum. Meanwhile, the final pre-
dicted channel values are:

ŷi(t+ k) = µi

(
xt+k

)
, (22)

ensuring consistency among all signals as they roll forward in
time.

Direct Joint Approach: Instead of predicting each future
time point separately, we form a single joint Gaussian over
{xt+1, . . . ,xt+K} for all N channels[13], [25]:[
Ytrain
F∗

]
∼ N

(
0,

[
KMOGP(X,X) KMOGP(X,X∗)

KMOGP(X∗,X) KMOGP(X∗,X∗)

])
.

(23)
where X∗ = {xt+1, . . . , xt+K} and F∗ ∈ RN×K denotes the
unknown function values {fi(xt+k)}. Conditioning on Ytrain
produces a posterior with mean F̂∗. Its (i,m)-th entry gives
ŷi(t + m). This one-shot method often yields better long-
horizon accuracy but incurs higher computational cost due to
the larger covariance block.

Overall, both approaches yield {ŷi(t+ k) | i = 1, . . . , N ; k =
1, . . . ,K}. The iterative method is simpler yet can accu-
mulate errors; the direct method jointly captures cross-step
correlations but is more expensive. In practice, adjacency-sum
signals can still be integrated into either approach by updating
or subtracting previously predicted sums as new time steps
unfold.

3) Recap and Advantages: By modeling all channels (orig-
inal + augmented) within a unified MOGP, we exploit inter-
channel correlations and different temporal scales simultane-
ously. This often reduces uncertainty in multi-step forecasting,
compared to treating each channel as an independent single-
output GP. Hence, our MOGP framework is well-suited to
network traffic scenarios, where multiple correlated signals
(e.g. raw measurements and adjacent-sum signals) provide
complementary information for bandwidth prediction.

G. MOGP-Based Framework for Multi-Step Traffic Prediction

Fig. 4 presents a schematic of our Multi-Output Gaussian
Process (MOGP) framework for multi-step bandwidth predic-
tion. Building on the earlier steps of selecting highly corre-
lated signals and generating adjacency-sum augmentations, this
framework highlights three major components:

• Adjacency-Sum Channels (green blocks). From each
original signal Si (or Sj), we construct multiple
augmented signals S

(w)
i,aug by summing adjacent data

points with different window sizes w. These channels
capture various temporal scales (e.g. short-term bursts
for w = 2 or medium-range trends for w = 3, 4, . . .).

• Block-Structured MOGP Inference (blue boxes). All
channels (original + augmented) are modeled jointly
using a multi-output Gaussian Process. The block-
structured kernel encodes both temporal dependencies
(within each channel) and cross-channel correlations
(across original and augmented signals). From this
MOGP, we obtain a predictive mean µ(X∗) and
covariance Σ(X∗) for the forecast horizon K.
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• Partial-Sum or Difference-Based Recovery (bottom).
In multi-step prediction, each adjacency-sum channel
(e.g. S

(2)
i,aug) can be used to recover the single-step

prediction ŷi(t + k) by subtracting already-predicted
values. For instance,

ŷi(t+ 2) = Ŝ
(2)
i,aug(t+ 1)− ŷi(t+ 1),

ŷi(t+ 3) = Ŝ
(3)
i,aug(t+ 2)− Ŝ

(2)
i,aug(t+ 2),

. . .

(24)

thus ensuring consistency among predicted sums and
the underlying pointwise forecasts.

Fig. 4. The MOGP-based framework for multi-step forecasting. After
generating adjacency-sum augmentations (green), a multi-output Gaussian

Process (blue) provides joint predictions, which are then combined or
subtracted to yield final outputs ŷi(t+ k).

a) Multi-Step Prediction: As discussed above, once the
MOGP posterior is obtained, there are two main ways to
forecast K time steps ahead:

• Iterative Approach: predict ŷi(t+1), feed it back into
the adjacency-sum channels, then predict ŷi(t + 2),
and so forth. ŷi(t + 3) can be predicted in a similar
manner until ŷi(t+ k).

• Direct (Block) Approach: form a single joint Gaussian
over {xt+1, . . . ,xt+K} and solve for all ŷi(t+ k) in

one shot, often achieving better accuracy (at a higher
computational cost).

b) Advantages at Different Scales: By integrating
adjacency-sum channels with an MOGP, the framework:

• Captures multiple timescales via small vs. larger sum-
mation windows,

• Leverages cross-channel correlations, reducing pre-
diction uncertainty,

• Yields robust multi-step forecasts, as each newly pre-
dicted value can be consistently used to update the
adjacency sums in subsequent steps.

In essence, this joint modeling of raw and augmented
signals enables more accurate and stable bandwidth predictions
across various forecasting horizons.

IV. INTRODUCTION TO EXPERIMENTAL MODEL

This section provides background on the WIDE Project,
describes the MAWI dataset used for our experiments, and
presents an overview of traffic patterns and inter-signal cor-
relations. The goal is to illustrate the data sources and moti-
vations that underpin the MOGP-based forecasting framework
described in Section III.

A. WIDE Project

Fig. 5. 2023 WIDE backbone topology.

The Widely Integrated Distributed Environment (WIDE
Project1) is a Japanese initiative focused on advancing Internet
infrastructure. It involves a broad consortium of academic and
research institutions that collaborate on designing, standard-
izing, and operating critical Internet technologies. Over the
past decades, the WIDE Project has significantly contributed
to IPv6 deployment, mobile Internet, and security innovations,
and it continues to foster global partnerships among engineers
and researchers.

As of 2023, the WIDE backbone (Fig. 5) consists of a
Layer 2 and Layer 3 network interconnecting various Japanese
and international sites, including San Francisco and Bangkok.
This infrastructure provides a rich environment for collecting
and analyzing real-world network traffic, which is crucial for
exploring predictive modeling techniques such as Gaussian
Process (GP) forecasting.

1WIDE Project: http://www.wide.ad.jp/.
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1) MAWI Dataset Overview: The MAWI2 (Measurement
and Analysis on the WIDE Internet) group, a key part of the
WIDE Project, collects and publicly shares traffic data from
global ISP links. In particular, this study uses MAWI’s traffic
records from 2024/5/17, sampled at 10-minute intervals. As
illustrated in Fig. 6, the dataset contains seven major aggre-
gated flow signals and one time-stamp column, totaling eight
columns in all. Each row represents a 10-minute observation,
leading to 144 potential data points daily, though our final
curated dataset has 143 valid entries after cleaning.

Fig. 6. Traffic data from 2024/5/17, courtesy of the MAWI dataset.

a) Data Preprocessing: We remove rows with missing
values and normalize each signal to zero mean and unit vari-
ance. The time column is re-indexed to facilitate chronological
analysis (e.g. minute-based or 10-minute-based indexing). This
ensures that all signals are on a comparable scale before
feeding them into the Multi-Output Gaussian Process (MOGP)
model.

2) Traffic Pattern Analysis: A preliminary inspection of the
MAWI traffic from 2024/5/17 reveals distinct diurnal patterns.
Communication volumes begin to rise around 8 AM, peak
during midday, and gradually decline overnight. Fig. 6 (from
Section III)demonstrates these daily fluctuations. Such periodic
behaviors indicate temporal correlations within each signal.

Furthermore, external factors like time zone synchroniza-
tion across regions can induce correlated traffic surges among
different signals. Leveraging these temporal and inter-signal
dependencies is central to improving forecast accuracy in
network traffic models.

3) Correlation Analysis: To quantify inter-signal relation-
ships, we perform pairwise correlation among the seven flow
signals. The resulting correlation matrix (Fig. 7) highlights
various strengths of linear association. Signals that exhibit high
pairwise correlation are prioritized for the MOGP input, as
multi-output GP can exploit these cross-channel correlations
more effectively.

The Pearson correlation coefficient, as defined in Eq. (4), is
used to measure the strength of the linear relationship between
two signals.

2MAWI Working Group Traffic Archive: https://mawi.wide.ad.jp/mawi/.

Fig. 7. Correlation matrix between seven MAWI signals, illustrating strong
pairs for model input.

B. Data Setting and GP Models

Having introduced the WIDE Project and the MAWI
dataset, we now discuss the GP model setup for our exper-
iments. The experimental conditions are as follows:

• Training/Testing Split: We utilize the first Ttrain points
(e.g. day 1’s data) to train the GP model and reserve
the subsequent points (e.g. final few observations) for
testing.

• Window Size (Sliding Window): A fixed window
size window size is chosen (e.g. 50). In each step,
the model sees Xtrain (time indices or features) and
ytrain (normalized signal values), then predicts the next
point. The window slides forward by one time step
iteratively.

• Multiple Channels (N=1,2,8): We compare three main
GP setups:

1) Single-Output GP (N = 1): Only one origi-
nal signal (e.g. signal1) is modeled. This
captures broad temporal trends but does not
exploit cross-signal information.

2) MOGP(2,0): We pick two highly correlated
signals (e.g. Sp and Sq), as identified by Pear-
son correlation. Then both signals are jointly
modeled in a MOGP setting. This allows
cross-channel correlation to inform the pre-
diction, often improving accuracy compared
to single-output.

3) MOGP(2,6): We take two original signals
(Sp,Sq) plus their six adjacent-sum signals
with window sizes w = 2, 3, 4. Hence, N =
2 + 2 × 3 = 8 total input channels. By pro-
viding multi-scale features (short-term sums,
medium-term sums, etc.), the MOGP(2,6)
model can capture both short-range fluctua-
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tions and daily-scale patterns across the cor-
related signals.

• Single-Step vs. Multi-Step Forecast:
◦ Single-Step (1-step): Predict yt+1 given data

up to time t as described in Eq. (18).
◦ Multi-Step (K-step): Predict {yt+1, . . . , yt+K}

either iteratively using Eq. (19) or via a direct
block-covariance approach.

a) Summary of Experimental Model: Overall, the data
feeding process, combined with the MOGP approach, is illus-
trated in Fig. 1. We use real traffic from the WIDE Project’s
MAWI dataset, apply standard preprocessing, select correlated
signals, generate additional adjacent-sum signals if needed, and
then run sliding-window GP predictions. We will perform per-
formance metrics (RMSE) for single output versus multioutput
comparisons, demonstrating how correlation exploitation and
multi-scale features can enhance forecast accuracy.

1) Single-output Gaussian Process: In this scenario, only
one signal is used as input for the prediction. The model
captures the overall trends but struggles to predict sharp
fluctuations due to the limited input information. Fig. 8 demon-
strates the predicted results along with confidence intervals,
showcasing the performance of the single-output GPR model
for future-step prediction.

Fig. 8. Gaussian process prediction of signal trends with confidence intervals.

2) MOGP(2,0): Single-Step Prediction: In this setup, two
highly correlated signals are used as inputs to the Multi-Output
Gaussian Process (MOGP) model (here, MOGP(2,0) indicates
two original signals and zero augmentations). This approach
leverages inter-channel correlations to enhance the accuracy of
predictions. Unlike the single-output model, the MOGP(2,0)
model demonstrates improved robustness in capturing signal
variations. Fig. 9 illustrates the predictive performance of
the MOGP(2,0) model when considering two input signals,
highlighting the advantage of incorporating multiple correlated
channels.

3) MOGP(2,6): Single-Step Prediction: This model ex-
tends the input set by incorporating two original signals
and their corresponding generated signals at varying temporal
scales (w = 2, 3, 4), resulting in a total of eight input signals
(2 original + 6 augmented). The inclusion of generated signals
captures both short-term fluctuations and long-term patterns,
significantly improving the accuracy of prediction. Fig. 10

Fig. 9. Prediction results using the MOGP(2,0) model for single-step
forecasting.

shows the results of the MOGP(2,6) model, demonstrating its
superior predictive capacity compared to the single output and
MOGP (2,0) models.

Fig. 10. Enhanced prediction accuracy using the MOGP(2,6) model for
single-step forecasting.

4) MOGP(2,0): Multi-Step Prediction: In this experiment,
the MOGP(2,0) model is extended to predict three future
steps. This approach demonstrates the capability of the model
to handle sequential forecasting tasks, utilizing inter-channel
correlations effectively. Fig. 11 illustrates the predictive per-
formance of the MOGP(2,0) model for three-step predictions.

5) MOGP(2,6): Multi-Step Prediction: The MOGP (2,6)
model is used to predict three future steps, further lever-
aging the generated signals across varying temporal scales
(w = 2, 3, 4). By incorporating more input signals, the model
captures intricate temporal dependencies, enhancing predic-
tion accuracy. Fig. 12 shows the prediction results for the
MOGP(2,6) model.

V. SIMULATION RESULTS AND DISCUSSION

A. Comparison and Summary of Experimental Results

The performance of the proposed models was evaluated
using the Root Mean Squared Error (RMSE) metric, defined
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Fig. 11. Prediction results using the MOGP(2,0) model for three-step
forecasting.

Fig. 12. Enhanced prediction accuracy using the MOGP(2,6) model for
three-step forecasting.

as [26]:

RMSE =

√
1

n

∑
(ŷ − ytest)2

where ŷ represents the predicted values for the unknown input
signal xtest, and ytest denotes the corresponding ground truth
values.

Table I compares the RMSE of single-output, MOGP(2,0),
and MOGP(2,6) models for predicting network traffic signals.

TABLE I. RMSE COMPARISON OF GAUSSIAN PROCESS MODELS

Model RMSE
Single-output Gaussian Process (1-step) 0.1967
MOGP(2,0) (1-step) 0.1552
MOGP(2,6) (1-step) 0.1273
MOGP(2,0) (3-step) 0.1943
MOGP(2,6) (3-step) 0.1607

The results in Table I demonstrate the effectiveness of
the MOGP models in leveraging inter-channel correlations
for prediction accuracy. The MOGP(2,6) model significantly
outperforms the others, achieving the lowest RMSE value.
This improvement highlights the importance of integrating

generated signals with varying time scales into the prediction
framework.

1) Error Analysis: Table II presents the percentage reduc-
tion in prediction error achieved by the multi-output models
compared to the single-output Gaussian Process model. The
error reduction underscores the effectiveness of multi-channel
approaches in improving predictive performance.

TABLE II. PERCENTAGE ERROR REDUCTION BY MULTI-OUTPUT
MODELS

Comparison Error Reduction (%)
Single-output vs. MOGP(2,0) (1-step) 21.2%
Single-output vs. MOGP(2,6) (1-step) 35.3%
MOGP(2,0) (1-step) vs. MOGP(2,6) (1-step) 17.9%
MOGP(2,0) (3-step) vs. MOGP(2,6) (3-step) 17.3%

The error analysis results indicate that the multi-output
models significantly reduce RMSE compared to the single-
output model. MOGP(2,6), in particular, achieves substantial
error reduction, confirming the advantages of utilizing gener-
ated signals to capture both short-term and long-term signal
variations.

B. Comparison with Recent Methods

A closely related study by Wang et al. [13] has already
demonstrated that Gaussian process (GP)–based forecasting
can outperform statistical approaches like ARIMA as well as
deep learning models such as LSTM, RC-LSTM, and RNN. In
particular, their method leverages a multi-output GP framework
and multi-scale adjacency-sum augmentation for multi-slot-
ahead traffic prediction.

Our proposed approach builds upon and extends the work
in [13] by introducing multi-channel input signals. Rather
than relying on a single channel with adjacency-sum sig-
nals, we first select multiple original signals based on their
correlations, then generate adjacency-sum augmentations for
each. This strategy further exploits cross-channel relationships,
allowing the model to capture subtle variations across different
but related traffic flows. By doing so, we retain the core
strengths of multi-output GP and adjacency-sum augmentation
from [13], while enhancing predictive performance through
an expanded, correlation-aware input space. Our experimental
results confirm that this multi-channel extension yields higher
accuracy than single-channel baselines, illustrating the prac-
tical benefits of incorporating inter-channel correlations into
GP-based network traffic forecasting.

Although direct numerical comparisons are hindered by
different datasets and experimental conditions, we attribute our
method’s strong performance to two main factors:

• Multi-Output Modeling: By capturing inter-channel
correlations, MOGP leverages shared temporal dy-
namics across multiple signals—an advantage that
traditional single-output methods lack.

• Multi-Scale Adjacency-Sum Augmentation: Generat-
ing additional signals by summing adjacent data points
over varying window sizes enriches the feature space,
enabling the model to capture both short-term bursts
and longer-range trends more effectively.
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Overall, these comparisons underscore the benefits of in-
tegrating multi-channel Gaussian Processes with adjacency-
sum augmentation, offering robust predictive accuracy and
principled uncertainty estimates for complex network traffic
scenarios.

C. Assumptions and Limitations

This study makes primary assumptions: The selected subset
of MAWI channels is sufficiently representative of typical
network traffic. Although these assumptions are practical for
many real-world scenarios, they may limit generalization to
networks with irregular sampling patterns or strong non-
stationary bursts.

Another limitation lies in the computational overhead of
handling large-scale datasets. Because our approach generates
multiple augmented signals for each original channel, the
dimensionality grows along with the dataset size, increas-
ing both memory usage and training time for multi-output
Gaussian Processes. In future work, we plan to investigate
sparsity-inducing kernels and online GP methods to better
accommodate high-volume streaming data.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we proposed a Multi-Output Gaussian Pro-
cess (MOGP) model for network traffic prediction, introduc-
ing a novel approach that integrates original input signals
with additional correlated signals generated using adjacent
terms. This methodology leverages inter-channel correlations
and multi-scale temporal dependencies to improve prediction
performance. Experimental results validated through RMSE
metrics demonstrated that the MOGP model consistently out-
performs single-output Gaussian Processes, showcasing robust
performance across both one-step and three-step prediction
tasks. The MOGP(2,6) model achieved the best overall results,
reducing prediction errors by 35.3% compared to the single-
output baseline. These findings confirm that incorporating
correlated signals significantly enhances prediction accuracy.
Furthermore, the model demonstrated consistent effectiveness
in single- and multi-step forecasting scenarios, highlighting its
adaptability to various temporal scales and complex datasets.

Future work will focus on exploring alternative kernel
functions and hyperparameter optimization strategies to further
improve prediction precision and computational efficiency. We
also intend to extend our framework to 5G and IoT traffic
prediction, and to real-time or large-scale environments, eval-
uating the model’s scalability and adaptability under stream-
ing conditions. Another promising direction is to adapt our
MOGP approach for anomaly detection. Such anomalies not
only consume additional network resources but also pose
significant risks to overall network performance and security
[27]. By exploiting the pervasive inter-channel correlations,
our framework could identify deviations from typical diurnal
or weekly patterns. For example, if two channels Sk and Sl

with similar usage trends both show high traffic after 8 AM
and taper off after 7 PM, a sudden increase in Sk without a
corresponding change in Sl might signal anomalous behavior.
This line of research could play a vital role in proactive
network management and early threat detection.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber JP22K04089.

REFERENCES

[1] Y. Chen, S. Jain, V. K. Adhikari, Z. L. Zhang, and K. Xu, “A first look
at inter-data center traffic characteristics via yahoo! datasets,” Proc. of
IEEE INFOCOM 2011, pp. 1620-1628, Apr. 2011.

[2] J. Koo, V. B. Mendiratta, M. R. Rahman, and A. Walid, “Deep re-
inforcement learning for network slicing with heterogeneous resource
requirements and time varying traffic dynamics,” Proc. of IEEE CNSM
2019, pp. 1-5, Oct. 2019.

[3] A. Baiocchi, Network Traffic Engineering Stochastic Models and Ap-
plications, Hoboken, NJ, USA:Wiley, 2020.

[4] Mehrizi, S., & Chatzinotas, S. (2022). Network traffic modeling
and prediction using graph Gaussian processes. IEEE Access, 10,
132644–132655.

[5] M. Beshley, et al. ”End-to-End QoS ’smart queue’ management algo-
rithms and traffic prioritization mechanisms for narrow-band internet of
things services in 4G/5G networks.” Sensors, vol. 20, no. 8, p. 2324,
2020.

[6] C. Gijon, et al. ”Long-term data traffic forecasting for network dimen-
sioning in LTE with short time series.” Electronics, vol. 10, no. 10, p.
1151, 2021.

[7] B. Zhou, D. He, Z. Sun, and W. H. Ng, “Network traffic modeling and
prediction with ARIMA/GARCH,” Proc. of HET-NETs 2005, pp. 1-10,
Jul. 2005.

[8] A. Azari, P. Papapetrou, S. Denic and G. Peters, ”Cellular traffic
prediction and classification: A comparative evaluation of LSTM and
ARIMA”, Proc. Int. Conf. Discovery Sci., pp. 129-144, 2019.

[9] A. Azzouni and G. Pujolle, ”NeuTM: A neural network-based frame-
work for traffic matrix prediction in SDN”, Proc. IEEE/IFIP Netw. Oper.
Manage. Symp., pp. 1-5, Apr. 2018.

[10] A. Bayati, K.-K. Nguyen and M. Cheriet, ”Gaussian process regression
ensemble model for network traffic prediction”, IEEE Access, vol. 8,
pp. 176540-176554, 2020.

[11] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. Cambridge, MA, USA: MIT Press, 2006.

[12] Y. Wang, T. Nakachi, T. Inoue and T. Mano, ”Adaptive multi-slot-ahead
prediction of network traffic with Gaussian process,” 2021 IEEE Global
Communications Conference (GLOBECOM), Madrid, Spain, 2021, pp.
1-6, doi: 10.1109/GLOBECOM46510.2021.9685249.

[13] Y. Wang, T. Nakachi, and W. Wang, ”Pattern discovery and multi-slot-
ahead forecast of network traffic: A revisiting to Gaussian process,”
IEEE Transactions on Network and Service Management, 2022.

[14] M. van der Wilk, et al. ”A framework for interdomain and multioutput
Gaussian processes.” arXiv preprint arXiv:2003.01115, 2020.

[15] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series
Analysis: Forecasting and Control. John Wiley & Sons, 2015.

[16] H. Zhang, G. Wang, J. Liu, H. Hu, and S. Liu, “Network Traffic
Prediction Based on Deep Learning.” IEEE Access, vol. 6, pp. 23302-
23310, 2018.

[17] Z. Zhao, Y. Zhang, Y. Xu, and H. Liang, “Deep learning based network
traffic prediction: Methods, datasets and analysis.” IEEE Access, vol.
5, pp. 5143-5153, 2017.

[18] H. Liu, J. Cai, and Y. S. Ong, “Remarks on Multi-output Gaussian
Process Regression.” Knowledge-Based Systems, vol. 144, pp. 102-121,
2018.

[19] E. V. Bonilla, K. M. Chai, and C. K. Williams, ”Multi-task Gaussian
process prediction.” In Advances in Neural Information Processing
Systems, pp. 153-160, 2008.

[20] Han, W., Zhu, T., Chen, L., Ning, H., Luo, Y., & Wan, Y. MC-
former: Multivariate Time Series Forecasting with Mixed-Channels
Transformer. IEEE Internet of Things Journal, 2024.

[21] P. Schober, C. Boer, and L. A. Schwarte, ”Correlation coefficients:
appropriate use and interpretation.” Anesthesia & Analgesia, vol. 126,
no. 5, pp. 1763-1768, 2018.

www.ijacsa.thesai.org 82 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 2, 2025

[22] H. Xu, and Y. Deng, ”Dependent evidence combination based on
shearman coefficient and pearson coefficient,” IEEE Access, vol. 6,
11634-11640. 2017.

[23] D. J. MacKay et al., “Introduction to Gaussian processes,” NATO ASI
series F computer and systems sciences, vol. 168, pp. 133–166, 1998.

[24] A. G. Wilson, ”Covariance kernels for fast automatic pattern discovery
and extrapolation with Gaussian processes”, 2014.

[25] L. Yang, K. Wang, and L. Mihaylova, ”Online sparse multi-output
Gaussian process regression and learning,” IEEE Transactions on Signal

and Information Processing over Networks, vol.5, no. 2, pp. 258-272,
2018.

[26] T. Chai, and R. R. Draxler, ”Root mean square error (RMSE) or mean
absolute error (MAE).” Geoscientific Model Development Discussions,
vol. 7, no. 1, pp. 1525-1534, 2014.

[27] Y. Wang, T. Nakachi, ”Network traffic anomaly detection: A revisiting
to Gaussian process and sparse representation,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences,
vol. 107, no. 1, pp. 125-133, 2024.

www.ijacsa.thesai.org 83 | P a g e


