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Abstract—The malignant development of cells in the colon or 

rectum is known as colon cancer, and because of its high incidence 

and possibility for death, it is a serious health problem. Because 

the disease frequently advances without symptoms in its early 

stages, early identification is essential. Improved survival rates 

and more successful therapy depend on an early and accurate 

diagnosis. The reliability of early detection can be impacted by 

problems with traditional diagnostic procedures, such as high 

false-positive rates, insufficient sensitivity, and inconsistent 

outcomes. This unique approach to colon cancer diagnosis uses 

autoencoder-based feature selection, capsule networks 

(CapsNets), and histopathology images to overcome these 

problems. CapsNets capture spatial hierarchies in visual input, 

improving pattern identification and classification accuracy. 

When employed for feature extraction, autoencoders reduce 

dimensionality, highlight important features, and eliminate noise, 

all of which enhance model performance. The suggested approach 

produced remarkable outcomes, with a 99.2% accuracy rate. The 

model's strong capacity to detect cancerous lesions with few 

mistakes is demonstrated by its high accuracy in differentiating 

between malignant and non-malignant tissues. This study 

represents a substantial development in cancer detection 

technology by merging autoencoders with Capsule Networks, so 

overcoming the shortcomings of existing approaches and offering 

a more dependable tool for early diagnosis. This method may 

improve patient outcomes, provide more individualized treatment 

regimens, and boost diagnostic accuracy. 

Keywords—Colon cancer prediction; capsule network; 

autoencoder; histopathological images; early cancer detection 

I. INTRODUCTION 

Colon cancer is one of the common cancers globally, and 
also has its contribution to the cancer related deaths. Cancer of 

the colon is generally said to start out as small growths in the 
outer lining of the colon or rectum and may progress to become 
malignant tumors [1]. In case this condition is not diagnosed 
early enough and management commenced, it can develop 
silently and hence make the treatment process more challenging. 
One cannot overemphasize on the need to have colon cancer 
detected early. Colon cancer is relatively easy to cure and very 
treatable if it is detected in its preliminary stage. It is possible to 
detect and remove precancerous polyps and stage I malignancies 
with colonoscopy and other screening methods before the 
manifestation of symptoms. As a result, common people besides 
those who are over 45 years or those with the history of this 
complaint must opt for these tests more often. The implication 
of colon cancer extends to the families, the communities and the 
health systems over the directly affected individual. There is 
need to give early diagnosis and treatment since the condition 
leads to severe physical, emotional, and financial complications 
[2]. Improving possibilities for early detection of diseases and 
tailoring programs for patients require new discoveries in the 
field of medicine, for example, development of advanced 
techniques to visualize body conditions or new types of 
computational models for prognosis. Colon cancer can be 
anticipated employ modern methods and equipment in 
identifying the disease before it spreads hence improving the 
prospects of the ailment. Modern methodologies of prediction 
use numerous devices, including genetic tests, imaging, and ML 
algorithms. For instance, in Histopathological image analysis, 
the precise patterns in tissue samples may be seen by employing 
CapsNets in which the changes in size might mean malignant 
alterations. Additionally, using diversified data gathered from 
various sources, involving the lifestyle factors of the patient, his 
family history, and demographics, predictive models can be 
created that would assess the risk level of the given individual. 
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Possibly, there is a way to enhance these predictions as such 
methods as feature selection and dimensionality reduction with 
the help of autoencoders could focus on the most relevant 
characteristics [3]. 

The advancements demonstrate how sophisticated 
prediction approaches and individualized care may dramatically 
enhance early diagnosis and treatment, improving patient 
outcomes and streamlining healthcare processes. An important 
step forward in colon cancer treatment and early diagnosis is the 
machine learning-based prediction model that has been 
suggested [4]. It means that, with the help of applied ML 
algorithms, the scholars will look for various tendencies and the 
potentially linked risks associated with colon cancer, utilizing 
huge datasets of histopathologic data, genetic features, or 
patients’ characteristics. Popular DL methods CNN and 
CapsNets are applied in the process of examining medical 
images to identify the signs that might suggest the presence of 
malignant tumors. To increase the model performance, it is also 
possible to apply the ML model to use multiple modalities as 
image findings, tests and patients’ history. These models may be 
further refined into feature selection methods such as 
autoencoders to identify the pertinent data features for prediction 
[5]. Since these complex advancements of modern day’s ML 
categorically predict individual responses towards various 
drugs, they not only enhance early diagnosis, but also facilitate 
development of composite patient-centered regimes. The 
capability of these models to predict has been on the rise and 
more so depending on the large and diverse information that has 
been fed to them perhaps yielding into better and faster response 
[6]. In general, the idea to integrate ML into the prediction of 
colon cancer can be considered as rather perspective in terms of 
reducing mortality rates as well as improving patients’ quality 
of lives due to precise diagnosis. 

The novel neural network design technique known as 
CapsNets addresses the limitations of the original CNN in terms 
of recognizing spatial hierarchies and connections. The 
constraints of CNNs in preserving the relative position and 
orientation of input are overcome in CapsNets by capsules, 
which are collections of neurons cooperating to identify certain 
patterns and their spatial correlations. Proprietary routing 
methods amongst capsules provide precise data transfer over the 
network. The main breakthrough is that features' presence and 
posture are captured by capsules, which improves the network's 
comprehension of intricate spatial data [7]. This hierarchical 
method certainly supports the idea of adjusting the CapsNets 
based on the changes in the object orientation, along with their 
ability to generalize from very little training data. In such 
problems as image identification and segmentation, where 
feature localization is critical, CapsNets are very effective 
because they enhance the network’s ability and capacity and 
modeling complex spatial relations. It is an optimal method for 
applications requiring complex pattern recognition as they do 
not degrade the feature in various views and transformations. 
Among neural networks designed for unsupervised learning, the 
proper name is autoencoders. It provides mainly the aspect of 
learning the best representations through the encoding and 
decoding processes. A low dimensional representation of input 
data is mapped by an encoder network into an autoencoder, and 
the low dimensional representation is mapped by a decoder 

network into the original data to reconstruct it. It is useful for 
finding and retrieving the characteristics of the data while 
filtering out the outliers and the redundancies. Autoencoders are 
used in denoising of data, feature extraction, and dimensionality 
reduction. Other extensions are variational autoencoder which 
can model complex distributions of the data or sparse 
autoencoder which forces the latent space to be sparse. 

Enhancing the accuracy and efficiency of the consequent 
image processing, two special models, namely CapsNets and 
autoencoders, are indisputably effective for identifying colon 
cancer. Spatial hierarchies were managed well and fine details 
in the histopathology images were recognized by CapsNets thus 
improving the detection of weak malignant features. On the 
other hand, autoencoders are useful in feature learning and 
feature reduction in which it down samples the important 
features of the images and reduces on the noises. Such 
integration is important to assist researchers in developing 
strong models for assessing medical images on the basis of time 
efficiency, which in this case, can lead to enhanced patient 
results due to better early diagnosis of colon cancer. Key 
contributions of the proposed work are: 

1) Demonstrates increased detection accuracy for colon 

cancer by utilizing CapsNets' capacity to identify intricate 

spatial correlations, as opposed to more conventional image 

processing techniques. 

2) Provides use of autoencoders to efficiently reduce 

dimensionality and extract features, producing input for the 

capsule network that is more insightful and pertinent. 

3) Exhibits resilience in model performance over a range 

of datasets and imaging settings, improving the approach's 

generalizability. 

4) Lowers false positives and false negatives in the 

detection of cancer, enhancing the precision and dependability 

of the diagnosis. 

5) Permits for the customization of therapeutic and 

diagnostic approaches by combining patient-specific data with 

model predictions. 
The suggested study starts with an overview of colon cancer 

and the urgent need for better diagnostic approaches because of 
the shortcomings of current practices in Section I. The Related 
work is reviewed in Section II, which also highlights the 
difficulties in early identification of the current approaches. The 
problem statement is described in Section III. The procedure for 
gathering data, the pre-processing measures, and the use of 
CapsNets for pattern detection and feature extraction are all 
covered in Section IV. The performance measures are presented 
in Section V and ending with the Section VI, Future work and 
conclusion. 

II. RELATED WORKS 

Ali and Ali [8] utilizes two forms of Convolutional Layers 
Block, the first of which is the CLB while the second one is the 
SCLB enhanced through an advanced computerized system to 
enhance the capability of identifying the lung and colon cancer. 
Histopathological images are processed with the help of a multi-
input capsule network in this system. To undo colour distortions 
applied by the microscope during the preparation of 
histopathology slides, the SCLB undergoes the images enhanced 
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with multi-scale fusion, colour correction function, gamma 
correction, and image enhancement items. The CLB deals with 
raw photos in the meantime. This multi-input method certainly 
outlines a huge improvement as to the feature learning of the 
model. It turned out that when using the LC25000 dataset, the 
work of the model was commendable in terms of the result 
accuracy obtained in the diagnosis of lung and colon 
pathologies. The study has many limitations, however, mainly 
due to the fact that its source data were limited by the range of 
LC25000 and could not exactly reflect the characteristics of 
actual clinical data. This could be an effect on the model’s 
robustness and transferability across different patient 
populations and histological differences. 

Ahmed [9] learned about Artificial Neural Networks 
(ANNs), which are powerful nonlinear regression techniques 
have been used in colon cancer survival and classification for 
more than 45 years. This paper introduces fundamentals of 
three-layer feedforward ANN with backpropagation, which are 
used in cancer studies. MAS and colon cancer. In the cases 
where ANNs were employed in lieu of such statistical or 
clinicopathological approaches, there has been an overall 
enhancement of colon cancer classification, and survival 
prognosis as stated in the following discussions of the literature. 
Nevertheless, different types of ANNs used in biochemical 
research have some specific prerequisites in design and 
reporting to ensure the quality and credibility of obtained data. 
Nonetheless, the study is limited by the need for large, high-
quality datasets and the possibility of over-learning, which could 
impact the models’ generalisability across patient populations 
and care settings. 

Kavitha et al. [10] learned about the automated processes 
that are essential in identifying Colorectal cancer; especially 
through endoscopic and histological images. This is important 
in as much as the enhancement of, clinical decision making and 
reduction of effort. Modern DL methods are workable in the 
detection of polyps on images and motion images, and 
segmentation of the latter. Image patches and CNN integration 
as well as the pre-processing technique are among the primary 
AI techniques deployed in the majority of the modern diagnostic 
colonoscopy stations for invasive malignancy approximation. 
Features like transfer learning have detached the user from the 
process and made even small sets yield great results hence 
highly accurate. Explainable deep networks that offer 
transparency, interpretability, consistency, and equality in the 
provision of healthcare are still available despite all the 
developments. This paper describes the recent advancements in 
such models and highlights the research limitations when 
developing technology for the prediction of colorectal cancer. 
However, there are still some limitations For example, one needs 
to have vast and diverse amount of data, and non-restrictive 
protocols to ensure that the model can generalize across diverse 
patient cases and populations. 

Tasnim et al. [11] analysed that advancement in medical and 
Health care diagnosing has been brought about through 
advancement ion computer technology. Mentioning that cancer 
occupies the second place among all causes of death in the 
world, early detection is crucial for the rate of survival, 
especially colon cancer, which, despite its relatively high 
incidence and lethality, is more accessible. This paper focuses 

on the exploration of CNN with the imaging data of colon cells 
with the objective of automating cancer detection. The CNN 
with max pooling layers, average pooling layers, and 
MobileNetV2 are used in this study. The models with max 
pooling and average pooling achieve the accuracies of 97. 49% 
and 95. ResNet and MobileNet achieve mean accuracy of 48%, 
and 52% respectively, on the other hand MobileNetV2 achieves 
highest accuracy with 1 % data loss rate. 24%. While the 
aforementioned outcomes seem promising, the present study is 
still limited in several ways: the demand for large and high-
quality datasets and the challenge of ensuring model robustness 
across different patients’ groups and clinical scenarios. 

Babu and Nair [12] investigated an automated detection of 
colon cancer using histological images which is significant for 
the highest possible outcome in the treatment. Traditional 
methods are based on low level features that are selected 
manually and it might not be accurate. Overall, for this problem, 
both supervised as well as unsupervised DCNN were applied for 
assessing of colon cancer histopathology images. Many of the 
photometric results were rotated and flipped to eliminate class 
disparity. From the result of the experiments the analyst was able 
to compare with the previous approach and found that the 
supervised models such as Inception were able to classify the 
colon cancer histopathology images with higher accuracy. Yet, 
a similar autoencoder network was built to extract and cluster 
the features from these images and to introduce the better 
clustering ability of the improved autoencoder network for the 
previously used unsupervised image processing network. 
Despite these advances, the study still has limitations such as the 
need for greater big and diverse datasets and the technical 
challenge of achieving model robustness and transferability 
across different clinical scenarios. 

Schiele et al. [13] presents the Binary ImaGe Colon 
Metastasis classifier (BIg-CoMet), developed from the 
InceptionResNetV2 architecture, and operates on histologic 
images to partition colon cancer patients according to distant 
metastatic risk. Images of tumor sections stained with 
cytokeratin were used to train the model, along with image 
augmentation and dropout, to prevent overfitting. The former 
was investigated in a validation cohort consisting of 128 patients 
with BIg-CoMet showing an AUC of 0. 842, thus showing 
acceptable ability to distinguish between those with the 
metastases and those without. A marked distinction in the KM 
plots associated with metastasis-free survival also strongly 
supports the conclusion that the high-risk subjects, as defined by 
BIg-CoMet, have a much graver prognosis than do the other 
patients. This new risk variable portrayed a greater ability to 
perform as compared to other models with its positive predictive 
value standing at 80%. It depicted good results for both the 
subgroups of UICC and particularly for UICC III. As proven in 
this work, the proposed BIg-CoMet can efficiently sort out MCI 
or colon cancer patients based on the photographs of tumor 
architecture. However, the study still has its limitations in that 
the experiment needs to work with larger and more diverse 
datasets, and the inherent problem of how to ensure the stability 
and transferability of the model in different clinical scenarios. 

Talukder et al. [14] Suggested a study of a composite feature 
extraction model for the classification of Lung and colon cancer. 
Combining deep feature extraction, ensemble learning, and 
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high-performance filtration techniques, it improves cancer 
diagnosis. It presented accuracy rates for colon cancer at 100 per 
cent and for rectal cancer at 99. that for the both cancers were 30 
percent, and 99 percent, respectively. The performance was 
found to be 05% for lung cancer when tested on the LC25000 
histopathology datasets. These findings indicate the higher 
efficiency of the suggested hybrid model compared to the 
existing approaches, which raises a possibility of its practical 
application in cancer diagnosis. The study must be validated to 
ensure the model is not limited to the specific cohort used or 
specific clinical scenarios. 

CNN and hybrid ensemble approaches are examples of the 
sophisticated cancer detection models that have been created 
recently and have shown excellent accuracy in detecting lung 
and colon cancers. Through enhanced feature extraction and 
image variance management, these models overcome the 
drawbacks of conventional techniques. They frequently, 
however, rely on particular datasets, which raises questions over 
their generalizability across various clinical contexts and patient 
demographics. In order to address these drawbacks, the 
suggested approach combines deep learning, multi-scale fusion, 
and hybrid ensemble feature extraction, with the goal of 
improving resilience and practicality in real-world clinical 
settings through the use of diverse and sizable datasets for 
validation. 

Current colon cancer detection techniques are hindered by 
high false-positive rates, low sensitivity, and variable results, 
hindering early diagnosis. Conventional CNN-based models are 
not good at extracting spatial hierarchies in histopathological 
images and tend to miss important malignant features. Feature 
selection methods currently used are not effective in reducing 
dimensionality, resulting in redundant information and 
computational inefficiencies. Most diagnostic methods that are 
available are costly, time-consuming, and need specialized 
skills, making them inaccessible. This research fills these gaps 
by combining Capsule Networks (CapsNets) with autoencoder-
based feature selection, guaranteeing enhanced feature 
extraction, spatial hierarchy retention, and improved 
classification accuracy, thus providing a more accurate and 
economical early detection system. 

III. PROBLEM STATEMENT 

Cancer continues to be the second greatest cause of death 
globally, despite significant advancements in science and 
healthcare over the previous forty years. More over 25% of cases 
are lung and colon cancers, making them among the deadliest 
and most common tumors. Even while early diagnosis is 
stressed as a crucial tactic for raising survival rates, the 
techniques used today are frequently expensive and time-
consuming [15]. There is a desperate need for the development 
of an automated, precise, as well as economical method to aid in 
the early detection as well as classification of tissue originating 
from lung or colon cancer. Consequently, the proposed study 
aims at alleviating such deficiencies in the prediction of colon 
cancer through autoencoder-based feature selection and 
CapSNets. Thus, maintaining spatial hierarchies and detecting 
detailed patterns, CapsNets enhance the potential of the network 
to identify the malignant feature that standard CNNs would 
ignore. The proposed project will try to increase the efficiency 

of colon cancer detection by the initial preprocessing of data 
containing autoencoders along with the decrease in the 
dimensions and extraction of critical features. Such an 
integration approach will ensure that early detection is more 
accurate than it is now and; therefore, the outcomes as well as 
the kind of treatment a patient receives in the future will be well 
determined. 

IV. ENHANCED COLON CANCER PREDICTION USING 

CAPSNETS AND AUTOENCODER-BASED FEATURE SELECTION 

Colon cancer is quite prevalent and can be devastating, 
which emphasizes the significance of early identification and 
precise diagnosis. Since the condition is generally asymptomatic 
in its early stages, early detection greatly boosts the odds of 
effective therapy. Early detection of colon cancer depends on 
advanced diagnostic models and preventive screening. 
Efficiently evaluating complicated histopathological images, 
machine learning techniques like autoencoders and CapsNets 
might improve the accuracy of colon cancer detection. 
Permitting early and accurate forecasts, these cutting-edge 
procedures not only increase survival rates but also lessen the 
psychological and physical toll on patients and their families. 
Furthermore, it allows early and tailored therapy to be 
administered, maybe one that could avoid the disease from 
moving to more advanced stages. Thus, incorporating such 
advanced technologies into the system of delivering health care, 
it might be possible to reduce the costs of medical treatments 
and improve the quality of the patients’ lives due to more 
efficient and preventive measures. Through analyzing and 
identifying early signs and risk factors of colon cancer, it is 
possible to develop creative strategies to predict and treat it, thus 
stressing the importance of progress in the sphere of technology 
concerning health care and social security. 

Fig. 1 shows a methodical procedure for utilizing 
histopathology scans to identify lung and colon cancer. The first 
step of the procedure is Data Collection, during which 
histological images of colon and lung cancer are acquired. Data 
pre-processing, which entails improving the quality of the 
images for analysis by shrinking, normalizing, and reducing 
noise, comes next. The following stage is called Feature 
Extraction using Auto-Encoder, in which autoencoders are used 
to reduce dimensionality and concentrate on important patterns 
while identifying and extracting the most pertinent features from 
the pre-processed images. After that, a Capsule Network for 
Model Deployment is used with these extracted characteristics, 
taking use of the network's capacity to maintain spatial 
hierarchies and precisely identify intricate patterns. Ultimately, 
Performance Evaluation is used to evaluate the model's efficacy 
and make sure that the predicted accuracy and reliability fulfill 
the required criteria, which in turn helps with cancer early 
detection and diagnosis. 

A. Data Collection 

The Lung and Colon Cancer Histopathological Images 
collection is used to create and assess cancer detection 
algorithms as a benchmark and as a review tool. Twenty-five 
thousand histological photographs, divided into five categories 
of lung and colon tissue, are included in it. With their 768 by 
768 size, these images are perfect for creating machine learning 
applications. The first dataset comprises 750 verified and 
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HIPAA-compliant photos, comprising 250 samples of benign 
lung tissue, 250 samples of lung adenocarcinoma, and 250 
samples of lung squamous cell carcinoma. Further, five hundred 
samples of colon tissue were taken, for which two fifty samples 
of benign colon tissue were collected and two fifty samples of 
colon adenocarcinomas were also collected. A new set of 25,000 
photos was augmented with the help of the Augmentor program 
that introduced rotations, flips, zooms, etc., into photos in order 
to mimic variability and increase the robustness of the prediction 
models. This was done in a bid make the dataset more 

interpretable and more diverse. Due to increased augmentation 
and better resolution of this dataset, it is highly recommended 
for training and validation of ML models which employ 
complex approach like Autoencoders and CapsNets. Using this 
information, the specialists can enhance the performance of 
methods for cancer identification, hence enhancing the health of 
patients. The given dataset of lung and colon cancer samples is 
valuable in the further work on using IT in the fight against 
cancer due to its well-annotated test examples and the presence 
of samples of both benign and malignant tumors [16]. 

 
Fig. 1. Flow diagram of the proposed work. 

B. Pre-Processing 

It is common practice to pre-process histopathology images 
before delivering them to a machine learning model for 
examination. This entails a number of actions meant to improve 
the relevancy and quality of the raw photos. This procedure 
involves denoising as a way of reducing other unnecessary 
details which may probably hide other characteristics of the 
model, resizing of the photos to fit the model sizes and 
normalizing to ensure that pixel intensity levels are constant. 
Cleansing and normalizing, as well as pattern inclusion and non-
biased, enhances the added images into the version and impacts 
definitely at the prediction algorithms utilized within the identity 
of such illnesses as lung and colon most cancers. 

1) Normalization: One essential pre-processing method for 

getting histopathology images for ML is normalization. It is 

changing an images’s pixel depth values to a standard scale, 

typically starting from 0 to 1, or to an average of zero and a 

general deviation of 1. Through this system, fluctuations in 

lighting fixtures, contrast, and coloration that can otherwise 

impair the model's performance are mitigated. Normalization 

guarantees that the model isn't impacted with the aid of 

unrelated elements and as a substitute concentrates at the 

pertinent aspects of the pics via normalizing the pixel values. In 

medical imaging, where constant image quality is crucial for 

precise analysis and diagnosis, this phase is especially crucial. 

Efficient normalization improves the precision and 

dependability of ML algorithms, resulting in improved lung and 

colon cancer detection and classification. Usually referred to as 

min-max normalization, the normalization formula is provided 

in (1), 

X′ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
   (1) 

Where, the initial value of the pixel is 𝑋 . The image's 
minimal pixel value is represented by 𝑋𝑚𝑖𝑛. The maximum pixel 
value in the image is represented by 𝑋𝑚𝑎𝑥 . The normalized pixel 
value, X′, will fall between 0 and 1. 

C. Feature Extraction 

Feature engineering is defined as data pre-processing to 
make it useful for the ML process and every business is now 
aware of the ability of ML to turn raw data into to a set of 
properties that can be useful in the construction of the model. 
Feature extraction in the case of histopathological images is 
about identifying and enhancing the salient features, that is, 
edges, textures, patterns and shapes that could indicate the 
presence or progression of the illness. Thereby, simplifying the 
data so that it can be more easily processed by computer models 
is the way in which the dimensionality is reduced. Thus, such 
methods as autoencoders might be applied to compress the 
image data into a lower-dimensional Latent space that maintains 
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the most important information. The thorough and precise 
feature extraction helps in enhancing the viability of the model’s 
diagnosis and speed and its capability to categorize and predict 
ailments such as cancer of the lungs and colon. 

1) Auto encoder: The goal of an autoencoder, a kind of 

artificial neural network, is to learn effective codings of input 

data through unsupervised learning. This is accomplished by 

first reconstructing the output from this representation after 

encoding the input into a latent-space representation. The 

encoder and the decoder are the two primary components of the 

network. The input is compressed by the encoder into a latent-

space representation, which is then used by the decoder to 

recreate the input. Reconstruction error is to be minimized 

using an autoencoder in order to provide an output that closely 

resembles the input. This may be expressed quantitatively as 

reducing the mean squared error (MSE), or loss function L, 

between the input x and the reconstructed output x ̂ in (2), 

𝐿(𝑥, 𝑥̂) = ||𝑥 − 𝑥̂||2  (2) 

The decoder function 𝑥 𝑥̂ = 𝑔(ℎ)  maps the latent 
representation h back to the reconstructed input 𝑥̂, whereas the 
encoder function ℎ = 𝑓(𝑥)  transfers the input 𝑥  to the latent 
space ℎ. The following is a summary of the complete process: 

ℎ = 𝑓(𝑥) = 𝜎(𝑊𝑥 + 𝑏)  (3) 

𝑥̂ = 𝑔(ℎ) = 𝜎́(𝑊́ℎ + 𝑏́)  (4) 

In Eq. (3) and (4) the weight matrices are represented by 

𝑊 and 𝑊́ , the bias vectors by 𝑏  and 𝑏́ , and the activation 
functions by 𝜎  and 𝜎́ . Typically, an autoencoder uses neural 
networks for both the encoder and the decoder, with training 
optimizing the weights to minimize the loss function. 
Autoencoders come in several designs, such as variational 
autoencoders (VAEs), denoising autoencoders, and sparse 
autoencoders, each intended for a particular use. Penalizing 

activations inside the hidden layers, sparse autoencoders ensure 
that the network learns more meaningful features by imposing 
sparsity restrictions on the latent space representation. This may 
be accomplished by including a regularization term that 
promotes sparsity in the loss function by (5), 

𝐿(𝑥, 𝑥̂) + 𝜆 ∑ ||ℎ𝑖||1𝑖   (5) 

Autoencoders with denoising competencies are made to 
address noisy information. To growth the resilience of the 
model, they're taught to recreate the authentic enter from a 
corrupted model of it. By first adding noise to the input records 
after which minimizing the loss characteristic between the easy 
enter and the output that become reconstructed from the noisy 
input, that is accomplished by way of (6), 

𝐿(𝑥, 𝑥̂) = ||𝑥 − 𝑥̂𝑛𝑜𝑖𝑠𝑦||2  (6) 

Fractional autoencoders (VAEs) are autoencoders with a 
probabilistic twist that makes them suitable for new data models. 
During training, a hidden signal is taken from this distribution, 
and the encoder outputs the parameters (mean and variance) of 
this distribution. Reconstruction loss along with a regularization 
term (KL deviation) that ensures that the reserved area 
distribution approximates all former distributions in the standard 
normal distribution of (7), forms the loss function in terms of 
VAEs 

𝐿(𝑥, 𝑥̂) = ||𝑥 − 𝑥̂||2 + 𝐾𝐿(𝑞(𝑧|𝑥)||𝑝(𝑧))       (7) 

In machine learning and data science, autoencoders are a 
vital tool because they can recognize useful representations of 
incoming data, facilitating streamlined and computationally 
efficient analysis. They are widely used for various tasks such 
as dimensionality reduction, anomaly detection, and generative 
modeling. In medical imaging, for example, it is used to extract 
key features from complex data, helping in tasks such as 
diagnosis and image reconstruction. 

 
Fig. 2. Architecture of autoencoder. 
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Fig. 2 shows the autoencoder, a network that encodes raw 
input data through a series of hidden layers. The input layer 
receives unprocessed data, and its dimensionality is 
continuously reduced by the hidden layers, which identify 
significant patterns and characteristics. The last hidden layer, or 
bottleneck layer, is an indication of the input data's compressed 
encoding. The reconstructed output is created by the output 
layer, hopefully coming as near as feasible to the original data. 
at order to force the network to extract the most crucial features 
from the input data at the bottleneck layer, the autoencoder 
learns to reduce the reconstruction loss during training. Only the 
encoder portion of the autoencoder is kept after training in order 
to encode data that is comparable. The network is limited by 
regularization, denoising, short hidden layers, and activation 
function tuning. While adding a loss factor to the cost function 
encourages training in ways other than replicating the input, 
keeping each hidden layer as thin as feasible requires the 
network to take up only representative aspects of the data. 
Convolutional autoencoders enhance transmission and storage 
efficiency by reducing the dimensionality of high-dimensional 
image data. They are able to manage small alterations in object 
location or orientation and recreate missing components. 
Nevertheless, they have a tendency to overfit and may result in 
data loss, which compromises the quality of the reconstructed 
image. Proper regularization techniques are needed to address 
these issues. 

The study focuses on improving colon cancer detection 
using CapsNets. Autoencoders play a crucial role in feature 
extraction from histopathological images. They reduce 
excessive-dimensional records to a lower-dimensional latent 
space, simplifying it for evaluation. The autoencoder extracts 
meaningful capabilities from the pics, identifying patterns, 
textures, and structural information indicative of cancerous and 
non-cancerous tissues. It also reduces noise by means of filtering 
out noise from histopathological pix. The autoencoder's 
potential to address records versions enhances the version's 
robustness. The autoencoder's preprocessing ensures the 
Capsule Network gets the maximum informative enter, 
improving its potential to correctly hit upon and classify 
cancerous tissues. This integration improves model accuracy 
and efficiency, leading to higher sensitivity and specificity. The 
autoencoder's position on this examine is to enhance early 
prognosis of colon most cancers through making sure specific 
and consultant features. Overall, the autoencoder enhances the 
accuracy, efficiency, and reliability of the most cancers 
detection model. 

D. Capsule Network 

A CapsNet is an artificial neural network (ANN) that 
imitates hierarchical connections through gaining knowledge of 
from the organizing concepts of biological mind systems. 
CapsNets are designed to mimic the hierarchical business 
enterprise of organic mind circuits. Basic building blocks known 
as tablets are used in a CapsNet to recover from regulations 
determined in conventional neural networks. Because tablet 
neurons consider each the spatial connections and the activation 
facts, they may be greater geared up to address changes in 
posture and hierarchical systems than normal neurons. Each 
capsule creates a collection of pose residences, consisting of 
orientation and position, collectively with an activation that 

represents a selected entity or part of an item. By enabling the 
network to iteratively modify the connection coefficients 
between them in response to the agreement of their posture 
parameters, capsules enable dynamic routing. Because of its 
ability to remember intricate spatial hierarchies and recognize 
subtle patterns in input, CapsNets enhance generalization. 
Capsules process inputs by affinely transforming the outcome 
into informative vectors, as opposed to neurons. Neurons 
function using scalars, whereas capsules use vectors. The 
processes involved in making artificial neurons include 
weighted connections, scalar activation, and sum computation. 
Capsules, on the other hand, undergo additional processes: input 
vectors are multiplied by weight matrices recorded with spatial 
relationships, further weight multiplication, weighted sum of 
input vectors, and vector output application of activation 
function. 

1) Input vectors multiply with spatial-relationship-encoded 

weight matrices: The neural network's input vectors reflect the 

initial input or data from a previous layer. Weight matrices are 

multiplied across these vectors to change them. These weight 

matrices encode the geographical relationships within the data. 

When two objects are symmetrically positioned around each 

other and have similar dimensions, for example, the product of 

the input vector and weight matrix captures a high-level feature 

that describes this spatial arrangement. The neural network may 

identify and capture important correlations and features as it 

goes through its levels. In this instance, the weight matrix is 

being multiplied by the input vector. 

2) Further multiplication with weights: In this phase, a 

capsule network's outputs from the preceding step undergo a 

weighted correction. While typical ANNs utilize error-based 

backpropagation to update weights, CapsNets use dynamic 

routing. The weights assigned to the synapses between neurons 

are determined by this unique procedure. CapsNets provide 

robust connections between nearby high-level and low-level 

capsules by dynamically changing their weights. The 

computation involves figuring out the precise distance between 

dense clusters indicating low-level capsule predictions and the 

outputs of the affine transform. These clusters develop and 

become closer together when low-level capsule predictions are 

comparable. As seen by the table, the high-level capsule nearest 

to the current prediction cluster has a bigger weight than the 

other capsules, which have smaller weights based on their 

distances. 

3) Activation function application for vector output: 

Capsule activation functions ensure that vector outputs are 

dynamic and vividly represented. Squashing functions are a 

common choice since they preserve the vector's direction while 

restoring its length. The symbol for the Squashing Function is 

given in (8), 

𝑈𝑗 =
‖𝑠𝑗‖

2

1+‖𝑠𝑗‖
2

𝑠𝑗

‖𝑠𝑗‖
   (8) 

where 𝑈𝑗  is the output that results from applying the non-

linearity function, and 𝑠𝑗  is the sum of the input vectors. The 

vector 𝑠𝑗  is compressed to a magnitude ranging from 0 to 1. 
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Because of this, strong hierarchical representations may be 
created by allowing capsules to record complex feature 
relationships. Because the squashing function normalizes data, 

it enhances resilience to changes and allows capsules to carry 
nuanced information necessary for complicated pattern 
detection in jobs like computer vision. 

 
Fig. 3. Architecture of capsule networks. 

Fig. 3 presents a simplified architecture of a capsule network 
that emphasizes the digit capsule and main layers. The input 
layer receives raw visual data and uses a convolutional layer to 
extract low-level features. After that, the main capsule layer 
processes the output and separates it into capsules. Each capsule 
produces an activation vector that indicates the existence of a 
particular characteristic or factor within its receptive field. The 
digit capsule layer, which represents a selected magnificence, is 
in rate of item popularity. The activation vector that every 
capsule produces indicates the likelihood that the class will seem 
in the photograph as well as its spatial connection to other 
components. An essential idea in CapsNets is dynamic routing, 
in which the primary pill layer casts votes to determine which 
digit pill it most carefully matches. This strengthens the 
settlement among compatible capsules and weakens the 
connections among incompatible drugs. Shooting the spatial 
hierarchy among functions, CapsNets are a type of neural 
community design that improves getting to know approximately 
representations. Because of dynamic routing, which makes it 
less complicated to attain an agreement on instantiation settings, 
they frequently require less information augmentation than 
conventional CNNs. Because CapsNets constitute vectors and 
routing systems, they're also more proof against adverse attacks. 
Additionally, they incorporate posture statistics, which 
complements structured representation for obligations like 
location estimation and item reputation. 

CapsNets do have several drawbacks, though, including a 
lack of empirical assist, computational complexity, a probable 
tendency to overemphasize capsules, and intrinsic complexity. 
Given their latest age, CapsNets have not gone through calla lot 
checking out. Further research and evaluation are required to 
illustrate their typical effectiveness. Furthermore, due of 
dynamic routing, CapsNets may additionally require more 
processing power, main to longer training periods and better 
resource wishes. Applications for CapsNets may be observed in 
numerous domain names, which includes as clinical imaging, 
self-reliant vehicles, and visual anomaly detection. They are 
helpful in scientific imaging, assisting with troubles like organ 
segmentation and tumor identity. They also are useful in 
photograph popularity, item detection, region estimation, 

cybersecurity, and self-riding cars. Nevertheless, extra research 
and comparison are required to validate their ordinary 
effectiveness in diverse assignments. 

The accuracy and robustness of histopathological image type 
are greatly improved with the aid of CapsNets inside the 
proposed study on boosting colon most cancers prediction the 
usage of CapsNets and Autoencoder-based totally function 
choice. CapsNets are particularly properly at retaining spatial 
hierarchies and connections within the image facts, which is 
vital for effectively recognizing difficult patterns that may be 
signs of malignant tumors. In evaluation to traditional CNN, 
which could have trouble processing orientation and attitude 
changes, CapsNets make better use of clusters of neurons called 
pills to capture and encode these spatial connections. As a result, 
they are able to discover characteristics at diverse abstraction 
stages and offer a greater complex interpretation of the photo 
statistics. The proposed examine makes use of CapsNets in 
conjunction with Autoencoders to extract features. This permits 
the Autoencoder to lessen dimensionality and emphasize 
pertinent features, whilst additionally utilising CapsNet's higher 
spatial awareness and sample popularity capabilities. This 
mixture improves the model's predictive potential, which might 
result in a greater specific and trustworthy categorization of 
histopathological photos for the identity of colon most cancers. 

Algorithm 1: Algorithm for the Proposed study 

Step 1: Data Collection and Preparation 

 Load dataset of histopathological images 

 Preprocess images 

Step 2: Auto encoder for Feature Extraction 

 Define Autoencoder architecture 

a. Input layer: X 

b. Encoding layers: progressively reduce dimensions 

c. Bottleneck layer: Z 

d. Decoding layers: progressively reconstruct 

dimensions 

e. Output layers: X’ 

 Split dataset into training and testing sets 

 Train Autoencoder using mean squared error loss 
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 Extract compressed features Z from the bottleneck layer 

Step 3: Capsule Network for classification 

 Define Capsule network architecture 

a. Input layer: Z 

b. Convoutional Layer: extract local feature 

c. Primary Capsule Layer: convert features into capsules 

d. Digital Capsule Layer: from higher-level capsules 

e. Output layer: Class probabilities 

 Combine Z with original image data 

 Split combined dataset into training and testing sets 

 Train capsule network using margin loss 

Step 4: Integration 

 Integrate Autoencoder and capsule network by feeding Z 

into the capsule network 

 Fine-tune integrated model on training data 

Step 5: Evaluation 

 Validation and Testing 

 Calculate Performance Metrics 

V. RESULT AND DISCUSSION 

The results of the advanced colon cancer prediction 
approach, which combines CapsNets with autoencoder-based 
feature selection, are shown in this section. The results show that 
this hybrid approach greatly improves the performance and 
reliability of the classification when compared to traditional 
techniques. The model makes the evaluation of histopathology 
images more reliable and consistent using the Autoencoder-
based feature extraction with the help of the Capsule Network 
for determining the complex spatial relations. More details 
concerning the performance measures, benefits as well as the 
demerits of the model and how such developments aids in the 
early detection of colon cancer are demonstrated in this segment. 

E. Training and Testing 

The Fig. 4 shows the training and testing accuracy of a model 
over 100 epochs. The X-axis represents the number of training 
iterations the model has undergone, while the Y-axis represents 
the accuracy percentage. The figure shows the model's training 
accuracy on the training dataset and its testing accuracy on the 
testing dataset. The model's initial phase (0-20 epochs) shows 
rapid growth in both accuracies, indicating learning and 
improving performance on both datasets. The middle phase (20-
60 epochs) shows slower growth in training accuracy, 
approaching a plateau around 60 epochs. Testing accuracy 
additionally improves but starts to lag behind the training 
accuracy, suggesting overfitting. The later phase (60-a hundred 
epochs) indicates an excessive schooling accuracy close to 
100%, indicating superb performance on the schooling statistics. 
However, the trying out accuracy stabilizes at 85.9%, indicating 
overfitting. To cope with overfitting, techniques which include 
early stopping, regularization, or pass-validation could be 
implemented. The model's testing accuracy stabilizes at a high 
stage, indicating top overall performance, but there may be room 
for development in generalization. To deal with overfitting, 
techniques which include early preventing, regularization, or go-
validation can be applied. 

 
Fig. 4. Training and testing accuracy 

 
Fig. 5. Training and testing loss. 

The Fig. 5 shows the training and testing loss of a version 
over 60 epochs. The X-axis represents the variety of schooling 
iterations, at the same time as the Y-axis represents the loss cost, 
which measures the error between anticipated and real values. 
The figure shows the lack of the model at the dataset and the loss 
at the testing dataset. The analysis shows that the version is 
getting to know efficiently and both training and trying out 
losses are decreasing, indicating top generalization overall 
performance. The initial phase (0-20 epochs) shows fast 
decreases in both losses, at the same time as the center phase 
(20-40 epochs) indicates a gradual lower in schooling loss and a 
slow lower in testing loss, indicating accurate generalization but 
signs of overfitting. The later phase (40-60 epochs) shows a 
solid and convergent loss, suggesting that the model has reached 
a superior point wherein further schooling does no longer 
significantly improve performance or motive overfitting. The 
graph concludes that the model is nicely-trained, achieving low 
mistakes charges on each schooling and trying out datasets. The 
near convergence of training and checking out loss in later 
epochs shows that the model isn't overfitting notably, 
maintaining true generalization performance. The stability and 
convergence of loss values in later epochs recommend an 
awesome balance among bias and variance, minimizing 
underfitting and overfitting. 

F. Performance Metrics 

Performance metrics are numerical measurements which are 
used to evaluate how a model or gadget plays in achieving its 
goal. These measures, which are relevant to ML and diagnostic 
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model, consist of F1 rating, accuracy, precision, and recall. TP 
as true positive, TN as true negative, FP as false positive, and 
FN as false negative are represented. 

1) Accuracy: A performance statistic called accuracy 

counts how many of a model's predictions are accurate out of 

all the predictions it has made. It is computed in (9), 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (9) 

2) Precision: A performance indicator called precision 

counts the percentage of accurate positive predictions among 

all the positive predictions a model makes. It is computed in 

(10), 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (10) 

3) Recall: Recall quantifies the percentage of real positive 

cases that a model accurately detects; it is sometimes referred 

to as sensitivity or true positive rate. It is computed in (11), 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (11) 

4) F1 score: The F1 score is a performance statistic that 

offers a fair assessment of a model's accuracy by combining 

recall and precision into a single number. This provides a more 

thorough understanding of a model's performance, particularly 

when working with unbalanced datasets. It is the harmonic 

mean of accuracy and recall. The F1 score is calculated in (12), 

𝐹1 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (12) 

Table I show that colon most cancers prediction with 
CapsNets and Autoencoder-based feature selection has 
extraordinary model performance. The model efficaciously 
classifies 99.2% of the cases with an accuracy of 99.2%, 
indicating its efficacy in distinguishing among samples which 
are malignant and people that aren't. The model's 99% accuracy 
suggests that it could reliably pick out affirmative conditions 
with few fake positives. The model's capacity to minimize fake 
negatives while catching the majority of real occasions is 
demonstrated with the aid of its 98.3% recall. The alternate-off 
among accuracy and reminiscence is balanced by means of the 
F1 score, that is 98.6% and represents the harmonic suggest of 
precision and recall. The resilience and dependability of the 
model in processing histopathological images are highlighted by 
those sturdy metrics. Specifically, the accuracy validates the 
effectiveness of merging Autoencoders with CapsNets, which 
effects the cautioned observe. It attests to the model's capability 
to both recognize the complex styles seen in the education set 
and generalize successfully to new units of records. Because of 
its brilliant accuracy, the version may be carried out nearly in 
clinical settings and can assist identify colon cancer early on, 
growing patient consequences and remedy options. 

TABLE I.  PERFORMANCE METRICS OF THE PROPOSED STUDY 

Metrics Efficiency 

Accuracy 99.2% 

Precision 99% 

Recall 98.3% 

F1 score 98.6% 

 
Fig. 6. Performance metrics of the proposed study. 
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The accuracy, precision, recall, and F1 score of the 
suggested colon cancer prediction model are highlighted in the 
Fig. 6 that displays its performance measures. At around 99.2%, 
the accuracy is the greatest, meaning that 99.2% of all cases are 
accurately classified by the model, demonstrating its overall 
efficacy. With 99% precision, only 99% of cases accurately 
categorized as positive are actually positive, reducing the 
number of false positives. With a little reduced recall of 98.3%, 
the model reduces the amount of false negatives by capturing 
98.3% of all real positive cases. The F1 score, which is 98.6% 
and represents the harmonic mean of precision and recall, is a 
balanced measure of the model's accuracy that accounts for both 
precision and recall. Taken together, these parameters 
demonstrate the model's accuracy in colon cancer prediction 
from histopathological images as well as its dependability. The 
model's excellent accuracy confirms that it can generalize from 
training information to unseen test data, which is necessary for 
its application in real-world clinical settings. In clinical 
circumstances, it might be advantageous to prevent needless 
treatments by emphasizing the reduction of false positives over 
the capture of all real positives, as indicated by the minor decline 
in recall when compared to precision. The model's well-
balanced performance is shown by the F1 score's proximity to 
both accuracy and recall. The model is robust in learning and 
identifying complex patterns in histopathological images, and it 
is also dependable in making accurate predictions, which may 
lead to improved early detection and diagnosis of colon cancer. 
This is indicated by the high accuracy and balanced precision-
recall performance. Better patient outcomes and more effective 
clinical decision-making procedures might result from this. 

The efficacy metrics of many colon cancer detection 
techniques are displayed in Table II. With 85% accuracy, 80% 
precision, 75% recall, and 77% F1 score, logistic regression 
offers a basic method but falls short in terms of sensitivity and 

overall effectiveness. Decision trees perform better but still fall 
short when compared to more advanced techniques, with 87% 
accuracy, 83% precision, 80% recall, and an 81% F1 score. 
Results are further improved by Random Forests, which show 
good overall performance with 90% accuracy, 87% precision, 
85% recall, and an 86% F1 score. Gradient Boosting Machines 
show notable advances in identifying and categorizing 
malignant cells, achieving superior performance metrics with 
93% accuracy, 90% precision, 90% recall, and a 91% F1 score. 
On the other hand, the suggested approach, which combines 
autoencoder-based feature selection with CapsNets, yields 
remarkable outcomes with 98.6% F1 score, 99% precision, 
98.3% recall, and 99.2% accuracy. This strategy uses cutting-
edge ML algorithms to improve feature extraction and pattern 
recognition, outperforming all other approaches and 
demonstrating its improved capacity to consistently and 
effectively diagnose colon cancer. 

TABLE II.  COMPARISON OF PROPOSED METHOD WITH DIFFERENT 

METHODS 

Method Accuracy Precision Recall F1 Score 

Logistic 
Regression 

[17] 

85% 80% 75% 77% 

Decision 
Trees [18] 

87% 83% 80% 81% 

Random 

Forest [19] 
90% 87% 85% 86% 

Gradient 
Boosting 

Machines 

[20] 

93% 90% 90% 91% 

Proposed 

Method 
99.2% 99% 98.3% 98.6% 

 

 

Fig. 7. Performance comparison of the proposed method with different methods. 

Fig. 7 showcases a performance comparison of ML 
algorithms, including Logistic Regression, Decision Trees, 
Random Forest, Gradient Boosting Machines, and the Proposed 
Method. The x-axis displays metrics like accuracy, precision, 
recall, and F1 Score. The Proposed Method have the highest 
accuracy, precision, recall, and F1 Score and consistently 

performs well across all metrics, while Random Forest also 
shows strong performance in most metrics. However, it is 
challenging to provide a definitive interpretation without 
specific values and context. The visualization suggests the 
Proposed Method might be a promising approach, but further 
analysis and understanding of the data are necessary. The exact 
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meaning of Efficiency on the y-axis is unclear, and the dataset 
and problem domain used for this comparison are unknown, 
limiting broader conclusions. 

TABLE III.  COMPARISON OF PROPOSED DATASET WITH DIFFERENT 

DATASETS 

Dataset Accuracy Precision Recall 
F1 

Score 

Gapminder 

Colon cancer [21] 
85% 80% 75% 77% 

Colon cancer [22] 87% 83% 80% 81% 

Multi Cancer 

Dataset [23] 
90% 87% 85% 86% 

ICMR Dataset 
[24] 

93% 90% 90% 91% 

Lung and Colon 

Cancer 
Histopathological 

Images 

99.2% 99% 98.3% 98.6% 

The Table III compares many datasets that have been used 
to assess alternative approaches to the diagnosis of colon cancer. 
An F1 score of 77%, recall of 75%, accuracy of 85%, and 
precision of 80% were attained using the Gapminder Colon 
cancer dataset. With an F1 score of 81%, accuracy of 87%, 
precision of 83%, and recall of 80%, the Colon cancer dataset 
demonstrated increased performance. The metrics were further 
improved by the Multi Cancer Dataset, which achieved an F1 
score of 86%, 90% accuracy, 87% precision, and 85% recall. 
With an F1 score of 91%, accuracy of 93%, precision of 90%, 
recall of 90%, and recall of 90%, the ICMR Dataset performed 
even better. With an amazing accuracy of 99.2%, precision of 
99%, recall of 98.3%, and an F1 score of 98.6%, the suggested 
technique surpassed all other methods when evaluated on the 
Lung and Colon Cancer Histopathological Images dataset, 
demonstrating its better capabilities in diagnosing colon cancer. 

 
Fig. 8. Performance comparison of the proposed dataset with different datasets. 

Accuracy, precision, recall, and F1 score are the four main 
metrics that are highlighted in the Fig. 8, which presents a visual 
comparison of the performance of different datasets used in 
colon cancer diagnosis. The least successful dataset is the 
Gapminder Colon Cancer dataset, which has an F1 score of 
77%, recall of 75%, accuracy of 85%, and precision of 80%. 
With the Colon cancer dataset, performance somewhat increases 
to 87% accuracy, 83% precision, 80% recall, and 81% F1 score. 
These measures are further improved by the Multi Cancer 
Dataset, which achieves an F1 score of 86%, 90% accuracy, 
87% precision, and 85% recall. With 91% F1 score, 90% 
precision, 90% recall, and 93% accuracy, the ICMR Dataset 
shows even better efficiency. With accuracy at 99.2%, precision 
at 99%, recall at 98.3%, and an F1 score of 98.6%, the suggested 
method which makes use of the Lung and Colon Cancer 
Histopathological Images dataset achieves the best results in 
terms of all metrics, demonstrating its better capacity to identify 
cancer accurately. 

G. Discussion 

Previous studies of colon cancer detection often struggled 
with the accuracy and reliability of their models. Although, 
traditional methods such as decision trees and logistic regression 
had stability and accuracy problems that increased the number 
of false negatives and positives Strong models needed for the 
accuracy of the analysis cannot be fully captured and often 
requires significant feature engineering [25]. The proposed 
method uses auto-encoder-based feature selection combined 
with CapsNets to address these limitations. The ability of 
CapsNets to preserve spatial structure and detect small patterns 
is essential for accurate cancer diagnosis. On the other hand, 
autoencoders enhance feature extraction by reducing noise and 
compressing high-dimensional data into a feasible hidden area 
that highlights some important features and most of them were 
captured there with significant improvements occur in accuracy, 
precision, recall, and F1 scores It occurs as analyzed hereafter. 
This approach addresses and improves the weaknesses of 
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existing methods, thereby providing more accurate and rapid 
detection of colorectal cancer that can change clinical diagnosis. 

VI. CONCLUSION AND FUTURE WORK 

Research suggests that the combination of autoencoder-
based feature selection and CapsNets might greatly improve the 
accuracy of colon cancer prediction using histopathological 
images. Because of the CapsNets' spatial hierarchy learning and 
autoencoders' strong feature extraction capabilities, this model 
is more successful in correctly identifying malignant tissues. 
Using a hybrid technique, frequent problems like overfitting are 
successfully reduced, classification accuracy is increased, and 
the model's ability to generalize from training to new data is 
encouraged. The findings imply that this sophisticated machine 
learning model has great promise for clinical use, where accurate 
and prompt diagnosis of colon cancer is essential for efficient 
treatment planning and better patient outcomes. This effective 
use of contemporary deep learning architectures highlights how 
various methods may be used to address difficult classification 
problems in medical image analysis. 

Improving the model's flexibility and reactivity to various 
clinical settings should be the main goal of future research. This 
involves looking at cutting-edge data augmentation methods to 
strengthen the model's resistance to changes in the quality and 
quantity of histopathology images. Furthermore, investigating 
the incorporation of additional datasets, such genetic data or 
patient medical history, may provide a more thorough method 
of cancer diagnosis and prognosis. To fully assess the model's 
performance and potential, it is also crucial to apply it in actual 
clinical situations. Extending the study's reach will showcase the 
adaptability and usefulness of the concept. Lastly, to guarantee 
that the model satisfies clinical requirements and keeps 
improving patient outcomes and care, continuous cooperation 
with healthcare professionals is crucial. 
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