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Abstract—One factor that has a positive correlation with the 

risk of traffic accidents is the pain experienced by drivers. This 

pain is sometimes expressed facially by the driver and can be 

subjectively perceived by others. By observing the facial 

expression of drivers, it can estimate the pain experienced at that 

point in time and intervene to prevent some accidents. A method 

to automatically estimate the pain level expressed by a driver using 

their facial expression will be proposed in this study. The model is 

trained by a convolution neural network based on a public dataset 

of facial expressions at various pain levels. This model is then used 

to automatically classify the pain level perceived using only the 

facial expressions of drivers. The result of the automated 

classification is then compared to ratings of subjective feelings of 

the driver’s pain evaluated by a medical doctor. The experiment 

results showed that the model classified the pain level expressed 

facially by the drivers matched that of the classification by the 

medical doctor at a rate of 80%. 
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I. INTRODUCTION 

Neck and back pain are part of chronic pain that can cause 
discomfort, be annoying, and interfere with a person's ability to 
concentrate. If a person is driving and experiencing pain, it can 
cause collisions [1]. In fact, pain in drivers is one of the main 
contributing factors to traffic accidents [2]. Furthermore, pain 
impairs a person's ability for quick thinking when operating a 
vehicle [3]. Certain medications can also impair cognitive 
performance and cause pain [4]. Driving over extended periods 
of time increases the chance of pain, and psychological elements 
linked to pain, such as stress and anxiety, can also influence 
driver behaviors and raise the risk of accidents in addition to 
physical discomfort [5]. 

The definition of pain, according to the International 
Association for the Study of Pain (IASP), is an unpleasant 
sensory and emotional experience associated with, or 
resembling that associated with, actual or potential tissue 
damage[6]. Pain is generally classified into two main types: 
acute pain dan chronic pain. Acute pain typically triggered by 
injury or disease, while chronic pain persists beyond the usual 
healing period and may not have a clear underlying cause[7]. In 
addition, the relationship between chronic pain and 
psychological disorders is complex and often bidirectional. For 
example, individuals with chronic neck pain are at higher risk 
for mood and anxiety disorders. This suggests that chronic pain 
may lead to psychological distress, which in turn may worsen 
pain perception[8]. 

Assessment of pain is a crucial component of pain 
management since it enables the determination of the intensity 
and consequences of pain on the patient's quality of life. 
Multiple instruments, including the Visual Analogue Scale 
(VAS) and the Numeric Rating Scale (NRS), are frequently 
employed to quantify pain intensity by relying on self-reported 
information provided by patients [9]. VAS was popularized by 
Aitken and Zealley in the late 1960s, who focused its function 
on psychological assessment [10]. They showed that VAS could 
effectively measure subjective feelings, which laid the 
foundation for its subsequent application in clinical pain 
measurement. In its development, VAS continued to be 
validated through several follow-up studies [11]. Moreover, the 
VAS has been used into more extensive research projects, 
including those involving cancer patients [12], emergency 
rooms [13], and measuring pain levels in fibromyalgia patients 
correlating pain intensity with functional disability and 
psychological symptoms [14]. 

The VAS measurement method is generally using a straight 
line, usually 10 cm long, with the starting point representing “no 
pain” and the end point indicating “maximum imaginable 
pain”[15].  One of the main limitations of VAS is that it is highly 
dependent on subjective assessment of the patient. Each 
individual may interpret the scale differently. This can be 
influenced by various psychological factors, such as anxiety and 
mood when the assessment is carried out. The results will be 
inconsistent and therefore do not reflect the actual pain[16]. 
Another critical limitation is that it may not provide adequate 
accuracy especially over a narrow scale range resulting in 
reduced sensitivity to detect small changes in pain levels[17]. 

Several studies on facial expression-based face detection 
have been developed. One of the leading methods is the Facial 
Action Coding System (FACS), which categorizes facial 
movements into certain Action Units (AU). This method has 
been used to distinguish between real and fake pain expressions 
in children undergoing dental treatment[18]. However, the 
reliability of FACS in assessing pain in various populations is 
still a concern, especially since this technique requires trained 
personnel to code facial expressions accurately [19]. The 
combination of facial electromyography (EMG) with 
electroencephalography (EEG) has also been used to explore the 
relationship between brain activity and facial expressions when 
experiencing pain. Although the results of the study showed a 
correlation between facial muscle movements and brain 
electrical activity during pain stimuli, this system is considered 
more complex and variability in the result[20]. In addition, the 
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role of observers is often distorted in interpreting facial 
expressions due to the influence of previous exposure to pain 
assessment[21]. This suggests that the context in which facial 
expressions are viewed can significantly affect pain recognition, 
indicating the need for standardized training for health care 
providers to reduce bias. 

Since the use of Visual Analog Scale for pain assessment 
that has been widely used in various studies still has limitations, 
the use of image processing techniques and the application of 
machine learning in classifying features is expected to provide 
better results. Standardization by experts can also avoid 
subjectivity of assessment so that it can be applied in a wider 
field, including pain detection in drivers to reduce traffic 
accidents. 

This study aims to automatically estimate the pain level 
expressed through a driver’s facial expression. This may be a 
viable non-invasive approach to detecting whether a driver is 
experiencing pain. Additionally, a model capable of detecting a 
wider range of pain levels would be more beneficial than one 
that merely differentiates between two conditions. 

II. METHODOLOGY 

This research is divided into two main stages. The first stage 
is a classification model trained using a public dataset of facial 
expressions shown at different levels of pain. For the second 
stage, the model is used to estimate the level of pain expressed 
facially by the driver. Figure 1 illustrates the stages of this 
research process. 

A. You Only Look Once (YOLO) for Pain Classification 

The You Only Look Once (YOLO) is a popular detection 
algorithm developed by Redmon J, in 2012[22]. The YOLO 
algorithm process is to divide the facial image into S x S meshes. 
Each grid is responsible for predicting the target where the actual 
box will fall in the center of the grid. The total bounding box is 
generated from the meshes. Each bounding box contains five 
parameters: Target center point coordinates, target width and 
height dimensions (x, y, w, h), and confidence. The S x S edge 
predicts the category probability of the target on that edge. The 
prediction bounding box confidence and category probability 
are then multiplied to obtain the category score for each 
prediction box[23]. 

In this study, we use YOLOv5 which offers important 
benefits in speed and computational efficiency[24], [25] 
lightweight architecture[26], and capability to effectively handle 
dynamic and diverse facial expressions [27]. Therefore, it is very 
appropriate for application in real-time scenarios as it enables 
rapid detection of driver pain, thereby preventing traffic 
accidents. 

YOLOv5 uses a single-stage detection methodology, where 
the image is processed in a single iteration across the entire 
network with a convolutional neural network (CNN) approach 
that simultaneously predicts bounding boxes and class 
probabilities [28]. It consists of backbone, neck, and head 
segment components. The main function of the backbone is to 
extract features, which are then aggregated by the neck to 

                                                           
1 (http://www.vap.aau.dk/mintpaon-database 

provide predictions at multiple scales. Meanwhile, the head 
produces the final detection findings [29]. 

 
Fig. 1. Research workflow. 

A significant improvement in YOLOv5 is the incorporation 
of anchor boxes, which are pre-defined bounding box shapes 
that improve the model's ability to reliably estimate object 
positions. This methodology uses a combination of methods, 
including data augmentation, to improve the robustness of the 
model by artificially increasing the size of the training dataset 
[30]. 

B. Datasets Pre-Processing 

The dataset used in this study is from the Multimodal 
Intensity Pain (MIntPAIN) database1  with 3079 images divided 
into 11 classes (0 - 10). Each class will be divided into three 
classifications based on its class range, namely mild, moderate, 
and severe. Fig. 2 shows an example dataset [31] with its VAS 
values. The image is intentionally blurred due to agreements 
with the dataset provider and privacy reason. The data pre-
processing stage is conducted by annotating the area or pixels in 
the image as a region or area in the bounding box that will be 
used for model calculations as training or validation. In the 
YOLO method, annotation is carried out starting by drawing a 
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bounding box on each object in the image which then stores the 
description of the bounding box or object class in a text file 
database containing the class, x coordinates, y coordinates, 
width, and height respectively. Data in each VAS value class is 
divided into 70% for training, 20% for validation, and 10% for 
testing. The next stage is to carry out the auto orient and resize 
process. Auto orient aims to adjust the position of the object in 
the image to ensure that the main object in the image is in the 
right position. While the resize, the process is to change the 
image size to the same, 640 x 640 pixels. The purpose of this 
stage is to equalize the image size because the data obtained can 
have variations in orientation, both in portrait and landscape 
formats. By resizing the images, it can ensure that all images 
have uniform dimensions for data processing and its use in 
model training. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

   
(i) (j) (k) 

Fig. 2. VAS value dataset sample (a) 0, (b) 1, (c) 2, (d) 3, (e) 4, (f) 5, (g) 6, 

(h) 7, (i) 8, (j) 9 (k)10. 

C. Model Training 

The model-building stage is carried out on Google Colab. 
The first step in this process is training the YOLOv5 model 
available in the ultralytics github repository. The previously 
prepared dataset is cloned and entered using the roboflow API 
with the Model training configuration shown in Table I. 

TABLE I.  MODEL TRAINNING CONFIGURATION 

Image Size 640x640 pixels 

Parameters Batch Size = 16 

 Epoch = 300 

Hyperparameter default 

IoU 0.5 and 0.75 

The 0.5 threshold is often used as a baseline to evaluate 
model performance, while the 0.75 threshold is utilized for more 
stringent evaluation [32]. The model is not only accurate but also 
robust across a wide range of datasets and conditions [33]and 
models evaluated at the 0.5 IoU threshold performed 
significantly differently compared to models evaluated at lower 
thresholds[34]. 

D. Model Evaluation 

The evaluations conducted in this study include precision, 
recall, mean Average Precision (mAP), and Intersection over 
Union (IoU). This process is carried out to assess the 
effectiveness of the object identification algorithm. 

Precision measures the ratio of true positives (TP) correctly 
identified from all positive predictions, while recall evaluates 
the ratio of positive examples correctly identified from all object 
examples. These metrics are very important for assessing the 
precision of the model in object identification while avoiding 
excessive false positives[35]. F1-score is a metric that considers 
the trade-off between precision and recall, offering a single 
number that represents the overall performance of the 
model[36]. The mathematical representation for recall, 
precision, and F1-score are given in Eq.(1), Eq.(2), and Eq.(3). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

𝑇𝑃

𝐴𝑙𝑙 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ


𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

𝑇𝑃

𝐴𝑙𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛


𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ×(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)


Mean Average Precision (mAP) is an important 
quantification in the evaluation of YOLOv5. This value is 
calculated by taking the average of the precision scores at 
various levels of recall. This value is often calculated at a certain 
IoU threshold, such as mAP@0.5, to assess the model’s capacity 
to predict object locations accurately. Studies have shown that 
YOLOv5 can achieve high mean precision (mAP) scores, thus 
validating its efficacy in various detection tasks. [37], [38]. The 
formula for mAP is given in Eq.(4). 

mAP = 1

𝑛
∑ 𝐴𝑃𝑖𝑛

𝑖=1 

where, 

n: Number of data 𝐴𝑃 

𝐴𝑃: Average Precision 

If the evaluated model does not meet the desired value, 
which is above 0.8, then the model is re-created by adding a new 
image dataset to improve the parameter values to match the 
desired so that the model is considered suitable for use. 

To evaluate the overlap between predicted bounding boxes 
and ground truth boxes, the intersection over Union (IoU) metric 
is a key measure. A higher intersection over Union (IoU) 
coefficient indicates superior accuracy in localization. If the IoU 
value is greater than the threshold value of 0.5 (the value 
assumed to increase the accuracy of detected objects), then the 
results are acceptable[39] [40]. IoU can be calculated using the 
formula, as shown in Eq.(5). 

     𝐼𝑜𝑈 =  
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑟𝑒𝑎

𝑈𝑛𝑖𝑜𝑛 𝐴𝑟𝑒𝑎


E. Automatically Estimating Pain Level of Drivers from Their 

Facial Expression 

We involved 15 males online taxi drivers who had been 
driving for 5 to 6 hours as research subject. During driving, 
many VAS values will be read according to the participant’s 
facial expression because the driver has previously driven for 5-
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6 hours. Therefore, for the limit, the VAS value chosen is the 
highest VAS value with an observation period of no more than 
2 hours. 

For the research environment setting, the camera is mounted 
in front of the driver, which is focused on the driver’s head and 
is arranged in such a way that it does not obstruct the driver’s 
view as shown in Fig. 3. The data taken from the camera is video 
which is then converted into image and then processed to detect 
VAS value. 

 
Fig. 3. A view of the experimental scenario. 

III. RESULT AND DISCUSSION 

A. YOLOv5 Model Training Result 

In YOLO model training with 300 epochs and a batch size 
of 16, the results are shown in the confusion matrix as shown in 
Fig. 4. In addition, the recall, precision, F1-score, and mAP 

values are also calculated to measure the performance of the 
model. The all-normalization technique is applied in this study 
by dividing each element in the confusion matrix by the total 
number of instances in the data set. This procedure transforms 
each cell into a representation of the overall proportion of the 
data set rather than simply showing the absolute number. This is 
relevant to this study, where the classes correspond to different 
levels of pain (ranging from 0 to 10), all normalization can give 
an overall understanding of how well the model performs across 
all levels. 

Based on the confusion matrix results, the prediction scores 
obtained can provide an understanding of the extent to which the 
YOLO model is able to classify each class with accuracy. The 
value class 8 gets the highest prediction score of 0.96. This 
shows that the model is very good at identifying and predicting 
objects included in these classes. The high prediction score in 
class 8 can be caused by several factors, such as clear and 
consistent representation in the training data, sufficient variation 
in the objects representing this class, and optimal 
hyperparameter selection. Meanwhile, the three classes of VAS 
values with values 2, 3, and 4 have almost the same and 
relatively low confusion matrix values of 0.40; 0.63; and 0.42 
respectively. This is influenced by several factors, including the 
expression for these values has almost the same expression 
because pain with VAS values 0 to 4 has not changed much of 
the expression. Therefore, if the Interval between the classes is 
relatively small, difficulty in distinguishing between the classes 
can occur. In addition, the subjectivity of the interpretation of 
VAS values by individuals can cause similar perceptions of 
different levels and the limitations of the samples used in data 
collection also affect this. As for the result, the value of the train 
data is as shown in Fig. 5. 

 
Fig. 4. Confusion matrix result. 
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From these results, numerous figures illustrate variations in 

the performance of the YOLO model throughout the training 

process. The graph illustrates that box loss, object loss, and class 

loss exhibit a general level of consistency, with minor variations 

over the training phase. This observation suggests that the model 

exhibits consistency in its learning. Nevertheless, the recall 

graph exhibits instability resulting from imbalances in class 

distribution, less than ideal model parameters and 

configurations, and inadequate quality of the dataset. To 

enhance recall stability, it is imperative to examine the 

distribution of samples in each class, fine-tune model 

parameters, and enhance dataset quality by collecting more 

representative data. Furthermore, to enhance the legibility of the 

model training outcomes, they are shown in Table II. The 

training results obtained an average value of mAP at 0.5 of 

0.82673 and mAP at 0.95 of 0.67048 which were produced with 

epoch 300. The training process with default hyperparameters 

was stable at epoch 300 so that the model was said to have been 

fulfilled and could be used. 

For model evaluation using the IoU value, The IoU value is 
varied to 0.5 and 0.75 which aims to determine the effect of the 

given IoU. The evaluation results on the model are shown in Fig. 
6. The f1-score graph results have almost the same shape, this 
means that the variation of the IoU value does not have a 
significant effect on the f1-score value because the precision and 
recall values do not change much when the IoU value is varied 
in this model. From the graph, it can be concluded that the 
recommended confidence value to use is in the range of 0.2 to 
0.5. 

TABLE II.  MODEL TRAINING RESULT 

Type of 

Data 
Box Loss Object Loss Class Loss 

Training 0.013476 0.0049682 0.0095172 

Validation 0.012259 0.003167 0.014258 

Metrics 

Precision Recall F1-Score 

0.73679 0.82046 

0.789075908 
mAP 

@0.5 @0.5:0.95 

0.82673 0.67048 

 

 

Fig. 5. Model training result. 

  
(a)      (b) 

Fig. 6. F1-score (a) IoU 0.5, (b) ).75. 
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B. Evaluation with Real World Drivers 

The estimation results from the model are compared with 
ratings from a medical doctor. The classification results are 
divided into three levels, namely “mild” with a VAS value range 
of 0-3, “moderate” with a VAS value of 4-7, and “severe” with 
a VAS value of 8-10. The results from the 15 drivers recorded 
are shown in Table III. 

TABLE III.  PAIN LEVEL ESTIMATED FROM FACIAL EXPRESSION BY THE 

MODEL AND A MEDICAL DOCTOR 

Subject 

VAS Value Classification 

Subjective 

rating 

by medical 

doctor 

Proposed 

Model 

Subjective rating 

by medical 

doctor 

Proposed 

Model 

1 7 6 severe moderate 

2 5 6 moderate moderate 

3 6 6 moderate moderate 

4 5 5 moderate moderate 

5 8 8 severe severe 

6 5 6 moderate moderate 

7 1 1 mild mild 

8 5 5 moderate moderate 

9 1 1 mild mild 

10 9 9 severe severe 

11 9 9 severe severe 

12 3 4 mild moderate 

13 8 6 severe moderate 

14 1 1 mild mild 

15 1 1 mild mild 

Of the 15 participants, there were 3 VAS values that deviated 
from the subjective assessment by the medical doctor so that 
accuracy can be calculated by subtracting the observed value 
from the actual value and dividing it by the actual value, then 
multiplying by 100%, so that: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
15 − 3

15
=  

12

15
 × 100% = 80%

With the test results with an error rate of 20%, the following 
discusses factors that can affect measurement accuracy. 

This study was conducted in Indonesia involving male 
volunteer drivers in Bengkulu City who are predominantly 
Malay Austronesian ethnicity with an age range of 20-30 years. 
The results of the study cannot be generalized to be applied to 
everyone. Older people will have different detection rates. 
Although the existing datasets are all male, there are still 
limitations due to demographic, social and cultural diversity. 
This of course can affect the generalization of the model to 
different populations. In addition, the availability of datasets 
from the country of origin is not yet available, which will affect 
the reliability of the model. Therefore, more accuracy needs to 
be improved by adding datasets using different ethnic facial 
variations. Although the results of this study work well on the 
existing test dataset, if applied to a general context, it still needs 
to be validated. 

Pain is a feeling that can be subjectively felt by someone. It 
could be that the variation shown in pain at a certain level but is 
different in giving expression. Variations in facial expressions 
are a challenge in themselves that can affect the accuracy of this 
study. Although it has involved external assessments involving 
medical doctors, it may still be influenced by bias in the dataset. 
This can also affect the results, especially if applied to different 
populations. Nevertheless, the proposed model has been proven 
effective in detecting pain using the Visual Analogue Scale 
value approach. 

Model performance when applied in the real world is 
influenced by lighting, camera angle, driver movement and if 
the driver speaks or shows other expressions such as emotions 
and others. Although research has applied variations in datasets 
by adding variations in the form of blur, rotation, and brightness 
enhancement so that the model training process can learn from 
various data conditions, so that the model can learn from various 
data conditions, lighting conditions greatly affect the results 
obtained. Proper camera placement is also a major concern so 
that data consistency can be maintained. Another thing is if the 
driver speaks or gives an emotional expression that is very likely 
to affect the measurement results. These results also may not be 
generalizable to all conditions due to differences in demographic 
and cultural factors as discussed above. In addition, variations in 
pain types (acute and chronic types) should also be considered 
so that these results may be difficult to apply to different types 
of pain. 

Future research can be further developed by collecting more 
diverse data sets from different ethnicities which is expected to 
improve system learning. To improve system validation, this 
research can be developed by involving biomedical sensors such 
as heart rate or tone of voice, so that the results are more accurate 
and can be validated independently. The selectivity and 
sensitivity of the research can still be improved by applying 
certain methods so that they can distinguish between real pain 
and fake pain, without the help of experts in assessing pain. The 
use of cameras that can work optimally and are not too affected 
by the environment such as vehicle movement and changes in 
light intensity can also be considered. 

IV. CONCLUSION 

In this study we propose to estimate a pain level expressed 
by facial expressions of drivers by applying VAS value.  
Headings, or heads, are organizational devices that guide the 
reader through your paper. There are two types: component 
heads and text heads. The proposed model can process and 
classify the driver's facial expression based on the Visual Analog 
Scale (VAS) value scale ranging from 0 to 10. The classification 
results are divided into three levels, namely "mild" with a VAS 
value range of 0-3, "moderate" with a VAS value of 4-7, and 
"severe" with a VAS value of 8-10. 

The results of the confusion matrix show that the YOLO 
model can classify each class accurately. Class value 8 obtained 
the highest prediction score of 0.96, but the other 2 classes, 
namely classes 2 and 4, showed accuracy values below 0.5. This 
can be caused by the relatively small interval between classes or 
the subjectivity of the interpretation of VAS values so that the 
same perception is at different levels. 
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The experiment test results also show that the system can 
classify the driver’s facial expression of pain level with that of 
classification by the medical doctor at rate of 80%. Thus, the 
model may be used to detect driver pain and could lead to a 
reduction the number of traffic accidents in the future. 

ETHICS STATEMENT 

Our research is based on non-invasive measurement (camera 
recording from the car dashboard), and we did not intervene in 
the everyday routine of the experimental participants. The 15 
experimental participants were taxi drivers, and their facial 
expressions during their routine work were recorded and 
analyzed. All experimental participants gave informed consent 
before the experiment and written consent was obtained. The 
pain rating obtained was based solely on the driver's facial 
expression recorded from a camera, either using a neural-
network model or by a medical doctor. We did not obtain the 
actual subjective pain experience by the participants. Their 
facial expression may not reflect the actual amount of pain they 
were experiencing. There is almost no or small possibility of risk 
or danger arising from the implementation of this research. 

In accordance with the local legislation and institutional 
requirement2  where this experiment was performed because the 
study was investigating public behavior and was purely 
observational (non-invasive and non-interactive), ethical 
approval was not required. 
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