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Abstract—Early detection and precise prediction are essential 

in medical diagnosis, particularly for diseases such as diabetic 

nephropathy (DN), which tends to go undiagnosed at its early 

stages. Conventional diagnostic techniques may not be sensitive 

and timely, and hence, early intervention might be difficult. This 

research delves into the application of a hybrid Autoencoder-

LSTM model to improve DN detection. The Autoencoder (AE) 

unit compresses clinical data with preservation of important 

features and dimensionality reduction. The Long Short-Term 

Memory (LSTM) network subsequently processes temporal 

patterns and sequential dependency, enhancing feature learning 

for timely diagnosis. Clinical and demographic information from 

diabetic patients are included in the dataset, evaluating variables 

such as age, sex, type of diabetes, duration of disease, smoking, and 

alcohol use. The model is done using Python and exhibits better 

performance compared to conventional methods. The Hybrid AE-

LSTM model proposed here attains an accuracy of 99.2%, which 

is a 6.68% improvement over Random Forest (RF), Support 

Vector Machine (SVM), and Logistic Regression. The findings 

demonstrate the power of deep learning in detecting DN early and 

accurately and present a novel tool for proactive disease control 

among diabetic patients. 
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I. INTRODUCTION 

 Diabetes is a serious issue for general health. 
Approximately millions of individuals worldwide suffer with 
diabetes. Globally, there were 463 million diabetics in 2019, 
and 700 million are predicted by 2045 [1]. Kidneys, eyes, 
nerves, skin, and heart can all be harmed by it. The most 
frequent cause of kidney failure in diabetic people is diabetes 
nephropathy (DN)[2]. DN patients have surged in tandem with 
the exponential rise in the frequency of diabetes patients. 
Consequently, the mortality rate of DN has also gone up. 
Consequently, it's critical to identify DN patients early in order 
to prevent the related illnesses. Early detection of DN by 
diagnostic markers is crucial, as it might impede the loss of 
renal function and mitigate unfavorable consequences. Micro 
albuminuria, or the presence of minute quantities of protein 
albumin in the urine, is recognized as the first indication of the 
onset of diabetes mellitus. On the other hand, a significant 
amount of renal damage has been documented to occur even 
prior to the development of micro albuminuria [3]. A number 
of complicating factors, including exercise, urinary tract 

infections, acute illnesses, and heart failure, are linked to 
albuminuria. Moreover, it has been documented to transpire in 
the urine of individuals following a regular diet, suggesting that 
albuminuria is not a reliable indicator for precisely forecasting 
diabetic kidney disease. 

Elevated blood vessel glucose levels are critical to the 
development of diabetic neuropathic pain. Through an excess 
of reactive oxygen species (ROS), hyperglycemia causes 
problems with metabolism in mitochondria and the sugar 
metabolic pathway [4]. Glycation at high glucose 
concentrations creates adducts that are covalent with plasma 
proteins. AGEs, or advanced glycation end products, are one of 
these events and a significant risk factor for complications from 
diabetes. Podocytes are an essential component of the 
glomerular filtration barrier, and they may become aberrant 
after extended exposure to hyperglycemia. The loss of 
podocytes is one of the earliest glomerular morphologic 
alterations, and it is essential to the emergence of DN. 
Clinically speaking, diabetic individuals with DN have 
proteinuria and decreased kidney function [5]. DN patients can 
be maintained with blood pressure and glucose management, 
but many eventually develop renal failure [6]. Therefore, it will 
be crucial to comprehend the pathophysiology of DN and create 
novel biomarkers in order to diagnose DN early. Nowadays 
diagnostic methods for conditions such as DN present various 
issues that stem from the reliance on clinical sign and/or 
biomarkers associated with the late stage of the disease. Such 
reliance can lead to lack of timely treatment/fulfillment of early 
milestones/health concerns prevention. Also, there are other 
diagnostic tests whereby biopsy or blood samples are taken and 
this causes discomfort or is risky and therefore people are 
discouraged from frequent checkup. These traditional tools may 
also be insensitive and non-specific and therefore result in false 
positive or negative results as the traditional biomarkers may 
not necessarily mimic the early stages of DN. Secondly, certain 
diagnostic techniques for instance, specialized imaging may be 
expensive as well as unavailable in most health facilities and 
more so in developing countries. There is also a certain degree 
of subjectivity and variability in diagnostics, this is due to the 
facts that using subjective methods such as clinical impression 
or an interpretation of test results the results of the diagnostics 
can be significantly different depending a healthcare provider’s 
experience. 

However, current approaches of advanced diagnostic 
targets do not seem to have a perfect solution to these 
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challenges; but, the machine learning (ML) models for medical 
diagnostic are a potential solution to these challenges [7]. The 
large volume of complex data gathered in every healthcare 
practice may be analyzed by an ML model to search for patterns 
that can be missed by a clinician and that can predict DN and 
its development even before its first clinical manifestation. 
They also enable constant, non- invasive monitoring through 
trailing with wearable devices or EHR, which offer an instant 
read out of the patient’s status. Through utilization of big and 
heterogeneous databases, it is possible to enhance the 
diagnostic precision and increase the abilities to distinguish 
between the diseases that are similar and make more accurate 
prognosis depends on the individual parameters of the patient 
[8]. Due to scalability and cost implications, ML models 
provide coherent diagnosis support irrespective of the 
healthcare facility, hence the need to employ specialized 
personnel and equipment especially in setting with limited 
accessibility to the same [9]. Moreover, a model for prediction 
based on the DN-related parameters must be created. As an 
automated model construction method, ML-based approaches 
have taken the lead in the domains of medical imaging, human 
interaction, and healthcare. ML-based approaches are mainly 
employed for early identification and prediction/detection of 
different healthcare conditions, such as diabetes, carcinoma, 
and kidney damage, in order to increase classification accuracy. 
The popularity of ML-based approaches has skyrocketed 
recently. While a significant amount of research has been 
conducted and newly created ML-based algorithms have 
garnered attention, the hunt for ways to improve classifier 
accuracy has never ended [10]. Thus, one of the key elements 
that will determine how accurate the classifiers are is the 
selection of an ML-based model. Over many years, researchers 
have worked very hard to create useful models to 
enhance precision of categorization. Medical data 
categorization remains a difficult problem for machine 
learning-based classifiers, despite the quick advancement of 
computational intelligence theories. 

Furthermore, with the use of ML models, patients can be 
diagnosed and treated, based on the specific characteristics like 
genetics, lifestyle, and presence of a variety of diseases. It can 
also take disparate data from clinical, genomic and 
environmental domains and make application of the data to 
provide new and unique insights into the disease causes, drivers 
and therapeutic outcomes. Taken together, the existing 
diagnostic practices have certain drawbacks, whereas the 
machine learning models open a vast range of possibilities that 
help improve the detection rates at the initial stages, refine the 
diagnostics, and transform the healthcare services to be more 
individualized and easily scalable. These ML-based classifiers, 
however, are still unable to categorize patients accurately due 
to their unsatisfactory accuracy. But the goal of this work is to 
use ML-based approaches to create a prediction model based 
on the risk variables associated with DN. Feature extraction 
techniques also identify DN risk variables. Here are four 
primary contributions of the proposed Hybrid Autoencoder-
LSTM model for detecting Diabetic Nephropathy (DN). 

 The study introduces the use of an Autoencoder for 
effective dimensionality reduction, which helps in 
isolating essential features. This step not only simplifies 

the dataset but also enhances the model's ability to focus 
on the most relevant information, thereby improving the 
overall accuracy and interpretability of the model. 

 The combination of Autoencoder and LSTM 
architectures leverages the strengths of both models. 
The Autoencoder efficiently handles feature learning 
and noise reduction, while the LSTM network excels at 
sequential data analysis. This hybrid approach provides 
a comprehensive framework for DN detection, offering 
improved prediction accuracy compared to conventional 
machine learning models. 

 The study provides a comprehensive performance 
evaluation of the AE-LSTM model, including metrics 
such as reconstruction loss, classification accuracy, 
precision, recall, and F1-score. The comparative 
analysis with other methods highlights the AE-LSTM 
model’s superior performance and its potential 
advantages in handling complex, high-dimensional 
healthcare data. 

 The use of advanced optimization techniques like the 
Adam Optimizer, along with appropriate loss functions 
(MSE for the Autoencoder and binary/categorical cross-
entropy for the LSTM), ensures efficient and effective 
training of the model. This contributes to achieving high 
performance metrics, such as accuracy and precision, in 
the detection and diagnosis of DN. 

The rest of the contents are listed in the following order. An 
introduction is given in Section I. The literary portions are 
shown in Section II. This is the problem statement found in 
Section III. The hybrid model-based modeling and analysis 
approach is covered in Section IV. The results are compiled and 
the performance indicators are shown in Section V. Section VI 
offers further research and a conclusion. 

II. RELATED WORKS 

 Kim et al. [11] developed the initial stages diagnostic 
biomarkers to detect DN as a means of DN intervention. In the 
investigation, Zucker diabetes-related fatty rats were used to 
model the DN phenotype. The results showed that in addition 
to significantly raised serum levels of blood glucose, BUN, and 
creatinine, DN rats also exhibited severe renal injury, fibrosis, 
and microstructural changes. Moreover, the urine of DN rats 
emitted higher concentrations of kidney injury molecule-1 
(KIM-1) and neutrophil gelatinase-associated lipocalin 
(NGAL). New DN biomarkers were discovered by 
transcriptome analysis. Moreover, they were discovered in DN 
patients' urine. The findings showed that the onset of diabetic 
nephropathy was associated with an up-regulation of CXCR6 
expression levels in rat urine, renal tissue, and clinical samples. 
In essence, our discovery offers direct evidence that CXCR6 
was elevated in urine as diabetic nephropathy progressed. The 
results therefore imply that the CXCL16/CXCR6 pathway may 
be involved in the development of end-stage renal disorders. 
Using these results, a unique therapeutic approach to treating 
renal fibrosis can be developed. It is unclear, therefore, how 
CXCR6 contributes to the development of diabetic 
nephropathy. To investigate the underlying process in DN, 
more research is needed. 
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A new deep learning model is presented by Singh et al. [12] 
for the early identification and prediction of chronic kidney 
disease. This project aims to construct a DNN and evaluate its 
performance relative to other state-of-the-art machine learning 
techniques. Any information that were absent from the database 
during testing were substituted with the mean of the relevant 
attributes. The optimal parameters of the neural network were 
then established by configuring them and carrying out several 
trials. The most important characteristics were selected using 
Recursive Feature Elimination (RFE). Hemoglobin, specific 
gravity, serum creatinine level, blood vessel count, albumin, 
packed cell volume, and high blood pressure were important 
features in the RFE. To categorize them, machine learning 
models were given a range of attributes. The technique could 
be useful to nephrologists in detecting CKD. The model's 
testing on limited data sets was one of its limitations. In the 
future, large amounts of more complex and representative CKD 
data will be gathered to determine the severity of the illness and 
enhance the model's performance. 

The goal of the Kang et al. [13] study was to create and 
assess a DL model that uses retinal fundus images to identify 
early renal function deterioration. This retrospective analysis 
includes patients who had color fundus imaging and renal 
function testing. From the images, a DL model was built to 
identify renal impairment. An estimated rate of glomerular 
filtration of less than 90 mL/min/1.73 m2 was considered early 
renal function impairment. The AUC and ROC curve were used 
to assess the performance of the model. For the whole 
population, the model's AUC was 0.81.Using retinal fundus 
images, the deep learning algorithm in this work makes it 
possible to identify early renal function deterioration. Only for 
individuals with increased blood HbA1c levels, the model 
demonstrated greater accuracy is the drawback. 

A unique ML model for CKD prediction was put out by Arif 
et al. [14] It included a number of pre-processing stages, 
selection of features, a hyper parameter optimization method, 
and ML algorithms. In order to tackle the difficulties 
encountered with medical datasets, we utilize sequential data 
scaling along with robust scaling, z-standardization, and min-
max scaling, as well as iterative imputation for missing values. 
The Boruta method is used for feature selection, while 
ML algorithms are used to create the model. The model 
performed exceptionally well with good accuracy when 
assessed on the UCI CKD dataset. The method, which 
combines novel pre-processing techniques, the Boruta feature 
selection, the k-nearest-neighbour algorithm, and grid-search 
cross-validation (CV) for hyper parameter tuning, shows 
promise in improving the early identification of CKD. This 
study emphasizes how machine learning approaches might 
enhance therapeutic support networks and lessen the influence 
of ambiguity around the prognosis of chronic illnesses. 
The study's primary drawback was its dependence on a single 
dataset the UCI CKD dataset, which has a significant number 
of missing values. 

By combining a number of easily accessible clinical 
variables with retinal vascular measures, Shi et al. [15] 
developed a new DKD diagnostic approach for individuals with 
type 2 diabetes. Xiangyang Central Hospital's 515 consecutive 
type-2 diabetes mellitus patients were included. Patient 

diagnoses of DKD were used to separate patients into two 
groups: the training and testing set, with a random seed of 1. 
While the ML was developed using data from the training set, 
the MLA was validated using data from the testing set. The 
model's performances were assessed. When compared to other 
classifiers, the random forest classifier-using MLA performed 
at its best. Verified, the accuracy was 84.5%. Retinal vascular 
alterations may help in DKD screening and identification, 
according to a novel machine learning method for the disease's 
diagnosis that was constructed using fundus images and eight 
readily accessible clinical data. The sample used in the study 
limits the generalizability of the model to broader and more 
diverse populations. 

In the Zhang et al. [16] study, membranous nephropathy 
was diagnosed by combining deep learning techniques with 
blood and urine Raman spectra. Following baseline correction 
and data smoothing, the training set was supplemented with 
Gaussian white noise at varying decibel levels to enhance the 
data. The assessment results of the ResNet, AlexNet, and 
GoogleNet models for membranous nephropathy were then 
obtained by feeding the amplified data into them. As per the 
experimental findings, AlexNet emerged as the most proficient 
deep learning model for both samples. All three models were 
able to attain an accuracy of 1 in classifying serum data 
pertaining to patients with membranous kidney damage and the 
unaffected group, and above 0.85 in differentiating urine data. 
The test results described above show how powerful deep 
learning methods can be when used in combination with serum- 
and urine-based Raman analysis to accurately and quickly 
diagnose individuals with membranous nephropathy. The 
limitation is the high accuracy reported would not be achievable 
in a more diverse and unstructured clinical environment, where 
data quality and characteristics can vary widely. 

Several limitations to the application of ML and DL models 
in diagnosing kidney related diseases are presented in the 
reviewed literature. A typical issue is that the number and types 
of datasets are often limited and often only a single dataset may 
be used in developing the model and hence the range and the 
variety of data populations might not be very wide. Also, some 
research works’ drawbacks were associated with data quality 
and data loss, where data missing was a major issue that came 
up to a need of imputation or data augmentation. In this case, 
the models’ applicability for different conditions or groups may 
be limited since the improvement was noted only in patients 
with raised HbA1c levels. In addition, the very high levels of 
accuracy found in this and similar studies, again in precise 
experimental settings, may not be highly representative of the 
variability and range of clinical datasets, again influencing the 
model’s results in the clinic. Lastly, the strong focus on 
concrete characteristics that include the use of retinal fundus 
images or Raman spectra may also suggest the models’ 
drawback in conditions when such data is irrelevant or missing. 

III. PROBLEM STATEMENT 

DN is categorized as a usual complication of diabetes the 
result of which may culminate into end-stage renal disease if 
not diagnosed. The current diagnostic processes that are based 
on biomarkers and imaging oftentimes diagnose DN at the most 
severe stages, thereby limiting the interventional and treatment 
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procedures[16]. The reason why diagnosis is usually made later 
in the course of DN is partly attributed to the slow and 
progressive nature of kidney damage in such patients when 
conventional techniques are used. Thus, addressing the 
mentioned problem of the shortage of diagnostic techniques, 
this paper proposes and compares an Autoencoder-LSTM 
model for the diagnosis of diabetic nephropathy. The proposed 
hybrid model intends to integrate the autoencoder’ s ability of 
decreasing the dimensionality of data and finding hidden 
beneficial aspects as well as the feature superior to recognizing 
temporal relations in the series data which is LSTM network. 
Using this model for Clinical and patient data analysis, the 
study aims at finding the feeble signs of DN that are masked 
normally. The latter goal is to create a less invasive and more 
precise diagnostic tool for early identification of DN, which in 
turn will allow for proper treatment to be given, enhance the 
patient’s outcomes, and perhaps decrease the likelihood of 
transitioning to the more significant level of nephropathy. 

IV. PROPOSED METHODOLOGY OF HYBRID AUTOENCODER-

LSTM MODEL FOR EARLY DETECTION OF DIABETIC 

NEPHROPATHY 

For the detection of DN, this study uses the Hybrid 
Autoencoder-LSTM model that uses feature learning and 

temporal pattern analysis. The methodology encompasses 
several key stages: acquisition of data as well as preparation, 
designing the model as well as learning rate schemes for the 
model. First, the input dataset is formed by using clinical data 
of patients with diabetes, retrieved from prior researches. This 
dataset must then be cleaned to deal with any issues pertaining 
to missing values as well as the normalization of its features, 
and where needed, feature selection. The Autoencoder 
component accomplishes the Dimensionality reduction of the 
input data for the aim of segregating necessary features from 
the noisy ones. These condensed features are then passed to the 
LSTM network which learns on the sequences to identify 
relationships with time of DN. The connection of these two 
parts is to improve the accuracy of the model through the 
application of the advantages of the architectures of deep 
learning. When training the model, several loss functions are 
used; MSE for autoencoder and binary or categorical cross-
entropy for LSTM based on the classification task. The Adam 
Optimizer helps in achieving the steady state for the value and 
the model goes through epochs for the optimization. The DN 
diagnosis and accurate identification of patients with the 
condition is sought through this integrated, extensive 
methodological approach that aims to enhance the optimality of 
the model. It is demonstrated in Fig. 1 given below.

 

Fig. 1. Hybrid AE-LSTM model block diagram. 

A. Dataset Collection 

The dataset which is “Diabetic_Nephropathy_v1” contains 
clinical and demographic data of DN and related diseases[17]. 
The dataset consists of 767 patient records. These variables 
involve the patient’s sex, age, type of diabetes, duration of the 
disease, DR and DN, and smoking and drinking habits; as well 
as glucose levels, HbA1c, body mass index (BMI), and blood 
pressure. These parameters include height, weight, body mass 
index, systolic blood pressure, diastolic blood pressure, 
glycated haemoglobin, fasting blood glucose, blood 
triglycerides, C-peptide, total cholesterol, high-density 
lipoprotein cholesterol and low-density lipoprotein cholesterol 
respectively. More so, details on medication use including 
insulin, metformin, as well as lipid-lowering drugs among 
others are incorporated. These variables are expected to be used 
for analyzing the associations between them and the 

development of diabetic nephropathy, the results of which are 
planned to be used for developing better predictors of the 
disease and increasing the general knowledge on the subject. 

B. Data Pre-processing 

1) Handling missing values: It is essential to manage the 

cases of missing values because, for example, they affect the 

accuracy of a machine learning model, as well as the results of 

making predictions. It is recommended to impute the missing 

values with the median or mode of the particular columns for 

numerical variables since median imputation is less influenced 

by outliers than the mean imputation. For categorical features it 

is optimal to use simple form of imputation for the missing data, 

which is to replace it with the most frequently used category. 

This approach ensures that the employed dataset is also strong 

and minimizes the chances of a mistake being made on the 
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model. Feature selection was performed using correlation 

analysis and domain knowledge to identify the most relevant 

clinical variables, discarding those that were redundant or had 

low significance for DN. 

2) Normalization: Most preprocessing acts like 

standardization on the input variables are significant for models 

like Autoencoder and LSTMs as they are dramatically affected 

by the scale of input variables needed. This process helps to 

make all features at a similar scale to make better and more 

accurate models and avoid instabilities in the model. Min-Max 

Scaling standardizes the features to a range of 0 to 1, which is 

a good practice in terms of equal scaling of features and can 

contribute to the enhancement of the model’s performance and 

convergence. The formula for Min-Max Scaling is 

𝑌𝑆𝑐𝑎𝑙𝑒𝑑 =
𝑌−𝑌𝑚𝑖𝑛

𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛
          (1) 

Where Y is the original feature value, 𝑌𝑚𝑖𝑛  is the minimum 
value of the feature, and 𝑌𝑚𝑎𝑥 is the maximum value. This 
normalization ensures that all features contribute equally to the 
model, which is crucial for algorithms sensitive to feature 
scaling. 

3) Correlation analysis for feature selection: Begin by 

examining the correlation between each feature and the target 

variable, which in this case is diabetic nephropathy. This 

analysis helps in identifying features that have a strong 

relationship with the target variable. Features that exhibit high 

correlation with the target are likely to provide significant 

predictive value. For example, if one use correlation 

coefficients or statistical tests to quantify these relationships. 

Features with low or negligible correlations can be discarded to 

simplify the model and improve its interpretability. 

C. Integration of Hybrid AE-LSTM Model for the Detection of 

Diabetic Nephropathy 

A multilayer neural network called an auto encoder 
produces desirable outputs that are similar to inputs with less 
modification—that is, results that are similar to inputs that have 
some reconstruction error [18]. Generally, autoencoder is 
applied in dimensionality reduction since it provide efficient 
dimensionality reduction in cases of large and more specifically 
medical data sets due to its high dimensionality reduction rate 
yet efficiency in preserving important features of the data. In 
contrast to model like PCA it is capable of learning local non-
linear manifold structure of data and thus is more appropriate 
for high dimensional clinical records. Further, it aids in the 
reduction of noise to ensure the model concentration on the 
most important characteristic which is important for tasks such 
as DN development prediction. It is the same case with 
autoencoder as they also function in an unsupervised way, 
which can be useful when processing big data with little or no 
labels at all. The auto encoder encrypts the input and then 
utilizes unsupervised learning to reconstruct or decode the 
output. 

The encoder, reconstruction loss, bottleneck, and decoder 
are the four main parts of a generic auto encoder. The encoder 
helps to remove characteristics from the input by shrinking the 

data into an encoded form. The bottleneck layer is the layer that 
has the fewest characteristics and compressed incoming data. 
The decoder makes sure that the input and output are the same 
by helping the model to rebuild the result from the encoded 
representation. The last metric used to evaluate the decoder's 
performance and determine how closely the output resembles 
the original input is Reconstruction Loss. 

Additionally, training is done using back propagation, 
which further minimizes reconstruction loss. This minimum 
loss serves as an example of the goal that AE aspires to 
accomplish. The input y that the encoder will compress Eq. (2). 

𝑦 =  𝐸(𝑥)   (2) 

Decoder will make an effort to replicate the input. D as 𝑥′ = 
D (E (x)). 

𝑙𝑜𝑠𝑠(𝐸, 𝐷) =
1

𝑛
∑ 𝑥𝑖 − 𝐷(𝐸(𝑥𝑖)))2𝑛

𝑗=1  (3) 

In this instance, the reconstruction loss equals the difference 
between the encoded and decoded vectors.  The MSE is one 
method for calculating the reconstruction loss. It is stated in the 
above-mentioned Eq. (3). The hybrid AE-LSTM's architectural 
diagram is shown in Fig. 2. 

LSTM was created using sophisticated recurrent neurons. In 
an LSTM, every recurrent neuron may be thought of as a single 
cell state [19]. For the temporal analysis, the study use LSTM 
since it is capable of processing sequential data and it can 
capture long term dependencies, this is because tracking the 
health status of the patients require tracking their status over a 
period of time. The LSTMs are built in a way that they do not 
suffer from vanishing gradient problem and this makes the 
model to retain information from the previous time step, which 
is extremely important when predicting medical conditions. For 
hyper-parameters, learning rate, batch size and number of 
hidden units were appropriately selected from cross-validation 
in order to achieve high learning rate but low over-fitting. These 
choices were further optimized to make sure that the model 
does well as far as the training data is concerned as well as the 
unseen data. An LSTM determines its current state by using its 
data from the previous state, much like a conventional RNN 
does. The LSTM uses three gates to control the current neuron: 
the forget gate, update gate, and output gate. 

A LSTM can connect current data with historical 
knowledge. An LSTM is coupled to three gates: an output gate, 
an input gate, and a forget-about gate. The new and last states 
are represented by the symbols𝑄𝑡 and𝑄𝑡−1, respectively for the 
input, and 𝑝𝑡  and 𝑝𝑡−1 for the existing and prior outputs. 

Eq. (4), Eq. (5) and Eq. (6) explain the LSTM input gate 
idea. 

𝑗𝑡  =  σ(Z𝑗 ⋅ [𝑧𝑡−1, 𝑦𝑡]  + 𝑏𝑗)            (4) 

�̃�𝑡  =  tanh(𝑍𝑗 ⋅  [𝑝𝑡−1, p𝑡]  +  b𝑗)   (5) 

Q 𝑡 =  𝑓𝑡Q 𝑡−1 + 𝑗𝑡�̃�𝑡           (6) 

To decide which of the data points 𝑦𝑡  and 𝑝𝑡−1 should be 
added, where Eq. (4) use a sigmoid layer to filter them. 

Combining the long-term storage data,�̃�𝑡  with the present 

moment informationQ 𝑡−1, results in Eq. (6). �̃�𝑡 Displays a tanz 
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output, whereas 𝑍𝑗indicates a sigmoid results. The bias of the 

LSTM input gate is denoted by b𝑗in this instance, while 𝑍𝑗 

denotes the weight matrices. Consequently, because of the 
LSTM's forget gate, the dot product and sigmoid layer may pass 
information selectively. A certain probability is used to decide 
whether to delete relevant data from a previous cell. 

Use Eq. (7) to determine whether to preserve relevant data 
from an earlier cell with a particular option. 𝑍𝑓 Represents the 

weighted matrix  b𝑓 the offset, and σ the sigmoid term. 

𝑓𝑡  =  σ (𝑍𝑓 ⋅ [𝑐𝑡−1, 𝑦𝑡]  + b𝑓)  (7) 

The states needed for the following equations are 
determined by the output gate of the LSTM Eq. (8) and Eq. (9) 
states provided by the inputs 𝑦𝑡 and 𝑝𝑡−1 .After the final output 
is produced, it is multiplied by the state decision vectors Q 𝑡 that 
transmit new data via the tanz layer. 

𝑅𝑡  =  σ(𝑍𝑜 ⋅ [𝑃𝑡−1, 𝑦𝑡]  +  𝑏𝑜)  (8) 

𝑝𝑡 =   𝑅𝑡  tanz(Q 𝑡)       (9) 

When using the Autoencoder-LSTM, the transition from the 
Autoencoder to LSTM is carried out systematically with 
regards to features and sequence. First, the bottleneck layer of 
the autoencoder, which contains the compressed and the higher 
level features of the input is used as input to the LSTM network. 
This transfer of feature favours LSTM to process data that has 
undergoes post processing hence removing noise and 
unnecessary details. Since these are the features passed to the 
LSTM network, the LSTM makes its computations in a 
sequential manner which is vital in the learning of temporal 
characteristics and structures that are useful in diagnosing 
Diabetic Nephropathy (DN). The last state of the LSTM 
network is used for the purpose of predicting the probability of 
DN or for distinguishing between the patients who have DN and 

those who do not have DN based on temporal pattern learning 
integrated into the model from the sequences. 

The integration of the hybrid model has the following 
advantages. Thus, by reducing the dimensionality of input data, 
the first stage of the autoencoder employs a K value to facilitate 
the LSTM’s identification of relevant patterns to the task. This 
organizational improvement make the model lighter and thus 
enhances its functionality. Second, the temporal features as 
processed by the LSTM show important sequential 
characteristics that can indicate early signs of DN that are not 
observed by simpler models, allowing for a better 
understanding of the diseases’ evolution. 

Optimizations of the autoencoder and LSTM network is 
done during the training phase so as to get the best performance. 
In the autoencoder, mean squared error (MSE) loss function is 
used to minimize the errors in data reconstruction; this way, 
only the noise is eliminated, and important details are 
preserved. With relation to the LSTM network, the selection of 
the loss function is contingent upon the nature of the 
classification; in cases where the classification is categorically 
classified as several classes, as opposed to binary cross entropy, 
which is utilized in cases where the classification is either true 
or false, the binary cross entropy loss function is employed. For 
optimizing weights in the model and to make enhancements, 
specialized algorithms like Adam is used. The training process 
takes several epochs; the used number of epochs and the batch 
size is defined depending on the data volume and available 
computational power. Syllable stress and domains’ size tuning 
makes sure that the model properly learns and functions well in 
regard to new data. 

This detailed approach will assist in established structure to 
enhance the Autoencoder-LSTM model, by having 
dimensionality reduction then LSTM in achieving accurate 
Diabetic Nephropathy prediction. Fig. 2 illustrates the 
architecture of proposed hybrid AE-LSTM is given below. 

 

Fig. 2. Hybrid AE-LSTM architecture. 
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V. RESULTS AND DISCUSSION 

The results section of the study, the authors provided 
distilled information about the results from the predictive 
modeling and disease detection study using the proposed 
Hybrid Autoencoder-LSTM model. The accuracy of the 
presented model was compared to several simple and complex 
models based on the sub belongs and more traditional machine 
learning as well as deep learning techniques. The performance 
evaluation was based on the model’s metrics as the model 
successfully predicted the occurrence of DN. The methodology 
employed data from clinical records and qualified the model 
implementation and analysis on a Windows 10 environment 
using python programming language. In line with such 
findings, the model excels in the identification of the DN onset; 
this is due to the utilization of the autoencoder dimensionality 
reduction and the LSTM network with the capability of 
recognizing temporal patterns. The following variables were 
used in a measure of the efficiency and predictive capability of 
the specified model. 

A. Auto Encoder’s Reconstruction Loss 

Reconstruction Loss is one of the ways of evaluating a 
model particularly an autoencoder to whether compress the data 
and then decompress it to get the preservation quality. It 
measures the degree of distortion of output signal in 
comparison with the input signal end product. It is then 
computed by comparing the two, sometimes via calculating 
MSE or Binary Cross-Entropy, etc. Hence, reconstruction loss 
defines how much information has been lost during the 
encoding and decoding process, and lower value of it would 
mean better reconstructions and therefore a better performance 
of the model in terms of preserving important features of the 
input data. Eq. (10) expressed it. 

Reconstruction Loss =
1

𝑁
∑ (𝑥𝑖 − 𝑥�̂�

𝑁
𝑖=1 )2         (10) 

 

Fig. 3. Reconstruction loss of the proposed AE-LSTM approach. 

The Fig. 3 will indicate the reconstruction loss in the 
Autoencoder, which should decrease over time, thus 
demonstrating the Auto encoder’s ability to learn how to 
encode and decode the data. The gradual reduction in MSE 
shows that the present Autoencoder component continues to 
reduce the dimensionality of the data and retain crucial 
characteristics efficiently. 

 
Fig. 4. Reconstruction error for different classes. 

Fig. 4 shows the reconstruction errors for normal and 
abnormal classes, with normal data points clustered around a 
value of 1 and abnormal points centered around 25. The 
threshold line, set at 0, visually separates the error ranges for 
both classes. Fig. 5 shows the histogram of reconstruction error 
is given below. 

 
Fig. 5. Histogram of reconstruction error. 

 

Fig. 6. Confusion matrix. 
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Fig. 6 shows a heat map of the confusion matrix, displaying 
the performance of a classification model across five 
categories: It includes Mild, Moderate, No DN, Proliferative 
DN and Severe. The diagonal values are the correctly predicted 
patterns giving high accuracy for some of the top categories 
such as “No DN” (261 instances correctly classified). Other 
discrepancies such as the 17 Mild examples classified as 
Moderate as well as the 16 Severe specimens also classified as 
Moderate can also be observed from off- diagonal values. 
Different colors define importance of the data and stress on the 
distribution of errors and correct predictions. 

 

Fig. 7. Training and testing accuracy of the proposed AE-LSTM approach. 

Fig. 7 shows that the performance metrics indicating the 
increase in model’s ability to identify relevant patterns for DN 
detection have escalated exponentially. Thus, it is not surprising 
that the accuracy recorded during this study was a phenomenal 
99.2%% shows that the model is very well trained and is in 
condition to be able to make sound predictions with the help of 
encoded features and temporal data. The training accuracy 
graph shows them gradually rising up to a certain point proving 
that the model gains better and better understanding of the 
training data set during the training process. The testing 
accuracy curve is also smooth and similar to the training 
accuracy which might depict a good generalization of the model 
with unseen data. Hence the little difference between the 
training and testing accuracy shows that the model performed 
very well by reducing the risk of over fitting as well as 
improving the robustness of the model. 

 
Fig. 8. ROC of the proposed approach. 

Fig. 8 shows the ROC curve for the proposed AE-LSTM 
approach, illustrating how well the model distinguishes 
between positive and negative cases. The high AUC suggests 
that the AE-LSTM approach is effective in correctly classifying 
the data, making it a reliable method for early detection and 
diagnosis. The results demonstrate that using autoencoder for 
feature extraction combined with LSTM for classification is a 
successful strategy in this study. 

B. Performance Metrics 

1) Accuracy: A method's accuracy is measured by the 

proportion of test cases it can identify correctly on a certain test 

set.  It is computed as follows in Eq. (11) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑅𝑁+𝑅𝑃

𝑅𝑃+𝐴𝑃+𝑅𝑁+𝐴𝑁
             (11) 

2) Precision: Precision is the ratio of all positively 

recognized cases to the total number of properly identified 

positive occurrences by the model. It is quantified in Eqn. (12) 

is as follows. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
            (12) 

3) Recall: Recall is the idea of the positive cases that the 

framework correctly detects.  It is calculated as follows in Eq. 

(13). 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
   (13) 

4) F1-Score: When there is a large difference in the 

number of students in one class compared to the other, the F1 

score might be helpful. To access the F1 score is apply the Eq. 

(14) as follows. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
                 (14) 

When assessing someone, one should consider their F1 
score as it provides a useful and unbiased means of gauging 
recall and accuracy. 

C. Consideration with Other ML Approaches 

Table I concern the relative comparison of the overall 
effectiveness of the considered classification algorithms. It can 
also be seen that, the proposed AE+LSTM method has the 
maximum accuracy of 99%. 2%, and the EWs are 98. 75%, 98. 
92%, with an excellent SW of 98. 79%. These results indicate 
that the AE+LSTM is not only able to pinpoint the true positive 
instances but it also keeps a good harmony between Precision 
and Recall. On the other hand, the Accuracy index of the SVM 
is fairly impressive recording a 98. Achieves a 96% level of 
accuracy, solid values for the precision and recall rates, 
however has a slightly lower F1-score. The same can be said 
about the Multivariate Logistic Regression method, which also 
yields the 0.95 of accuracy, but does not rank as high as the 
AE+LSTM. RF method also behaves well, but has the lowest 
performance indicators with accuracy equal to 85%, and less 
TS, PR, and F1-MACV. Thus, it is established that the 
AE+LSTM approach performs better as compared to the other 
methods studied for the classification of the data, especially 
with reference to precision and recall, which are quite 
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significant signs of how effectively the model is useful for a 
wide range of data patterns. It is illustrated in Fig. 9. The 
proposed Hybrid Autoencoder-LSTM model significantly 
improves early DN detection by enhancing feature extraction 
and temporal pattern learning. Its ability to reduce 
dimensionality while maintaining critical diagnostic 
information ensures higher accuracy than traditional methods. 
This advancement enables timely medical intervention, 
improving patient outcomes. The study highlights AI’s 
potential in transforming predictive healthcare with scalable 
and reliable diagnostic models. 

TABLE I. EXISTING METHODS AND SUGGESTED METHOD COMPARISON 

Methods 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1Score 

(%) 

RF[20] 85 81.60 82.24 81.42 

SVM[21] 98.96 91.78 94.08 90.21 

Multivariate 
Logistic 

Regression[22] 

95 92.78 90.82 90.21 

Proposed 
AE+LSTM 

99.2 98.75 98.92 98.79 

 
Fig. 9. The performance evaluations of AE+LSTM with conventional approaches. 

D. Discussion 

The findings showed that one of the better ways of early 
prediction of DN has been established to be the Hybrid 
Autoencoder-LSTM model given its efficiency in handling the 
otherwise elaborate medical diagnoses. Autoencoder whose 
function here is to decrease the dimensionality of the image data 
leaving vital features intact and removing background noise; 
this improves LSTM’s ability to learn and identify temporal 
features essential for DN diagnosis. The LSTM’s sequences 
and the capability to store information from the previous states 
also enables it to follow the advancement of DN in time. 
Compared to other classical machine learning systems like 
RF[20], support vector machines[21], and logistic 
regression[22], this hybrid model has better result. This benefit 
derived from Autoencoder dimensionality reduction becomes 
very useful in helping LSTM isolate on the most significant 
features, thus lowering the levels of computationally intensity 
and enhancing model analyzability. The reduction in 
reconstruction loss over time reflects the autoencoder’ s 
capability to efficiently compress and reconstruct the data while 
preserving important features. This capability is crucial for 
enhancing the LSTM's performance by focusing on relevant 
temporal patterns without being overwhelmed by irrelevant 
data. The successful reduction in reconstruction errors, 
particularly the distinction between normal and abnormal 
classes, further validates the effectiveness of the autoencoder in 
filtering out noise and emphasizing critical features. Such 
findings imply that deep learning architectures are more 

valuable for the intricate medical diagnosis. In a clinical sense, 
the predictability of DN would definitely alter decisions that are 
made on a patient as this would enable the clinicians to prevent 
or at least delay the occurrence of the disease since there would 
be time to plan on how to handle the situation. Since the 
proposed model has achieved good values for precision and 
recall, it means that the identified patients might indeed be at 
high risk of developing DN, and therefore, timely intervention 
might help improve the patient’s condition. The Hybrid 
Autoencoder-LSTM performs efficiently in facilitating early 
Diabetic Nephropathy (DN) prediction through dimensionality 
reduction and temporal pattern discovery. Autoencoder 
removes noise and retains core features, improving LSTM's 
potential for DN progress tracking. Its accuracy is superior 
compared to RF, SVM, and Logistic Regression with reduced 
complexity. The decrement in reconstruction loss reflects its 
optimization in feature extraction, which makes it perform 
classifying tasks with better efficiency. High recall and 
precision values validate its feasibility for actual clinical use, 
allowing for prompt interventions to enhance patient outcomes. 

VI. CONCLUSION AND FUTURE SCOPE 

In conclusion the findings and analysis of the Autoencoder-
LSTM model for the identification of DN in the early stages 
have shown the prospect of strengthening diagnostic 
performance. It is suggested that integration of an autoencoder 
with an LSTM network reduces the dimensionality and contains 
profitable sequential pattern understanding for the later 
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component in improving the identification of early signs of DN. 
The study's results underscore the model's potential for early 
detection of DN, which could lead to improved patient 
outcomes through timely medical intervention. Despite these 
achievements, future work should focus on several key areas to 
further enhance the model's applicability and performance. This 
includes validating the AE-LSTM model on diverse datasets to 
ensure generalizability across different populations, exploring 
additional feature extraction techniques to improve model 
robustness, and investigating the integration of the model into 
clinical decision-support systems for real-time applications. It 
is suggested that in future studies, the sample ought to be 
diverse, and the data collected should be followed up over time 
to see how to improve on the given model. Further, it may be 
beneficial to experiment with state of the art methods like 
incorporating attention mechanism, or integrating hybrid model 
with other modalities of data like genomics or Imaging data to 
enhance the diagnostic accuracy for early detection. Practical 
emphasis and the integration of technological innovations into 
clinical practices will also play an important role in converting 
these progressive changes into valuable outcomes for patient 
and stakeholders’ experiences. 
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