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Abstract—Financial time series prediction is inherently 

complex due to its nonlinear, nonstationary, and highly volatile 

nature. This study introduces a novel CEEMDAN-BO-LSTM 

model within a decomposition-optimization-prediction-

integration framework to address these challenges. The Complete 

Ensemble Empirical Mode Decomposition with Adaptive Noise 

(CEEMDAN) algorithm decomposes the original series into high-

frequency, medium-frequency, low-frequency, and trend 

components, enabling precise time window selection. Bayesian 

Optimization (BO) algorithm optimizes the parameters of a dual-

layer Long Short-Term Memory (LSTM) network, enhancing 

prediction accuracy. By integrating predictions from each 

component, the model generates a comprehensive and reliable 

forecast. Experiments on 10 representative global stock indices 

reveal that the proposed model outperforms benchmark 

approaches across RMSE, MAE, MAPE, and R² metrics. The 

CEEMDAN-BO-LSTM model demonstrates robustness and 

stability, effectively capturing market fluctuations and long-term 

trends, even under high volatility. 
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I. INTRODUCTION 

With the ongoing advancement of global economic 
integration and the increasing openness of international 
markets, the influence of stock market fluctuations on the 
global economy has grown significantly. Accurately capturing 
stock market trends and forecasting their future movements has 
thus become a crucial research focus in the financial field. 
Financial market forecasting methods are primarily categorized 
into linear and nonlinear models. Early research achieved 
notable progress in financial time series modeling using linear 
models [1-3]. However, financial time series typically exhibit 
high noise, uncertainty, and nonstationary, with dynamic 
changes in the relationships between variables over time. These 
limitations often hinder traditional linear models from 
effectively capturing intricate patterns and sustaining long-term 
dependencies. Furthermore, the linear models’ assumption of 
data smoothness imposes an additional limitation on their 
validity. 

In order to overcome the limitations of linear models, 
nonlinear prediction methods have become the mainstream of 
financial market prediction. Among them, artificial neural 

networks (ANNs) are widely used due to their ability to 
process high-dimensional, multimodal and heterogeneous data. 
For example, Yassin et al. (2017) utilized a stock prediction 
model based on multilayer perceptron (MLP) to predict the 
weekly stock price of Apple Inc. and verified its strong 
prediction performance through one step ahead (OSA) and 
correlation analysis [4]. Similarly, Zhang et al. (2021) 
employed a back propagation (BP) neural network to classify 
and predict stock price patterns, achieving an improved 
accuracy of 73.29% and providing valuable insights for 
investors and macroeconomic policies [5]. However, ANN-
based models face many challenges, including overfitting, 
gradient vanishing or exploding, and easy to fall into local 
optimality, which limit their generalization ability for complex 
financial data. 

With the continuous development and application of deep 
learning technology, Long Short-Term Memory (LSTM) 
network has become an important model due to its strong 
ability to handle noisy, nonlinear and nonstationary data. By 
introducing advanced gating mechanisms, LSTM effectively 
overcomes the inherent gradient vanishing and gradient 
exploding problems of traditional recurrent neural networks 
(RNNs), making it particularly suitable for processing long 
sequence data [6, 7]. Its robustness and adaptability have 
promoted its widespread application in the financial field. 
Wang et al. (2024) verified that the LSTM model can 
overcome the limitations of RNN in stock market forecasting 
and can greatly improve the forecasting performance [8]. These 
advantages make LSTM a highly promising component in 
hybrid models for solving complex financial forecasting tasks. 

In the field of financial market forecasting, hybrid models 
have attracted much attention. This type of model combines the 
strengths of multiple algorithms and offers greater advantages 
than single models in processing complex and noisy financial 
data. Compared with single models, hybrid models have 
stronger generalization capabilities and are more robust, 
especially in capturing multi-scale features and nonlinear 
relationships. 

In recent years, LSTM-based hybrid models have shown 
great potential in stock market forecasting due to their ability to 
capture both long and short-term patterns in financial time 
series. Table I summarizes recent research based on LSTM 
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models, clearly showing the methods and advantages of these hybrid models in stock market forecasting. 

TABLE I. SUMMARY OF THE RECENT WORK ON LSTM-BASED STOCK MARKET PREDICTION 

Reference Technique Dataset 
Number of 

stocks 
Metric Advantages 

Mehtarizadeh et 
al. (2025) [9] 

LSTM, Sin-Cosine Algorithm, 

ARIMA, 

GARCH 

Stock 8 RMSE 

Integrates statistical and deep learning 

models, enhancing the ability to capture the 

complex dynamics of stock prices. 

Baek (2024) [10] 
CNN, LSTM, Genetic Algorithm 
Optimization 

Stock index 1 MAPE, MSE, MAE 
Effectively improves the accuracy of stock 
index prediction. 

Sang and Li 

(2024) [11] 

Attention Mechanism Variant 

LSTM 
Stock 1 MSE,  MAE, R2 

Enhances generalization, prediction 

accuracy, and convergence ability 

Zheng et al. 
(2024) [12] 

Convolutional Neural Network, 
Bidirectional LSTM, Attention 

Stock 1 MSE, MAPE 
Demonstrates significantly improved 
prediction accuracy. 

Akşehir et al. 

(2024) [13] 

Two-level decomposition of 

CEEMDAN, LSTM, 
Support Vector Regression 

Stock index 4 
RMSE, MAE, 

MAPE, R2 

Removes noise from financial time series 

data, boosting predictive performance. 

Gülmez (2023) 

[14] 

Artificial Rabbits Optimization, 

LSTM 
Stock 30 

MSE, MAE, MAPE, 

R2 

Exhibits high generalisability in diverse 

financial scenarios. 

Tian et al. (2022) 

[15] 

LSTM, Bayesian optimization, 

LightGBM 

Diverse 
financial market 

datasets 

9 
RMSE, MAE, F1-

score,  Accuracy 

Provides better approximation and 

generalisation in stock volatility prediction. 

As shown in Table I, most studies on LSTM-based stock 
market prediction methods employ parameter optimization 
algorithms. This is mainly because manually adjusting 
parameters not only increases the computational cost, but may 
also reduce the prediction accuracy and optimization 
efficiency. In deep learning networks such as LSTM, 
hyperparameter selection is crucial to achieve accurate 
predictions [16]. The performance of LSTM largely depends 
on the optimal configuration of hyperparameters, such as the 
number of hidden neurons and the learning rate setting. In 
addition, since the neural network needs to optimize a large 
number of parameters, it is prone to falling into local optima 
during this process and may be at risk of overfitting. 

To address these challenges, Bayesian Optimization (BO) 
provides an efficient solution [17]. BO estimates the objective 
function through Gaussian Processes (GP) and optimizes it 
using surrogate modeling. This method can efficiently explore 
the hyperparameter space, avoid redundant calculations, reduce 
the risk of falling into local optima, and significantly improve 
both the effectiveness and training efficiency of the LSTM 
model, making it more suitable for the complexity of financial 
time series prediction. 

In addition to hyperparameter optimization, data 
preprocessing also plays a vital role in improving prediction 
accuracy. High noise is a key characteristic of financial time 
series and a major challenge for accurate prediction. Signal 
decomposition methods can transform complex original time 
series into simpler components, enabling the model to capture 
potential features more effectively and reduce noise. Among 
them, variational mode decomposition (VMD) is widely used 
due to its strong practical performance [18, 19]. However, 
VMD requires manual selection of the number of modes, 
introducing subjectivity and uncertainty. In contrast, Complete 
Ensemble Empirical Mode Decomposition with Adaptive 
Noise (CEEMDAN) provides an advanced adaptive data 
decomposition method that decomposes data into physically 
meaningful modal components. As a higher-order version of 
Empirical Mode Decomposition (EMD), CEEMDAN 
overcomes some of EMD's limitations by introducing adaptive 
white noise, improving robustness and accuracy in extracting 

intrinsic features of complex data. CEEMDAN has 
demonstrated significant theoretical and practical value in 
economic and financial applications, laying a solid foundation 
for enhancing model performance [20]. 

Based on the above analysis, this study introduces a novel 
hybrid model CEEMDAN-BO-LSTM. This model further 
improves the performance of financial time series prediction by 
effectively removing the original signal noise, enhancing the 
long-term and short-term dependency modeling capabilities, 
and employing an efficient optimization algorithm for 
hyperparameter tuning. Specific contributions of this study 
include: 

1) Proposal of an innovative hybrid framework: This study 

constructs a "decomposition-optimization-prediction-

integration" framework. The framework uses the CEEMDAN 

algorithm to perform multi-scale decomposition of stock index 

time series, automatically adjusts the hyperparameters of 

LSTM through BO for prediction, and finally integrates the 

prediction results. This method greatly enhances predictive 

performance and adaptability, and effectively overcomes the 

limitations of traditional models in parameter selection and 

noise reduction. 

2) Generalization ability in stock index prediction: The 

proposed model is experimentally evaluated on 10 

representative stock indices worldwide, leading to consistent 

conclusions. The results demonstrate its effectiveness in 

capturing the nonlinear characteristics of stock market 

volatility and achieving significant improvements in forecast 

accuracy and stability, further highlighting its applicability in 

financial time series forecasting. 

3) Optimized time window segmentation: This study 

classifies the decomposed components based on energy 

contribution, dividing them into different frequency 

components, and assigns a suitable time window to each 

component, which can be predicted according to the 

characteristics of different frequencies, further enhancing the 

prediction performance. 
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These contributions enable the CEEMDAN-BO-LSTM 
model to demonstrate significant potential in addressing 
complex financial market fluctuations, opening up broader 
application prospects for financial market analysis. 

This paper is structured into five sections. The next section 
introduces the methods used in this study. Section III describes 
the construction process of the CEEMDAN-BO-LSTM model. 
Then, Section IV outlines the experimental procedure and 
analyzes the results. Finally, Section V presents the 
conclusions of this study, as well as future research directions. 

II. METHODS 

A. LSTM 

The LSTM network is an enhanced variant of the RNN [5]. 
By incorporating specialized LSTM units, the LSTM network 
can effectively store and manage both long-term and short-
term information. As illustrated in Fig. 1, each LSTM unit 
comprises three gate mechanisms and two state variables. They 
are input gate (𝑖𝑡), forget gate (𝑓𝑡), and output gate (𝑜𝑡), as well 
as cell state (𝐶𝑡) and hidden state (ℎ𝑡). 

 

Fig. 1. Structure of LSTM. 

According to Fig. 1, these components work 
collaboratively to regulate the flow of information, allowing 
LSTM network to maintain and update memory across 
extended sequences. 

The input gate determines the processing of information 
from the current input data. The mathematical representation is 
shown in Eq. (1) and Eq. (2). 

𝑖𝑡 = 𝜎(𝑊𝑖 ∗ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖)  (1) 

Ĉ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∗ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑐)  (2) 

The forget gate controls the update of historical data to the 
memory unit state value. Its mathematical expression is 
presented in Eq. (3). 

𝑓𝑡 = 𝜎(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓)  (3) 

𝐶𝑡  is updated through the combined actions of 𝑓𝑡  and 𝑖𝑡 . 
The forget gate regulates the retention of the previous cell state 
(𝐶𝑡−1), while the input gate introduces new information via the 

candidate state (Ĉ𝑡). The update equation is shown in Eq. (4). 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ Ĉ𝑡         (4) 

The output gate determines the information to be emitted at 
the current time step. The detailed calculation procedure is 
shown in Eq. (5) and in Eq. (6). 

𝑜𝑡 = 𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑜)  (5) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)      (6) 

Here, 𝜎  (sigmoid function) and tanh (hyperbolic tangent 
function) serve as activation functions.  𝑊  and 𝑏  denote the 
weight matrices and bias terms, respectively. Through this 
design, LSTM effectively integrates long-term and short-term 
information, ensuring stability and accuracy in forecasts. Its 
flexibility and adaptability make LSTM particularly useful for 
financial time series forecasting, as it effectively captures the 
complex nonlinear dynamics of stock market volatility. 

B. CEEMDAN 

In the field of signal processing, researchers have proposed 
a variety of advanced methods to analyze the intrinsic 
characteristics of nonlinear and nonstationary data, including 
empirical mode decomposition (EMD) and its related 
techniques. EMD is able to decompose the different frequency 
components of the original data, revealing the contribution of 
each frequency component, and providing high-resolution 
analytical capabilities for nonlinear time series [21]. 

Although EMD has many advantages, its mode mixing 
issue limits its accuracy and effectiveness in complex signal 
decomposition. To address this limitation, researchers 
proposed Ensemble Empirical Mode Decomposition (EEMD) 
in 2009. EEMD reduces the impact of mode mixing by adding 
white noise of different amplitudes to the original signal, 
performing EMD multiple times, and then averaging the 
decomposition results. However, since EEMD requires 
multiple repetitions of the decomposition process, the 
computational cost is high and may introduce additional 
computational errors [22]. 

Based on EEMD, Torres et al. (2011) proposed 
CEEMDAN [23]. CEEMDAN algorithm further enhances the 
EEMD by refining the introduction of white noise at each 
decomposition step. This improvement ensures the consistency 
of the extracted IMFs, mitigates mode mixing, and reduces 
reconstruction errors. This method enhances both 
decomposition accuracy and computational efficiency, making 
it more reliable for complex and dynamic financial time series 
analysis. 

The following section outlines the detailed algorithmic 
steps of CEEMDAN: 

1) Step 1: Generate noisy data sets. Noisy versions of the 

original time series 𝑥[𝑛] are created using the Eq. (7): 

𝑥𝑖[𝑛] = 𝑥[𝑛] + 𝜀0𝑤𝑖[𝑛]          (7) 

Where 𝑤𝑖[𝑛] (𝑖 = 1, 2 … I) represent Gaussian white noise 
that follows a normal distribution, and 𝜀0  is the standard 
deviation of the noise. This step introduces controlled noise to 
reduce mode mixing during the decomposition process. 

2) Step 2: Apply the EMD method to each noisy signal to 

extract the first intrinsic mode function (IMF). The first IMF is 
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calculated as the average of the IMFs obtained from all noisy 

realizations as shown in Eq. (8) 

𝐼𝑀𝐹1[𝑛] =
1

𝐼
∑ 𝐼𝑀𝐹1

𝑖𝐼
𝑖=1 [𝑛]  (8) 

The first residual is then computed as Eq. (9): 

𝑟1[𝑛] = 𝑥[𝑛] − 𝐼𝑀𝐹1[𝑛]   (9) 

3) Step 3: Iterative decomposition is applied to obtain 

successive IMFs. For k = 2, ... K, the k-th residue is calculated 

as shown in Eq. (10). The realizations 𝑟𝑘[𝑛] +
𝜀𝑘𝐸𝑀𝐷𝑘(𝑤𝑖[𝑛]) are decomposed until the first EMD mode is 

obtained, and the (k+1)-th mode is defined as shown in Eq. 

(11): 

𝑟𝑘[𝑛] = 𝑟𝑘−1[𝑛] − 𝐼𝑀𝐹𝑘[𝑛]  (10) 

𝐼𝑀𝐹𝑘+1[𝑛] =
1

𝐼
∑ 𝐸𝑀𝐷1(𝑟𝑘[𝑛] +𝐼

𝑖=1 𝜀𝑘𝐸𝑀𝐷𝑘(𝑤𝑖[𝑛]))   (11) 

4) Step 4: Proceed to step 3 for the next k. The 

CEEMDAN algorithm terminates when the residual no longer 

exceeds the two extreme points, and further decomposition is 

not possible. The final residual is given by Eq. (12): 

𝑅[𝑛] = 𝑥[𝑛] − ∑ 𝐼𝑀𝐹𝑘
𝐾
𝑘=1         (12) 

This approach effectively resolves mode mixing, ensuring 
stable and interpretable decomposition results. 

C. BO 

Bayesian optimization (BO) is a widely used algorithm for 
optimizing black-box functions with the aim of finding the 
global optimal solution efficiently. The method achieves 
optimization by iteratively updating the posterior distribution 
of the objective function, while the updating process is based 
on the prior distribution with historical data. Compared to 
traditional optimization methods, Bayesian optimization excels 
in handling non-convex problems and avoids falling into local 
optima [24]. Its objective is to maximize the function f(x) by 

finding the optimal input 𝑥∗ within the search space χ ∈ ℝ , as 

shown in Eq. (13): 

𝑥∗ =  argmax
{x ∈ χ}

𝑓(𝑥)  (13) 

The essence of Bayesian optimization is rooted in modeling 
the objective function 𝑓(𝑥) as a stochastic process, typically 
represented by a Gaussian Process (GP) as a surrogate model. 
The GP provides a probabilistic estimate of 𝑓(𝑥)  based on 
historical observations, enabling Bayesian optimization to 
balance exploration of unexplored regions with exploitation of 
known high-performing regions. This balance improves 
optimization efficiency and reduces the risk of missing the 
global optimum. 

Bayesian optimization relies on Bayes' theorem to infer the 
posterior distribution of f(x) given a historical dataset 𝐷𝑛 =
{(𝑥𝑖 , 𝑓(𝑥𝑖))}𝑖=1

𝑛  , The posterior distribution is given by Eq. (14): 

𝑃(𝑓(x)|𝐷𝑛) =  
𝑃(𝐷𝑛|𝑓(x))𝑃(𝑓(x))

𝑃(𝐷𝑛)
  (14) 

Where 𝑃(𝐷𝑛|𝑓(x)) is the likelihood of the dataset given 

(x) , 𝑃(𝑓(x)) represents the prior distribution of the objective 

function, and  𝑃(𝐷𝑛) is the evidence. 

By employing a Gaussian Process, BO algorithm efficiently 
estimates 𝑓(x)  and selects the next sampling point from the 
posterior distribution 𝑃(𝑓(x)|𝐷𝑛). This iterative process seeks 
to maximize the objective function while minimizing 
uncertainty, enabling efficient exploration in high-dimensional 
spaces. 

Bayesian optimization's flexibility and ability to 
incorporate prior knowledge make it particularly suitable for 
complex and computationally expensive optimization tasks, 
such as hyperparameter tuning in machine learning, 
experimental design, and automated decision-making. Its 
ability to efficiently handle high-dimensional, noisy, and black-
box functions positions it as an effective method for addressing 
complex optimization challenges. 

III. MODEL CONSTRUCTION 

Due to the nonlinear and nonstationary nature of stock 
market indices, achieving accurate predictions remains a 
significant challenge. In this context, the combination of 
effective decomposition techniques and advanced machine 
learning methods is particularly crucial for handling these 
complexities. In light of this, this study integrates CEEMDAN 
temporal decomposition, Bayesian Optimization (BO), and 
LSTM network to propose a novel stock market forecasting 
framework: CEEMDAN-BO-LSTM. 

 
Fig. 2. The workflow of CEEMDAN-BO-LSTM predictive modeling. 

As illustrated in Fig. 2, the CEEMDAN-BO-LSTM 
modeling process addresses the complex, nonlinear, and multi-
scale nature of stock market indices through four key steps. In 
this process, the closing price series of stock market indices 
serves as input data. The details of these steps are as follows: 

1) Step 1: Decomposition. Decompose the closing price 

time series into multiple IMFs and a residual component using 

the CEEMDAN algorithm. IMFs capture time series 
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characteristics at different frequency levels, while the residual 

represents the overall trend. 

2) Step 2: Optimization. The decomposed components are 

classified according to frequency bands, the time window in 

the LSTM model is set according to these categories, and the 

LSTM is then trained using Bayesian optimization. 

3) Step 3: Prediction. Optimized LSTM models 

corresponding to different frequency bands generate 

predictions for each respective band. 

4) Step 4: Integration. Predictions from all components are 

combined to produce the final forecast for stock market 

indices. Appropriate evaluation metrics are used to assess the 

proposed model’s reliability and robustness. 

IV. EXPERIMENT AND RESULT 

A. Data Collection and Preprocessing 

The historical financial time series dataset used in this 
study is obtained from Yahoo Finance and covers the daily 
closing prices of 10 representative global stock indices. The 
dataset spans 10 years, from October 23, 2014, to October 21, 
2024. 

Table II presents detailed information on the selected stock 
indices and their market characteristics. As depicted in Fig. 3, 
the dynamic trajectories of these indices exhibit typical 
characteristics of financial time series, including nonlinearity 
and nonstationary. These characteristics highlight the 
complexity and challenges associated with forecasting 
financial trends. 

 

Fig. 3. Historical trends of 10 stock indices. 

TABLE II. MAJOR STOCK MARKET INDICES AND THEIR CHARACTERISTICS 

Index Name Code Market Characteristics Index Name Code Market Characteristics 

S&P 500 Index ^GSPC 
Represents 500 leading U.S. companies 
across multiple sectors, reflecting the overall 

U.S. economy. 

Shanghai 
Composite 

Index 

000001.SS 
Covers all A-shares on the Shanghai Stock 
Exchange, serving as a benchmark for China's 

market. 

Dow Jones 

Industrial 
Average 

^DJI 

Consists of blue-chip stocks, reflecting 

trends in the industrial and financial 
markets. 

Euro Stoxx 50 

Index 
^STOXX50E 

Tracks 50 leading European companies and 

represents key sectors of the eurozone economy. 

FTSE 100 Index ^FTSE 

Includes 100 major UK companies, 

providing insights into the UK and European 

financial markets. 

German DAX 
Index 

^GDAXI 

Comprises 40 major companies listed on the 

Frankfurt Stock Exchange, serving as a key 
indicator of Germany's economic and corporate 

performance. 

Hang Seng 

Index 
^HSI 

Tracks 50 leading Hong Kong companies, 

highlighting the economic connection 
between China and Hong Kong. 

NASDAQ 100 

Index 
^NDX 

Comprises 100 major U.S. tech and non-

financial companies, serving as a key indicator 
of global tech stocks. 

Nikkei 225 

Index 
^N225 

Covers 225 top Japanese companies, 

reflecting Japan’s economic trends and 
Asia’s broader market dynamics. 

NASDAQ 

Composite 
Index 

^IXIC 

Includes all companies listed on NASDAQ, 

capturing global tech stock trends and investor 
sentiment. 

B. Stock Closing Price Sequence Decomposition Based on 

CEEMDAN 

In this study, the S&P 500 index (^GSPC) was selected as a 
representative example for detailed analysis, while the 

procedures for the other nine indices were omitted due to space 
constraints. The ^GSPC dataset consists of 2,515 samples, with 
the first 80% used for training and the remaining 20% for 
testing to preserve the temporal structure during model 
evaluation. 
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The training set was processed using the CEEMDAN 
method to extract intrinsic mode functions (IMFs). Following 
the parameter settings proposed by Torres et al. (2011), the 
noise standard deviation was set to 0.2 (noise_std=0.2), the 
number of trials was 500, and a maximum of 2,000 sifting 
iterations (max_iter=2000) was allowed for each intrinsic mode 
function (IMF) extraction [23]. 

Fig. 4 presents the results of the CEEMDAN 
decomposition, showing six extracted intrinsic mode functions 
(IMFs) and one residual component (RES). This 
decomposition effectively separates the original time series 
into components with distinct frequency characteristics, 

capturing variations across different scales while preserving the 
underlying trend. Compared to the original signal, these 
components are smoother and more regular, enhancing feature 
representation and providing a robust foundation for 
subsequent modeling and forecasting. 

Table III summarizes the key statistical characteristics of 
each IMF and the residual component, including their energy 
contribution rates and Pearson correlation coefficients with the 
original time series. These metrics reveal the impact of 
different frequency components on the time series and support 
their classification into three distinct frequency groups for 
subsequent modeling and forecasting. 

TABLE III. STATISTICAL CHARACTERISTICS OF CEEMDAN-DECOMPOSED ^GSPC COMPONENTS 

Component Sample Size Mean Energy Contribution Rate Correlation Coefficient with the Original Sequence 
Average Difference (95% 

Confidence Interval) 

IMF1 2515 0.2533 0.32% 0.0282 [-0.4497, 0.9290] 

IMF2 2515 0.2452 0.39% 0.0150 [-0.4715, 1.7823] 

IMF3 2515 0.7810 0.71% 0.0733 [-0.2590, 3.5593] 

IMF4 2515 1.0539 2.89% 0.0727 [-0.3335, 3.0623] 

IMF5 2515 -5.5893 6.99% 0.0435 [-13.4650, 9.6706] 

IMF6 2515 -4.9123 88.70% 0.1788 [-13.4649, 9.6706] 

RES 2515 3288.74 - 0.9542 [3243.0319, 3322.9385] 

 
Fig. 4. CEEMDAN decomposition of closing prices for the ^GSPC index. 
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Based on the statistical analysis in Table III, the IMFs were 
categorized according to their energy contribution rates and 
correlation coefficients. 

IMF 1 to IMF 3 primarily represent high-frequency 
components, characterized by low energy contribution rates 
(0.32%, 0.39%, and 0.71%, respectively) and low Pearson 
correlation coefficients with the original sequence (0.0282, 
0.0150, and 0.0733, respectively). These components primarily 
capture short-term stochastic fluctuations, which may be 
influenced by sudden market events, speculative trading, or 
short-lived policy shifts. IMF 3 exhibits slightly higher 
explanatory power for short-term volatility. 

IMF 4 and IMF 5 correspond to medium-frequency 
components, with energy contribution rates of 2.89% and 6.99% 
and correlation coefficients of 0.0727 and 0.0435, respectively. 
These components reflect medium-term market adjustments 
and cyclical dynamics, with IMF 5, in particular, being 
associated with medium-to-long-term fluctuations influenced 
by economic cycles and technical market corrections. 

IMF 6, the dominant low-frequency component, accounts 
for the highest energy contribution (88.70%) and exhibits a 
correlation coefficient of 0.1788 with the original sequence. It 
primarily represents long-term market trends driven by 
macroeconomic factors and sustained investor sentiment. 

The residual component (RES) represents the long-term 
trend, exhibiting a mean value of 3288.74 and a high 
correlation coefficient of 0.9542 with the original sequence. 
This indicates that the RES fully encapsulates the overall 
market trend. 

Applying energy contribution thresholds of 2% for high-
frequency components and 60% for low-frequency components 
effectively distinguishes short-term fluctuations from long-
term trends. This separation facilitates predictive modeling by 
isolating different cyclical patterns in the data. The frequency 
band allocation of the ^GSPC index is illustrated in Fig. 5. 

 
Fig. 5. Frequency band allocation results of IMF components for ^GSPC. 

In order to enable the proposed model to effectively capture 
the unique fluctuation patterns and dynamic characteristics of 
each frequency band, a specific time window is assigned to the 
three different frequency components in this study. The time 
windows for the high-frequency, medium-frequency, and low-
frequency components are set to 5 days, 10 days, and 20 days, 
respectively. The residual component, which primarily 
represents the long-term trend, is assigned a time window of 30 
days. This configuration allows the model to fully learn and 
represent the overall long-term market movements and trend 
characteristics.  

By adjusting the time windows based on the frequency 
characteristics of the components, the model is better equipped 
to analyze and predict market behavior across different time 
horizons. 

C. Analysis of Experimental Results 

Since the process of constructing the prediction model for 
the S&P 500 index (^GSPC) is identical to that of other stock 
indices, it is not discussed in detail here due to space 
limitations. To compare the effectiveness of the CEEMDAN 
decomposition method, the original closing price sequence was 
also decomposed using the EMD method for comparison. 
Taking the ^GSPC index as an example, the EMD method 
decomposed the sequence into 8 IMFs and RES, resulting in a 
total of 9 components. The specific decomposition results are 
presented in Fig. 6. The original ^GSPC closing price sequence 
is displayed at the top, followed by the IMF components 
arranged from high to low frequency, with the trend 
component at the bottom. The construction of the prediction 
model based on the EMD decomposition follows the same 
methodology as the CEEMDAN-BO-LSTM approach 
proposed in this study. 

In order to further verify the effectiveness of the 
decomposition technique, the Bayesian optimized LSTM (BO-
LSTM) model and the traditional LSTM model are involved in 
the comparative analysis in this study. The LSTM models 
constructed in this study all adopt a double-layer structure, and 
the specific parameter configurations are shown in Table IV. 

TABLE IV. OPTIMIZED HYPERPARAMETERS AND THEIR SEARCH RANGES  

Hyperparameters Search Range 

lstm_units1 [50, 200] 

lstm_units2 [50, 150] 

learning_rate [0.0001, 0.01] 

batch_size [16, 64] 

After completing the above preparations, the ^GSPC index 
was first trained and then predicted. To comprehensively 
evaluate the prediction performance, root mean square error 
(RMSE), mean absolute error (MAE), mean absolute 
percentage error (MAPE), and coefficient of determination (R²) 
are utilized. The optimal parameter configuration for the 
double-layer LSTM model is determined through Bayesian 
optimization. The final settings include a batch size of 31, a 
learning rate of 0.005, 115 units in the first LSTM layer, and 
79 units in the second LSTM layer. Table V summarizes the 
predictive performance comparison for the ^GSPC index 
across different models. 

According to the prediction results shown in Table V, it can 
be observed that the CEEMDAN-BO-LSTM model 
outperforms all other models. The RMSE value of this model is 
32.6788, the MAE value is 27.9756, the MAPE value is 
0.5910%, and the R² value is 0.9969, which strongly 
demonstrates its superior predictive accuracy and robust fitting 
capability. In contrast, the RMSE values of the CEEMDAN-
LSTM and EMD-BO-LSTM models are 41.4031 and 40.9361, 
respectively, performing better than the BO-LSTM and 
traditional LSTM models but still falling short compared to the 
CEEMDAN-BO-LSTM model. 
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Fig. 6. EMD Decomposition of Closing Prices for the ^GSPC Index. 

TABLE V. PERFORMANCE COMPARISON OF DIFFERENT LSTM-BASED MODELS FOR ^GSPC PREDICTION 

Model 

Metric 
CEEMDAN-BO-LSTM CEEMDAN-LSTM EMD-BO-LSTM EMD-LSTM BO-LSTM LSTM 

RMSE 32.6788 41.4031 40.9361 156.1560 56.6349 75.2508 

MAE 27.9756 32.6506 29.1307 102.8529 45.1560 60.4651 

MAPE 0.5910% 0.6729% 0.5991% 1.9808% 0.9487% 1.2603% 

R2 0.9969 0.9951 0.9951 0.9290 0.9909 0.9840 
 

Compared to Bayesian-optimized models, non-optimized 
LSTM-based models exhibit weaker predictive performance 
and limited capability in capturing market trends. For example, 
the EMD-LSTM model produces large prediction errors, but its 
predictive performance improves significantly after Bayesian 
optimization of core parameters. 

Next, to further visualize and compare the predictive 
performance of different models, Fig. 7 illustrates the final 
prediction results, Fig. 8 presents the error distribution, and 
Fig. 9 depicts the model fitting performance. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 2, 2025 

794 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 7. Individual forecasts of different models on the ^GSPC index. 

 
Fig. 8. Comparison of prediction errors for the ^GSPC index across different models. 

 
Fig. 9. Fitting performance of different models for the ^GSPC index predictions. 
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As illustrated in Fig. 7, it is evident that the CEEMDAN-
BO-LSTM model exhibits the best fitting performance among 
all models, with its prediction curve closely aligning with the 
actual values. The model is effective in capturing the dynamic 
trends in different frequency bands, particularly around trend 
shifts and extreme points, demonstrating strong adaptability to 
complex market dynamics. In contrast, while the CEEMDAN-
LSTM and EMD-BO-LSTM models also fit the overall trend 
well, they exhibit slight phase shifts during periods of severe 
market volatility, especially around local peaks and troughs. 
On the other hand, the fitting performance of the EMD-LSTM, 
BO-LSTM, and traditional LSTM models is relatively weak. 
Among them, both the EMD-LSTM model and the traditional 
LSTM model exhibit poor fitting performance in the second 
half of the prediction period. However, their predictive 
accuracy improves significantly after Bayesian optimization. 

As shown in the box plots of error distributions in Fig. 8, 
the CEEMDAN-BO-LSTM model exhibits a narrower 
interquartile range (IQR) and shorter whiskers, indicating 
lower prediction uncertainty and greater stability. In contrast, 
the CEEMDAN-LSTM and EMD-BO-LSTM models have 

slightly wider error distributions, though their overall volatility 
remains moderate. On the other hand, the error box plots of the 
EMD-LSTM, BO-LSTM, and traditional LSTM models are 
significantly larger, reflecting more volatile prediction errors 
and lower stability. 

Furthermore, the superiority of the CEEMDAN-BO-LSTM 
model is further demonstrated in the fitting performance plot 
shown in Fig. 9. The predicted points align closely with the 
ideal fitting line, achieving a high R² value of 0.9969. In 
contrast, the prediction points of the EMD-LSTM model and 
the traditional LSTM model are more dispersed, with R² values 
of only 0.9290 and 0.9840, respectively, reflecting their 
limitations in capturing short-term fluctuations and long-term 
trends. Overall, the CEEMDAN-BO-LSTM model 
significantly outperforms the other models in terms of fitting 
accuracy, prediction error, and stability. 

To further validate the robustness and reliability of the 
proposed model, the same methodologies are applied to predict 
nine additional stock indices. The prediction results are 
summarized in Table VI. 

TABLE VI. COMPARISON OF PREDICTION RESULTS ACROSS VARIOUS MODELS FOR NINE ADDITIONAL STOCK INDICES 

Model 

Metric 

^DJI ^FTSE ^HSI 

RMSE MAE MAPE R2 RMSE MAE MAPE R2 RMSE MAE MAPE R2 

CEEMDAN-BO-

LSTM 
142.0854 112.3485 0.31% 0.9977 23.7777 18.5461 0.24% 0.9946 147.3649 111.4311 0.61% 0.9918 

CEEMDAN -LSTM 259.5091 223.6002 0.61% 0.9923 42.1390 33.4897 0.43% 0.9834 200.1531 154.0437 0.86% 0.9850 

EMD-BO-LSTM 231.8059 188.7823 0.54% 0.9937 25.2575 19.2848 0.25% 0.9939 158.3405 120.0416 0.66% 0.9906 

EMD-LSTM 219.2336 180.4671 0.50% 0.9945 39.5812 31.2914 0.40% 0.9854 326.7038 277.6644 1.55% 0.9602 

BO-LSTM 487.2037 385.5664 1.03% 0.9739 98.7783 81.2571 1.03% 0.9088 332.9701 244.7510 1.34% 0.9589 

LSTM 450.2276 365.7604 1.00% 0.9777 98.6217 75.9350 0.96% 0.9091 403.8065 308.4712 1.68% 0.9395 

Model 

Metric 

^N225 000001.SS ^STOXX50E 

RMSE MAE MAPE R2 RMSE MAE MAPE R2 RMSE MAE MAPE R2 

CEEMDAN-BO-

LSTM 
285.8826 184.8111 0.55% 0.9960 18.9642 14.1334 0.46% 0.9845 34.3053 27.6026 0.60% 0.9913 

CEEMDAN-LSTM 408.1841 281.7839 0.81% 0.9918 39.8539 32.4014 1.07% 0.9315 51.6794 42.9811 0.93% 0.9810 

EMD-BO-LSTM 408.4615 294.1020 0.84% 0.9918 24.8386 19.3618 0.64% 0.9735 39.7511 34.2836 0.75% 0.9886 

EMD-LSTM 541.3611 437.5387 1.28% 0.9856 34.3530 27.1668 0.90% 0.9491 66.2227 57.1415 1.25% 0.9692 

BO-LSTM 1096.3721 844.6950 2.34% 0.9412 31.8605 21.2103 0.69% 0.9563 68.8182 54.2253 1.17% 0.9661 

LSTM 1471.2706 1087.955 2.97% 0.8941 40.7106 29.9967 0.96% 0.9286 115.5603 97.0145 2.09% 0.9044 

Model 

Metric 

^GDAXI ^NDX ^IXIC 

RMSE MAE MAPE R2 RMSE MAE MAPE R2 RMSE MAE MAPE R2 

CEEMDAN-BO-

LSTM 
65.9233 51.0301 0.31% 0.9980 124.4471 99.8485 0.68% 0.9980 84.5104 66.0946 0.48% 0.9987 

CEEMDAN-LSTM 172.7391 151.907 0.90% 0.9866 132.9840 105.0143 0.71% 0.9978 123.8861 101.1588 0.73% 0.9972 

EMD-BO-LSTM 203.5323 168.399 0.99% 0.9814 196.8166 152.8102 0.95% 0.9950 140.0372 97.1818 0.65% 0.9963 

EMD-LSTM 298.8572 243.266 1.41% 0.9603 293.6994 216.5402 1.30% 0.9927 199.6780 158.5990 1.09% 0.9926 

BO-LSTM 227.5541 174.661 1.03% 0.9770 231.6684 185.2062 1.18% 0.9933 200.0174 154.5512 1.12% 0.9927 

LSTM 172.7391 151.907 0.90% 0.9866 271.6015 217.8445 1.42% 0.9907 321.7919 259.8644 1.77% 0.9812 
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As presented in Table VI, the CEEMDAN-BO-LSTM 
model consistently outperforms the other models across the 
nine stock indices. It achieves the best results for all indices. 
For example, on the ^DJI, ^FTSE, and ^NDX indices, their 
RMSE values are 142.0854, 23.7777, and 124.4471, 
respectively, which are significantly lower than those of other 
models. Meanwhile, their MAPE values are 0.31%, 0.24%, and 
0.68%, respectively, and they have the lowest error rates 
compared to other models. This indicates that the model 
consistently maintains high forecasting accuracy and low error 
under different market conditions. 

Although the EMD-BO-LSTM model fails to achieve the 
highest overall accuracy, it performs well on specific stock 
indices (such as 000001.SS, ^FTSE, and ^HSI) with lower 
MAE and RMSE values than other models. This suggests that 
the application of the LSTM model combining EMD 
decomposition with Bayesian optimization in stock index 
prediction is effective and improves the prediction performance 
to some extent. Nevertheless, its performance remains inferior 

to that of the CEEMDAN-BO-LSTM model proposed in this 
paper. The results further indicate that EMD still has some 
limitations in terms of effectiveness and stability when 
compared with the CEEMDAN algorithm. 

Furthermore, the superiority of the CEEMDAN-BO-LSTM 
model is further demonstrated in the fitting performance plot 
shown in Fig. 9. The predicted points align closely with the 
ideal fitting line, achieving a high R² value of 0.9969. In 
contrast, the prediction points of the EMD-LSTM model and 
the traditional LSTM model are more dispersed, with R² values 
of only 0.9290 and 0.9840, respectively, reflecting their 
limitations in capturing short-term fluctuations and long-term 
trends. Overall, the CEEMDAN-BO-LSTM model 
significantly outperforms the other models in terms of fitting 
accuracy, prediction error, and stability. 

To further validate the robustness and reliability of the 
proposed model, the same methodologies are applied to predict 
nine additional stock indices. The prediction results are 
summarized in Table VI. 

 

Fig. 10. Fitting performance of different models.

As shown in Fig. 10, the CEEMDAN-BO-LSTM model 
demonstrates strong predictive capability for the closing prices 
of the nine stock indices, with the predicted values closely 
aligning with the actual values. However, in the later part of 
the ^N225 test set, a sharp decline in stock price occurs, and 
the model underestimates the stock price decline at this point, 
although the model has incorporated relevant information. 

Similarly, in the latter part of the ^STOXX50E test set, the 
closing price exhibits significant fluctuations, and the model's 
predictions during this period also show some deviations. 

These deviations suggest that extreme market volatility poses a 
significant challenge to predictive modeling. 

Nevertheless, overall, the proposed model has 
demonstrated strong predictive performance, effectively 
adapting to complex market dynamics and providing accurate 
predictions in most scenarios. 

V. CONCLUSION 

In this study, a novel CEEMDAN-BO-LSTM stock market 
prediction model is proposed. The model follows a 
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decomposition-optimization-prediction-integration framework 
to forecast ten representative stock indices worldwide. It 
demonstrates excellent performance across all evaluation 
metrics, with an R² value close to 1, indicating outstanding 
predictive accuracy. 

The experimental results show that the CEEMDAN 
decomposition method can improve the accuracy and stability 
of the decomposition, which significantly enhances the ability 
of the model proposed in this study to capture stock market 
dynamics. Meanwhile, through Bayesian optimization, the 
hyperparameters are precisely tuned, which not only mitigates 
the overfitting problem but also enhances the model’s training 
efficiency. In addition, the model leverages the memory 
capability of the double-layer LSTM network for predictions, 
and the sliding window is optimally configured based on 
different frequency bands, further improving predictive 
accuracy. 

Despite the high predictive accuracy and stability of the 
CEEMDAN-BO-LSTM model, certain limitations remain. 
Firstly, the CEEMDAN decomposition process increases 
computational complexity. Although the frequency band 
setting categorizes the data into low-frequency, medium-
frequency, high-frequency, and trend components, each 
component requires separate model training, leading to 
prolonged training time. Additionally, the model's predictive 
performance is highly dependent on the optimization of LSTM 
hyperparameters, making the appropriate selection of 
hyperparameter search ranges a critical issue. 

Future research will integrate ensemble learning techniques 
with deep learning models, combining the high predictive 
accuracy of ensemble methods with the memory capability of 
deep learning networks. Adaptive learning mechanisms will 
also be explored to improve the effectiveness of model 
integration and adaptation. Furthermore, external factors such 
as social sentiment and policy changes will be considered. Text 
analysis will be incorporated to enable the financial time series 
model to learn from socio-economic developments, enhancing 
the effectiveness and reliability of predictions. 

ACKNOWLEDGMENT 

This research is funded by Guangdong Province Key 
Discipline Research Capacity Enhancement Project (No. 
2022ZDJS146); Key Natural Science Project of Guangdong 
University of Science and Technology (No. GKY-
2023KYZDK-16). 

REFERENCES 

[1] A. A. Ariyo, A. O. Adewumi, and C. K. Ayo, “Stock price prediction 
using the ARIMA model,” in Proceedings of the 2014 UKSim-AMSS 
16th International Conference on Computer Modelling and Simulation, 
IEEE, pp. 106–112, 2014. 

[2] H. Herwartz, “Stock return prediction under GARCH—An empirical 
assessment,” International Journal of Forecasting, vol. 33, no. 3, pp. 
569–580, 2017. 

[3] A. L. S. Maia, F. de A. T. de Carvalho, “Holt’s exponential smoothing 
and neural network models for forecasting interval-valued time series,” 
Int. J. Forecasting, vol. 27, no. 3, pp. 740–759, 2011. 

[4] I. M. Yassin, M. F. A. Khalid, S. H. Herman, et al., “Multi-layer 
perceptron (MLP)-based nonlinear auto-regressive with exogenous 
inputs (NARX) stock forecasting model,” International Journal of 

Advanced Science Engineering and Information Technology, vol. 7, no. 
3, pp. 1098–1103, 2017. 

[5] D. Zhang and S. Lou, “The application research of neural network and 
BP algorithm in stock price pattern classification and prediction,” Future 
Generation Computer Systems, vol. 115, pp. 872–879, 2021. 

[6] S. Hochreiter, “Long short-term memory,” Neural Computation, vol. 9, 
no. 8, pp. 1735–1780, 1997. 

[7] K. Pawar, R. S. Jalem, and V. Tiwari, “Stock market price prediction 
using LSTM RNN,” in Emerging Trends in Expert Applications and 
Security: Proceedings of ICETEAS 2018, Springer Singapore, pp. 493–
503, 2019. 

[8] J. Wang, S. Hong, Y. Dong, et al., “Predicting stock market trends using 
LSTM networks: overcoming RNN limitations for improved financial 
forecasting,” Journal of Computer Science and Software Applications, 
vol. 4, no. 3, pp. 1–7, 2024. 

[9] H. Mehtarizadeh, N. Mansouri, B. M. H. Zade, and M. M. Hosseini, 
“Stock price prediction with SCA-LSTM network and Statistical model 
ARIMA-GARCH,” The Journal of Supercomputing, vol. 81, no. 2, p. 
366, 2025. 

[10] H. Baek, “A CNN-LSTM stock prediction model based on genetic 
algorithm optimization,” Asia-Pacific Financial Markets, vol. 31, no. 2, 
pp. 205–220, 2024. 

[11] S. Sang and L. Li, “A novel variant of LSTM stock prediction method 
incorporating attention mechanism,” Mathematics, vol. 12, no. 7, p. 945, 
2024. 

[12] H. Zheng, J. Wu, R. Song, L. Guo, and Z. Xu, “Predicting financial 
enterprise stocks and economic data trends using machine learning time 
series analysis,” Appl. Comput. Eng., vol. 87, pp. 26–32, 2024. 

[13] Z. D. Akşehir and E. Kılıç, “A new denoising approach based on mode 
decomposition applied to the stock market time series: 2LE-
CEEMDAN,” PeerJ Computer Science, vol. 10, p. e1852, 2024. 

[14] B. Gülmez, “Stock price prediction with optimized deep LSTM network 
with artificial rabbits optimization algorithm,” Expert Systems with 
Applications, vol. 227, p. 120346, 2023. 

[15] L. Tian, L. Feng, L. Yang, and Y. Guo, “Stock price prediction based on 
LSTM and LightGBM hybrid model,” The Journal of Supercomputing, 
vol. 78, no. 9, pp. 11768–11793, 2022. 

[16] Y. He and K. F. Tsang, “Universities power energy management: A 
novel hybrid model based on iCEEMDAN and Bayesian optimized 
LSTM,” Energy Reports, vol. 7, pp. 6473–6488, 2021. 

[17] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian 
optimization of machine learning algorithms,” in Advances in Neural 
Information Processing Systems, vol. 25, pp. 2951–2959, 2012. 

[18] K. Dragomiretskiy and D. Zosso, “Variational mode decomposition,” 
IEEE Transactions on Signal Processing, vol. 62, no. 3, pp. 531–544, 
2013. 

[19] H. Niu, K. Xu, and W. Wang, “A hybrid stock price index forecasting 
model based on variational mode decomposition and LSTM network,” 
Applied Intelligence, vol. 50, pp. 4296–4309, 2020. 

[20] K. Su, C. Zheng, and X. Yu, “Portfolio allocation with CEEMDAN 
denoising algorithm,” Soft Computing, vol. 27, no. 21, pp. 15955–
15970, 2023. 

[21] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. 
C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition 
and the Hilbert spectrum for nonlinear and non-stationary time series 
analysis,” Proceedings of the Royal Society of London. Series A: 
Mathematical, Physical and Engineering Sciences, vol. 454, pp. 903–
995, 1998. 

[22] Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: a 
noise-assisted data analysis method,” Advances in Adaptive Data 
Analysis, vol. 1, no. 1, pp. 1–41, 2009. 

[23] M. E. Torres, M. A. Colominas, G. Schlotthauer, and P. Flandrin, “A 
complete ensemble empirical mode decomposition with adaptive noise,” 
in Proceedings of the 2011 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP), IEEE, pp. 4144–4147, 2011. 

[24] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, 
“Taking the human out of the loop: A review of Bayesian optimization,” 
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015 

 


