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Abstract—Despite advancements in machine learning within 

healthcare, the majority of predictive models for ICU mortality 

lack interpretability, a crucial factor for clinical application. The 

complexity inherent in high-dimensional healthcare data and 

models poses a significant barrier to achieving accurate and 

transparent results, which are vital in fostering trust and enabling 

practical applications in clinical settings. This study focuses on 

developing an interpretable machine learning model for intensive 

care unit (ICU) mortality prediction using explainable AI (XAI) 

methods. The research aimed to develop a predictive model that 

could assess mortality risk utilizing the WiDS Datathon 2020 

dataset, which includes clinical and physiological data from over 

91,000 ICU admissions. The model's development involved 

extensive data preprocessing, including data cleaning and 

handling missing values, followed by training six different 

machine learning algorithms. The Random Forest model ranked 

as the most effective, with its highest accuracy and robustness to 

overfitting, making it ideal for clinical decision-making. The 

importance of this work lies in its potential to enhance patient care 

by providing healthcare professionals with an interpretable tool 

that can predict mortality risk, thus aiding in critical decision-

making processes in high-acuity environments. The results of this 

study also emphasize the importance of applying explainable AI 

methods to ensure AI models are transparent and understandable 

to end-users, which is crucial in healthcare settings. 
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I. INTRODUCTION 

ICUs (Intensive Care Units) are specialized units that 
constantly monitor and treat patients with severe or potentially 
fatal illnesses. Due to the complexity of the ICU environments 
and the high-stake nature of patient care, accurate prediction of 
mortality risk in critically ill patients is a key aspect of adequate 
healthcare management [1], [2]. Machine learning algorithms 
and predictive models have shown great promise in addressing 
these needs by mining large amounts of clinical data to predict 
the risk of patient mortality. Predicting accurately has a 
significant effect on clinical decisions, allocation of resources, 
and the management of patients [3]. Machine learning methods 
have made tremendous progress and opened up new avenues 
for mortality prediction in the clinical world. To produce 
predictive insights, machine learning models are trained on 
complex datasets containing patient demographics, clinical 
measurements, and historical health records. Machine learning 
algorithms can explore more complicated relationships between 

variables than traditional statistical methods allow [4]. One 
example is through models utilizing extensive, large-scale 
electronic health record (EHR) data that has improved 
prediction performance for patient outcomes [5], [6]. 

Despite advances in machine learning, several challenges 
remain in accurately predicting mortality risk in ICU patients. 
For one, low-dimensional and high-dimensional complex 
healthcare data can increase the risk of overfitting and decrease 
the generalization performance of models if handled poorly [7], 
[8]. Also, the explainability of machine learning models is an 
important issue; medical professionals must have precise and 
reliable predictions to implement AI tools in clinical practice [9], 
[10], [11]. Black-box models can be opaque and difficult to 
interpret, preventing adoption in high-stakes medical contexts. 
Explainable Artificial Intelligence (XAI) frameworks, such as 
SHAP (Shapley Additive Explanations) and LIME (Local 
Interpretable Model-Agnostic Explanations), address this issue 
by providing transparent and interpretable explanations of 
model predictions, enhancing trust and usability [12], [13]. 

To mitigate these challenges for predictive models, the 
primary goal of this study is to develop an interpretable mortality 
risk prediction model incorporating machine learning 
algorithms with explainable artificial intelligence (XAI) 
methods. The dataset utilized in this study is derived from the 
2020 Women in Data Science (WiDS) Datathon, which provides 
a rich profile of ICU patients, including various physiological 
and clinical variables [14]. The use of Explainable AI (XAI) 
methodologies, such as SHAP (Shapley Additive explanations) 
and LIME (Local Interpretable Model-agnostic Explanations), 
is intended to provide transparent insights into the model's 
decision-making process, thereby facilitating better 
understanding and trust in the predictive outcomes. This study 
addresses the limitations of previous studies by combining 
interpretability, accuracy, and clinical application, covering the 
way for reliable and actionable AI solutions in critical care 
settings. 

The remainder of this study is structured as follows: Section 
II presents the background and motivation for the study. Section 
III provides a detailed description of the dataset's characteristics 
and explains the preprocessing methods employed in the study. 
Section IV presents the results of the training and evaluation of 
the AI model. Section V offers the discussion and considers the 
limitations of the study. Finally, Section VI concludes the paper, 
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summarizes the main points, and suggests areas for future 
research. 

II. BACKGROUND 

In recent years, the healthcare industry has rapidly adopted 
machine learning (ML) and artificial intelligence (AI) 
approaches to construct predictive models that better decision-
making and improve patient outcomes [15]. They excel at 
interpreting large amounts of medical data, including electronic 
health records (EHRs), genomic data, and medical images, 
revealing patterns that humans may overlook [16], [17]. 
Historically, interpretable methods like linear regression and 
naïve Bayes have been favored in healthcare domains such as 
neurology and cardiology, ensuring clarity for medical 
practitioners. Zhang et al. [18] developed an in silico prediction 
model for chemical-induced urinary tract toxicity using a naïve 
Bayes classifier, showcasing its effectiveness in toxicology 
assessments. Salman [19] explored heart attack mortality 
prediction by applying various machine learning methods, 
highlighting the potential of data-driven approaches to enhance 
clinical decision-making. Obeid et al. [20] introduced a deep 
learning model for the automated detection of altered mental 
status in emergency department clinical notes, offering insight 
into the capability of natural language processing in identifying 
critical health conditions. 

However, while linear regression and naïve Bayes are 
interpretable by nature, these methods often struggle with 
complex or non-linear datasets. More recent approaches such as 
decision trees, K-nearest neighbors (K-NN), and support vector 
machines (SVMs) allow for more nuanced analyses of the data, 
which is particularly useful for output for conditions such as 
diabetes and heart diseases [21]. Abdalrada et al. [22] 
investigated machine learning models for predicting the co-
occurrence of diabetes and cardiovascular disease, highlighting 
the potential for AI-driven techniques to discover overlapping 
risk factors and enhance early diagnosis. Karun [23] performed 
a comparative analysis of heart disease prediction algorithms, 
assessing the usefulness of several machine learning models, 
such as decision trees and SVMs, in increasing diagnostic 
accuracy. Rajkomar et al. [24]  investigated the scalability and 
accuracy of deep learning using electronic health records, 
revealing how neural networks can analyze large volumes of 
patient data to improve prediction capacities while remaining 
adaptable across various medical situations. 

While the field has advanced with deep learning algorithms 
that can deal with complex patterns in large datasets, their 
black-box nature presents a hurdle to clinical trust and uptake 
[12], [15], [25]. Interpretability is especially critical in 
supervised learning, commonly used in healthcare AI to predict 
specific health outcomes [26]. To counter the above problems, 
research has focused on developing XAI systems, which 
combine the complexities of the model and the ease of using it 
in a clinical setting [27], [28]. XAI controls the complexity of 

user explanations to those that a medical practitioner can 
understand, thus helping in forming opinions that can be acted 
on and trusted [29], [30], [31]. Furthermore, several evaluation 
methods for interpretability have been proposed, including 
application-grounded, human-grounded, and functionally 
grounded approaches. Application-based evaluations, which are 
performed while undertaking real-life activities along with the 
experts in the field, are particularly important for validating XAI 
models in the area of medicine [27]. Human-based evaluations 
involving laypeople are less expensive and easier to scale, but 
they may not capture the specific needs of medical practitioners 
[32]. Functionally grounded evaluations, which do not involve 
human users, assess interpretability based on proxy metrics like 
the complexity of decision trees, but they may lack practical 
relevance [33]. Even with these advances, there are still 
challenges like obtaining acceptable regulations, integrating 
them into existing frameworks, and teaching professionals in the 
field [25]. 

Despite these challenges, the demand for interpretable AI 
systems continues to grow as they offer the potential to 
revolutionize medical diagnostics and treatment planning by 
providing transparent, trustworthy, and actionable insights [32]. 
In this regard, this research aims to produce an explainable 
predictive model for predicting mortality risks in ICUs that use 
XAI and conventional AI techniques while overcoming 
inadequate past research in this field. 

III. METHOD 

A. Dataset Description 

The dataset utilized in this study is sourced from the WiDS 
Datathon 2020 and comprises de-identified clinical data of 
91,713 ICU patients collected over a year. This extensive dataset 
captures 186 physiological and clinical variables documented 
within the first 24 hours of ICU admission. The variables include 
a broad spectrum of demographic information, such as age, 
gender, and BMI, along with various health metrics like blood 
pressure, heart rate, and laboratory test results. These variables 
are essential for predicting patient outcomes, particularly 
mortality risk, in an ICU setting. 

B. Data Preprocessing 

1) Data cleaning: The first step in the data preprocessing 

involved loading the dataset and reducing the number of features 

from 186 to 28. This reduction was achieved by eliminating 

irrelevant or redundant features that did not contribute 

significantly to the prediction task. 

2) Handling missing data: Columns containing significant 

missing data were eliminated to ensure the dataset's integrity 

and reliability. This step was crucial in ensuring the analysis 

was based on complete and accurate information. After 

removing these columns, the dataset was further refined, 

resulting in a final dataset consisting of 940 rows and 28 

columns (Fig. 1, Fig. 2). 
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Fig. 1. Distribution of missing data across features. 

 

Fig. 2. Heatmap visualizing the correlations of missing values. 

First, a correlation matrix of the missing values was 
generated, and a heatmap was used to identify patterns in the 
missing data. To address this, we applied the `dropna` function, 
which successfully removed the missing values and mitigated 
the impact of outliers. Rather than using imputation, we chose 
to eliminate entire columns with any missing data, prioritizing 
precision in healthcare predictions. While removing features 
with less than 5% missingness might seem counterintuitive, the 
critical nature of medical decisions made data completeness 
more important. 

3) Data encoding: Data encoding techniques were applied 

to prepare the categorical variables for machine learning models. 

Specifically, Label Encoding was used to convert categorical 

variables such as Gender, ICU_admit, and ICU_type into 

numerical values, as illustrated in Fig. 3. This transformation 

allowed the models to process these variables effectively, as 

most machine learning algorithms require numerical input [34]. 

 

Fig. 3. Label encoding was applied to convert categorical variables. 

4) Exploratory Data Analysis (EDA): EDA was conducted 

to uncover patterns and insights within the dataset. This analysis 

included visualizing demographic trends and identifying risk 

patterns among ICU patients. For instance, analysis of patients’ 

age makeup clarified the age distribution. With concentrations 

in the 60–70 and 70–80 cohorts, age-related dynamics may 

impact mortality risk. Interestingly, the 50–60 cohort was 

equally large, demonstrating the sample's age diversity. Fig. 4 

shows how the age distribution affects risk assessment. These 

insights guided the feature selection process and informed the 

subsequent steps in the analysis. 

 

Fig. 4. Distribution of patient age groups. 
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5) Handling outliers: Outliers can distort the results of data 

analysis and model predictions. To address this, the 

Interquartile Range (IQR) technique was employed. Data points 

below Q1 - 1.5 * IQR or above Q3 + 1.5 * IQR were deemed 

outliers and deleted (Fig. 5, Fig. 6). This step ensured that the 

data used for model training was free from extreme values that 

could potentially bias the analysis [35]. 

6) Feature engineering: Feature engineering was 

performed to enhance the predictive power of the models. The 

SelectKBest method was used to identify the most significant 

features, and these selected features were then standardized 

using StandardScaler. 

7) Balancing dataset: Given the class imbalance in the 

dataset, where high-risk cases were underrepresented, 

oversampling techniques were applied to balance the dataset. 

This step involved increasing the number of high-risk instances 

to ensure the model could accurately predict high-risk and low-

risk cases. Balancing the dataset was vital for improving the 

model's sensitivity and reducing bias toward the majority class 

[36]. 

8) Data splitting: Partitioning the dataset into training and 

testing sets was the final step in data preprocessing. Eighty 

percent of the data was used to train the models, with the 

remaining 20% put aside for testing. This split meant that the 

models were evaluated using previously unseen data, resulting 

in a reliable assessment of their performance [37]. 

C. Model Training and Evaluation 

The following six machine learning algorithms were chosen 
for evaluation: K-Nearest Neighbors, Random Forest, Decision 
Tree, Gradient Boosting, Logistic Regression, and Support 
Vector Machine. To optimize performance, GridSearchCV was 
implemented to tune hyperparameters for each model. The 
models were evaluated using F1-Score, Accuracy, Precision, 
and Recall classification measures. The best performing model 
was chosen for its proficiency in correctly forecasting ICU 
patient death. 

D. Model Explainability 

This study employed Explainable Artificial Intelligence 
(XAI) methods, particularly SHAP and LIME, to enhance model 
transparency. SHAP was used to interpret the importance of 
features in the Random Forest model, providing a detailed 
understanding of how each feature influenced risk predictions. 
LIME offered localized explanations for individual predictions, 
aiding in interpreting specific instances. After comparing both 
methods, SHAP was chosen as the primary tool for generating 
user-centric explanations, owing to its effectiveness in 
healthcare contexts [12], [38]. 

 
Fig. 5. Correlation matrix with outliers. 

 

Fig. 6. Correlation matrix without outliers. 
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IV. RESULTS 

A. Model Performance 

The performance of the six machine learning algorithms was 
compared based on their ability to predict mortality risk. As 
shown in Table I, the Random Forest algorithm outperformed 
the other models across all evaluation metrics, with an accuracy 
of 0.8511, precision of 0.8485, recall of 0.855, and an F1-Score 
of 0.8517. 

TABLE I.  COMPARISON OF MACHINE LEARNING TECHNIQUES 

Model Accuracy Precision Recall F1-Score 

Logistic Regression 0.7252 0.7185 0.7405 0.7293 

Random Forest 0.8511 0.8485 0.855 0.8517 

Support Vector 

Machine 
0.8321 0.8372 0.8244 0.8308 

Gradient Boosting 0.8206 0.8088 0.8397 0.824 

K-Nearest Neighbors 0.8244 0.7931 0.8779 0.8333 

Decision Tree 0.7443 0.7133 0.8168 0.7616 

B. Accuracy of Models 

Fig. 7 illustrates the accuracy of the six machine learning 
algorithms. The Random Forest model proved the best accuracy, 
while the Support Vector Machine, K-Nearest Neighbors, and 
Gradient Boosting models performed comparably. In 
comparison, the Decision Tree and Logistic Regression models 
had slightly lower accuracy values. 

 

Fig. 7. Comparison of algorithms showing random forest model has the best 

accuracy. 

1) ROC curve analysis: The ROC curve analysis 

emphasized the Random Forest model's superior performance. 

As shown in Fig. 8, the Random Forest model had the most 

significant AUC of 0.94, showing an excellent capacity to 

distinguish between high-risk and low-risk mortality cases. The 

Support Vector Machine model was next with an AUC of 0.92, 

while the Decision Tree model had the lowest AUC of 0.82. 

 

Fig. 8. ROC curve comparison for six machine learning algorithms. 

2) Confusion matrix: The confusion matrix for each model 

provided insights into their classification performance. Fig. 9 

illustrates the number of correct and incorrect predictions made 

by each model. The Random Forest model had the highest 

counts of true positives and true negatives, indicating its 

superior ability to classify both high-risk and low-risk mortality 

cases correctly. 

C. Feature Importance Analysis 

To enhance the interpretability of the model, Explainable 
Artificial Intelligence (XAI) methodologies, specifically SHAP 
and LIME, were employed. These techniques were valuable in 
making the model's decision-making process more transparent 
and understandable for healthcare practitioners. 

1) SHapley Additive exPlanations (SHAP): SHAP was 

used to interpret the feature importance of the trained Random 

Forest model. A SHAP summary plot (Fig. 10) was generated 

using the TreeExplainer, which showed that features such as 

age, SOFA score, and lactate levels were significant 

contributors to the model's predictions. The SHAP values 

offered a clear grasp of how each characteristic affects 

mortality risk predictions, with greater SOFA scores and 

elevated lactate levels related to increased mortality risk, as 

acknowledged by studies such as [12], [38], [39]. 

2) Local Interpretable Model-agnostic Explanations 

(LIME): LIME was employed to explain individual predictions 

by generating local explanations for specific instances. Fig. 11 

illustrates a detailed LIME explanation, showing the 

contribution of each feature to the prediction. For instance, one 

risk-predicting factor was high lactate level with significantly 

low temperature, with other factors like GCS, SPO2, ICU type, 

creatinine levels, age, and gender also playing roles. By 

breaking down predictions into these specific details, LIME 

enables healthcare practitioners to understand the rationale 

behind individual predictions, fostering trust in the model's 

outputs [13], [40], [41]. 
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Fig. 9. Confusion matrix showing the number of correct and incorrect predictions made by each model. 

 

Fig. 10. SHAP summary plot. 

 

Fig. 11. LIME explanation. 
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V. DISCUSSION 

The results of this study are consistent with previous 
research that has demonstrated the effectiveness of Random 
Forest in predicting mortality risk in ICU patients. The Random 
Forest model's outstanding performance is primarily due to its 
capacity to handle large datasets and capture complicated 
correlations between variables. This study's findings align with 
previous research showing the usefulness of Random Forest in 
predicting mortality risk in ICU patients. The Random Forest 
model's exceptional success is primarily due to its ability to 
handle large datasets and identify the intricate connections 
between variables. The decision to balance the dataset by 
oversampling was crucial for improving the model's accuracy 
and reducing bias, a method supported by other studies, 
including that of [36]. Although [4] showed how effectively 
deep learning models capture non-linear correlations in 
complicated datasets, Random Forest was selected for this study 
because of its exceptional interpretability and widespread use in 
clinical settings. The use of SHAP and LIME provided valuable 
insights into the model's decision-making process. SHAP 
allowed for a global interpretation of feature importance, 
highlighting the significant role of clinical markers such as age, 
SOFA score, and lactate levels. These results are consistent with 
clinical expectations and established literature, thereby 
validating the model's predictions [12], [38], [39], [42]. The 
implications of this study for clinical practice are substantial. 
Implementing a Random Forest-based mortality risk prediction 
model enables healthcare professionals to more accurately 
identify patients at elevated risk of mortality and allocate 
resources more efficiently. This methodology may result in 
enhanced individualized care plans and superior patient 
outcomes. Furthermore, the model's ability to incorporate a wide 
range of clinical variables makes it adaptable to different ICU 
settings and patient populations. 

While the results are promising, the study is not without 
limitations. The dataset is comprehensive; hence, the 
generalizability of the model may be restricted to different ICU 
populations. Despite the dataset is large, it only comes from one 
source. Hence, the generalizability of the model may be 
restricted to different ICU populations. This emphasizes the 
need for external validation over several datasets representing 
various geographical and clinical settings. Also, relying on these 
individual attributes raises concerns about potential biases. For 
example, demographic factors such as age or gender may 
potentially introduce systemic biases, limiting the model's 
generalizability across different patient populations [43]. 
Additionally, even though Random Forest performed more 
effectively than the other models in this study, investigating 
advanced methods—like ensemble approaches that combine 
deep learning with XAI tools—could improve the models' 
predictive abilities and interpretability. 

VI. CONCLUSION 

This study developed and evaluated a machine learning 
model to predict ICU patient mortality risk using the WiDS 
Datathon 2020 dataset. The Random Forest algorithm emerged 
as the most effective model, outperforming other algorithms in 
accuracy, precision, recall, and F1-Score. The AI mortality risk 
prediction model showed strong performance, with SHAP and 

LIME providing essential tools for enhancing model 
explainability. SHAP was particularly effective in offering clear 
and actionable explanations, making it the preferred method for 
developing user-centric explanations in this study. The study's 
findings highlight the potential of machine learning to improve 
clinical decision-making in ICU settings. Future research should 
focus on validating the model across multiple datasets from 
diverse geographic and clinical settings. Additionally, exploring 
integrating other machine learning techniques, such as deep 
learning, could further enhance the model's predictive accuracy. 
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