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Abstract—With the continuously increasing demand for new 

technologies, many concepts have emerged in recent decades and 

the Internet of Things is one of the most popular. IoT is 

revolutionizing several aspects of human life with a large range 

of applications including the transportation sector. Based on IoT 

technologies and Artificial Intelligence, new-generation vehicles 

are being developed with autonomous or self-driving capabilities 

to handle transportation in future smart cities. Regarding 

human-based errors such as accidents, traffic congestion, and 

disruptions, autonomous vehicles are presented as an alternative 

solution to increase traffic safety, efficiency, and mobility. 

However, by transferring from a human-based to a computer-

based driving style, the transportation area is inheriting existing 

cyber-security challenges. Due to their connectivity and data-

driven decision-making, the security of autonomous vehicles is a 

high-level concern since it involves human safety in addition to 

economic losses. In this paper, a comprehensive review is 

conducted to discuss the security threats and existing solutions 

for autonomous vehicles. In addition to that, the open security 

challenges are discussed for further investigations toward trusted 

and widespread deployment of autonomous vehicles. 
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I. INTRODUCTION 

Ashton, in 1999, introduced the idea of connecting Radio 
Frequency Identification (RFID) Tags to the Internet which 
enabled the interconnection of conventional objects to handle 
autonomous tasks, and therefore, led to the new concept of the 
Internet of Things (IoT) [1]. With the help of IoT 
technologies, the transportation area is having a significant 
evolution from conventional mechanical vehicles to next-
generation smart vehicles capable of collecting environmental 
data, process and communicating them, to make intelligent 
driving decisions without human assistance [2], [3]. Due to 
this new orientation toward intelligent transportation systems 
(ITS), the transport sector has become attractive for various 
interdisciplinary researchers and industries to work in the 
industrialization and deployment processes of autonomous 
vehicles (AV). 

An AV is a computer on wheels that is equipped with a 
multitude of software and electronic components (such as 
sensors, processing units, and transmission modules), and 
capable of performing driving tasks on its own. In 2021, the 
Society of Automotive Engineers (SAE) provided an official 
updated reference which describes the evolution of vehicles in 
five automation levels, known as Level 1: driver-assistance; 
Level 2: partial-automation; Level 3: conditional-automation; 

Level 4: high-automation; and Level 5: full-automation [4]. In 
level 1, the human driver has full control over the vehicle’s 
driving mode, but some computing systems are embedded to 
assist the driver in monitoring the environment (e.g. 
measuring of distance between vehicles to produce collision 
alerts, over-speeding alerts, …). In level 2, the human driver 
has partial control over the vehicle’s driving mode, where 
some vehicular functions are controlled by automated systems 
(e.g. executing steering and acceleration functions). In level 3, 
most of the vehicle’s driving functions are automated to 
enable a self-driving mode, but the human driver must 
necessarily respond to feature requests and take driving 
control in some situations. In level 4, the vehicle is highly 
automated and capable of handling driving functions without 
requiring much intervention from the human driver. In level 5, 
the human driver has no control over the vehicle’s driving 
mode, and all the driving functions are performed by 
computing systems in all situations. 

The main objective of introducing AVs is to avoid human-
based errors that are mostly the cause of traffic issues like 
accidents, and therefore, to increase traffic safety, mobility, 
and efficiency [5], [6]. However, the transfer of the driving 
mode from human hands to computer systems also exposes 
vehicles to existing cybersecurity challenges, where attackers 
can gain access to AVs and control them for malicious ends 
making it urgent to consider their security at a high level for 
trustworthy developments and deployments. In this paper, a 
comprehensive review is conducted to give a state of the art of 
vehicular security, which provides the following key 
contributions: 

 First, it describes the architecture of AVs, highlighting 
the role of different components, their security and 
privacy requirements, and the threats and 
vulnerabilities that can affect their normal operations. 

 Second, it explores the literature to identify the 
reported attack methods against AV components as 
well as existing solutions that can be used to mitigate 
attacks. 

 Third, it discusses the existing countermeasures to 
highlight their advantages and limitations, points out 
open challenges then proposes research directions for 
further investigations. 

In the rest of this paper, Section II provides an overview of 
the architecture of AVs. The literature review is reported in 
Section III. Section IV discusses the existing security methods 
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for AVs. Section V proposes new research directions that can 
be considered to provide efficient security methods for AVs. 
The paper is concluded in Section VI. 

II. ARCHITECTURE OF AUTONOMOUS VEHICLE: OVERVIEW 

The internal components of AVs can be classified into 
three main layers including the input layer, processing and 
control layer, and communication layer as depicted in Fig. 1. 
The input components collect data from the environment 
which are used by processing components to make decisions 
for controlling the vehicular functions. The communication 
components serve as interfaces allowing the interaction 
between different internal components and also between the 
vehicle and external entities such as other vehicles, personal 
devices, and infrastructures. 

 
Fig. 1. Components of autonomous vehicles. 

A. The Input Layer 

AVs are equipped with a large number of sensors to collect 
specific data from the environment serving as input for control 
units [7]. Some commonly used sensors are Cameras, “Light 
Detection and Ranging (LiDAR), Global Positioning System 
(GPS), Radio Detection and Ranging (Radar), Ultrasonic”, 
etc. 

LiDAR sensors are used to detect surrounding objects by 
sending light waves and calculating the distance based on 
reflected signals [8]. In the same logic, Radar sensors measure 
the distance and speed of objects by sending electromagnetic 
waves in the radio domain and sense the reflected signals. 
Used for obstacle detection, the Radar works better in bad 
weather compared to the LiDAR and both are most used for 
long-range detection whereas ultrasonic sensors are preferable 
for short-range measurements based on sound waves. No 
matter the performance of obstacle detection sensors, they 
cannot identify the colour of a traffic light. Therefore, image 
sensors (cameras) are used to provide vision capability to the 
AV and identify different entities in the environment. GPS 
sensors operate by receiving radio signals from three or more 
satellites to determine the geographical location [9]. 
Therefore, GPS sensors are necessary for AVs to localize 
them and find routes between different locations. These 
sensors are useful in many applications and serve in AVs to 
observe the environment and make intelligent decisions to 
control the vehicle for safe driving and efficient navigation as 
illustrated in Fig. 2. 

 
Fig. 2. Use of sensors in AVs. 

B. The Control Layer 

Electronic Control Units (ECU) represent the brain of 
AVs. ECUs are embedded systems that receive input signals 
from other components mainly sensors, process them, and 
decide the behaviour of vehicular functions [10]. As illustrated 
in Fig. 3, several types of ECU are used in AVs to perform 
specific tasks ensuring that vehicular functionalities are well-
controlled and operational [11]. These include engine control, 
speed control, body control, tire-pressure monitoring, 
transmission modules also called telematics ECUs, and other 
internal measurement systems [12]. The ECUs can work 
together or independently based on the required action to take. 
For example, after detecting a pedestrian or other obstacles, 
the braking and speed control systems can collaborate to avoid 
collisions. 

 
Fig. 3. Embedded ECUs in AV. 

C. The Communication Layer 

The internal components of AVs such as sensors, ECUs, 
and actuators, are interconnected through the in-vehicle 
network also known as “Controller Area Network (CAN)”, 
where they exchange data to perform tasks together [7]. Short-
range technologies are mostly privileged for in-vehicle 
communications to establish wireless connections between 
sensors and ECUs to reduce complex wiring. Also, external 
devices can be physically connected to the vehicle through 
onboard diagnostic (OBD) ports to access the CAN data for 
diagnostics on components or firmware updates [13]. The 
OBD ports can be found in any modern vehicle including 
existing AVs and are commonly used to access and update 
embedded software in the vehicle’s control units. 

For external communications, multiple AVs can form a 
network following the paradigm of vehicular ad-hoc networks 
(VANET) [14], where each AV can communicate with others 
and with surrounding communications infrastructures such as 
roadside units (RSU) as illustrated in Fig. 4. 
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Fig. 4. Network of autonomous vehicles. 

Typically, VANETs achieve four main types of 
communication listed as follows: 

 Vehicle-to-Vehicle (V2V) communication: This allows 
vehicles to share traffic safety information and their 
status information like speed, position, and direction, to 
maintain good and safe driving conditions [15]. 

 Vehicle-to-Infrastructure (V2I) communication: This 
allows vehicles to interact with RSUs (V2R) for traffic 
safety information such as accidents, congestion alerts, 
and various warning messages. In this phase, vehicles 
can also communicate with other infrastructures such 
as satellite and Cellular for receiving their navigation-
related data and other remote communications [16]. 

 RSU to RSU (R2R) communication: This allows 
nearby RSUs to interact and share network status 
information. 

 Vehicle to Everything (V2X) communication: The 
V2X represents all the vehicular interactions with a 
large range of communication entities, such as smart 
devices, smart homes, pedestrians, clouds, computers, 
cellular networks, etc. [17]. This also includes V2V 
and V2I. 

The vehicular interactions use different types of wireless 
communications protocols including short-range technologies 
(e.g. ZigBee, Bluetooth, and ultra-wideband (UWB)); 
medium-range technologies (e.g. Wi-Fi and “dedicated short-
range communication (DSRC)”); and long-range technologies 
(e.g. Cellular Communications) [18]. The DSRC also known 
as “Wireless Access in Vehicular Environments (WAVE)” is 
adopted for V2V and V2R communications whereas cellular 
technologies are preferable for other V2I communications 
[19]. In addition to that, the AV uses the WIFI interface to 
interact with cloud and mobile applications for remote control 
[20]. 

D. Security and Privacy Requirements for AVs 

The input, processing, and communication layers work 
together to create a well-functioning driving capability for 
AVs and their communication environments [21], but 
compromising any layer can destabilize the vehicle leading to 
harmful damage with direct consequences on human safety 
and economy [22]. Therefore, the security of AVs is a high 
priority and should cover all their internal and external 

interaction aspects. Some common security requirements are 
given as follows: 

1) Availability: The internal components of AVs must 

remain accessible for collecting, processing, or transmitting 

data to ensure continuous operability. Also, the vehicular 

networks must stay available for receiving and sending safety-

related information even during critical conditions such as 

high mobility. Therefore, AVs must be secured against attacks 

that can result in availability issues. 

2) Authentication: This is a primary security measure 

where each node must be able to identify the source node that 

has sent a given message before going through further 

interactions. Therefore, vehicular networks must be secured 

against intrusions of malicious nodes to prevent attacks. For 

the sake of real-time requirements, rapid authentication 

methods are preferable to minimize communication delays. 

3) Confidentiality and integrity: The exchanged messages 

between different nodes must only be accessible by the 

authorized members and each node must be able to verify that 

the received message was not modified or altered during 

transmission. The cryptographic algorithms are commonly 

used to achieve confidentiality and integrity requirements, but 

again, rapid encryption methods are necessary for vehicular 

applications to avoid added communication delay. 

4) Privacy and anonymity: As a large amount of data is 

collected by AVs, processed, or transmitted over the network, 

the private information of users must not be exposed to 

unauthorized parties. This requires strict protection of 

identification information against potential privacy leakages. 

5) Monitoring: In presence of multiple attacks, vehicular 

networks must be controlled to identify malicious nodes and 

actively remove them from vehicular communications through 

an appropriate authority. Therefore, real-time monitoring 

methods are required to efficiently prevent potential attacks. 

E. Security and Privacy Threats Against AVs 

Depending on the attack opportunity, attackers can reach 
AV components using remote interfaces or through physical 
access [23]. In the remote attack, any component capable of 
interacting with the surroundings can be vulnerable where an 
attacker can perform different types of attack aiming to steal 
information, to control a vehicular function, or to interrupt an 
operation [9]. In the physical access attack, the attacker can 
inject malicious codes into the vehicle’s system using the 
onboard ports, physically damage a component, or insert an 
additional fake component to transmit wrong data into the 
vehicle’s system [24], [25]. Some common attack vectors on 
AV components and communications are given as follows: 

1) Sensor spoofing: The attacker manipulates and 

generates fake signals stronger enough to force sensors to 

detect and transmit wrong data [26]. This attack aims to 

control the decision-making of a targeted ECU which will 

receive the collected data and make wrong decisions. For 

example, if the GPS sensor detects stronger signals from the 

attacker, the navigation ECU of the vehicle can decide to 
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follow a different trajectory which is intended by the attacker 

as illustrated in Fig. 5. 

 
Fig. 5. Illustration of AV’s GPS spoofing attacks [27]. 

2) Sensor jamming: It consists of blocking the sensor’s 

perception by sending noise signals to interfere with normal 

signals [28]. This attack can interrupt operations of an ECU 

that depends on data from the targeted sensor. For example, if 

obstacle detection sensors are not able to collect data, the 

speed control ECU can decide emergency braking which can 

lead to accidents and traffic congestion as illustrated in Fig. 6. 

 
Fig. 6. Illustration of AV’s sensor jamming attacks [29]. 

3) Blinding and adversarial images: The attacker can use 

strong light beams to blind or confuse the perception of the 

targeted camera [22]. Adversarial images generally target the 

machine learning models that are used for image recognition, 

where attackers manipulate images with adversarial samples 

that appear to be normal to human eyes but can cause huge 

confusion to the model producing incorrect outputs [30]. For 

example, if the attacker manipulates a stop road sign, the 

vehicle can misinterpret the captured image as a speed 

limitation and therefore speed up instead of slowing down, 

which can lead to harmful accidents as illustrated in Fig. 7. 

 
Fig. 7. Illustration of AV’s camera attacks [31]. 

4) Malware and message injection: The attacker runs 

malicious code in the AV’s system using the OBD ports, by 

flashing into its memory or through the process of firmware 

updates [32]. Also, the attacker can inject fake information 

through vehicular communications and force vehicles to take 

action on wrong data performing the intended activities [33]. 

These attacks aim to execute a specific task in a targeted ECU 

or interrupt its normal functionality as illustrated in Fig. 8. 

 
Fig. 8. CAN network attacks [34]. 

5) OBD Attack: Historically, dedicated handheld tools are 

used to scan information through OBD ports but most modern 

OBD devices such as Telia Sense [35] and AutoPi [36], allow 

connection with personal computers and smartphones for self-

diagnostics purposes. As shown in Fig. 9, an attacker can use a 

compromised OBD device to access the vehicle’s system 

which can allow executing a malicious program in targeted 

ECUs to control the vehicular functions. 

 

Fig. 9. OBD attacks. 

6) DoS (Denial of Service) and DDoS (Distributed DoS): 

This attack aims to create unavailability of a service. It can 

target protocols and networks by sending excessive bad traffic 

packets to disrupt communications [37]. This attack can 

isolate a targeted vehicle from communicating with others or 

block the entire vehicular network leading to unwanted traffic 

conditions. The DoS and DDoS attacks can target AVs in both 

the internal and external communication aspects. 

7) Eavesdropping: The attacker can intercept the 

exchanged information between different entities and secretly 

analyse or modify them to serve a malicious goal [37], [38]. 

The Man in The Middle attack is a typical example where the 

attacker modifies data between different entities and lets them 

believe that they are communicating with each other. This 

attack aims to access private information or to gain control 

over the vehicle’s behaviour. 

8) Message replay: The attacker can retransmit the past 

traffic status information in the vehicular network to mislead 

vehicles into believing that the action is currently happening 
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[28]. This attack can create traffic disorder and allow attackers 

to attempt their goal causing accidents or congestions. 

9) Black hole: The attacker can manipulate the network 

informing other nodes that the malicious node has the shortest 

path to their destination [39]. After receiving packets, the 

malicious node will drop all of them to cause data loss 

blocking other nodes from receiving safety information. This 

attack can disrupt vehicular communications with the illusion 

of a normal driving environment. 

10) Sybil: This attack consists of creating multiple fake 

identities in the network known as Sybil nodes which are used 

to transmit fake information to other nodes [28], and therefore, 

provoke the illusion of a busy network. 

11) Physical damage: The attacker can target a specific 

component in the vehicle and destroy it [21]. This attack aims 

to interrupt the normal operations of the targeted component. 

III. LITERATURE REVIEW 

With the rapid development of connected and autonomous 
vehicles, several studies and hypothetical demonstrations in 
the literature have raised security weaknesses. In recent 
studies reported in [40] and [41], connected vehicles were 
targeted by more than 1300 reported cyberattacks from 2010 
to 2023 and the analysis has shown that the attack frequency 
increased by 225% from 2018 to 2021, where 85% of attacks 
used remote interfaces and 54.1% were done by malicious 
actors leading to system control, vehicle theft, and 
unauthorized access to private data of users. This section 
exposes attack methods against AVs and the proposed 
countermeasures. 

A. Sensors: Attacks and Defences 

In general, sensors simply collect data and transmit them 
for further processing without authentication [21]. This fact 
makes sensors vulnerable to spoofing and jamming attacks. 

1) LiDAR Sensors 
Attacks: Authors in study [42] reported a successful 

jamming attack on a LiDAR sensor, the “ibeo LUX3 model”, 
which consisted of sending higher intensity light to the 
LiDAR and blocking the acquisition of legitimate reflected 
light waves. Two variations of attack against LiDAR sensors 
were also demonstrated in study [43], where authors first 
showed the possibility of manipulating different LiDAR 
sensors of the same AV to perceive objects farther or closer 
than their real locations, by recording signals sent from one 
LiDAR sensor and then relaying those signals to the other 
LiDAR sensor. The second attack was to send fake signals to 
the targeted LiDAR sensor and make the vehicle believe that it 
was approaching a large obstacle. Authors in study [44] also 
performed this second attack on a LiDAR sensor, the “VLP-16 
model”, and explained that most LiDAR sensors are 
vulnerable to this attack especially those with large receiving 
angles. 

Defences: Authors in study [45] proposed a new LiDAR 
scheme to detect jamming attacks based on random 
modulation of light waves. This modulation creates four 
polarization states (horizontal, vertical, diagonal, and anti-
diagonal) for the photon and the jamming attack is detected 

based on a comparison of distances measured from the states. 
However, the authors acknowledged that their proposed 
scheme cannot filter jamming signals out of legitimate signals. 
Authors in study [46] proposed a method to detect fake input 
signals from LiDAR sensors by using the previous data frames 
to build a momentum model. However, building this model 
would require high computational power and time which is 
not adequate for real-time and resource-constraint applications 
such as AVs. The use of multiple LiDAR sensors was 
proposed in [44], to have overlapping views of the vehicle’s 
surroundings or to reduce the signal-receiving angle for each 
sensor. This technique can reduce attack chances by 
preventing spoofing attacks on all the sensors at the same 
time, but requires a high number of LiDAR devices to cover 
all the vehicle’s surroundings and therefore increases the cost. 
Authors in study [47] also proposed embedding identification 
data onto LiDAR’s light waves by modulating them together, 
which allows sensor nodes to authenticate the received signals 
and therefore prevent LiDAR spoofing attacks. An experiment 
was conducted in [48], and the authors concluded that it 
becomes more difficult to succeed in LiDAR spoofing attacks 
when object detection is based on machine learning (ML) 
models. Authors in study [49], also confirmed the 
effectiveness of using ML models to detect LiDAR spoofing 
attacks. A LiDAR spoofing mitigation algorithm was 
proposed in [50] to detect adversarial objects and non-existing 
obstacle attacks where authors claimed correct attack 
detection based on simulation results. 

2) Radar sensors 
Attacks: A spoofing attack on a Radar device, the “Ettus 

Research USRP N210 model”, was experimented with [51], 
by recording the broadcasted Radar signals to modify their 
phases and re-broadcast them to Radar sensors. This caused 
incorrect distance calculations and resulted in perceiving 
objects at a 15-meter distance while the real distance was 121 
meters. Authors in study [52] demonstrated that it was 
possible to manipulate an object’s velocity together with 
distance using spoofing attacks on FMCW Radar sensors, by 
designing an adversarial Radar to simulate two scenarios of 
attack provoking emergency braking and acceleration in a 
victim vehicle. Authors in [53] performed a similar attack on 
an FMCW Radar using a semi-passive modulated transponder 
and reported that it is possible to confuse a radar perception 
with ghost targets at different distances and velocities by 
simply changing the modulation frequency of the transponder 
without the need to use complex techniques. Also, authors in 
[54] demonstrated a jamming attack on Radar sensors for 
manned and unmanned aerial vehicles (UAV) where the 
attacker can modify the amplitude and the frequency of the 
recorded signals and then re-broadcast them to the Radar 
sensor to cause failure in object detection. 

Defences: To mitigate spoofing and jamming attacks, a 
“physical challenge-response authentication (PyCRA)” was 
proposed in study [55], which sends random signals called 
challenging signals in the Radar sensing environment and 
detects fake signals based on a noise threshold. The PyCRA 
shuts down the sensing signals at random times, which was 
criticized to potentially affect AV safety-critical components 
by the authors in [56], who proposed an alternative method 
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called “Spacio-Temporal Challenge-Response (STCR)” and 
claimed to achieve better performance by transmitting 
challenging signals in random directions together with sensing 
signals instead of shutting them down. Once a malicious 
signal is detected, the reflected challenging signals are used to 
identify the attack directions and exclude them. Authors in 
[57] experimented with an unsupervised deep-learning method 
on Radar system data to detect manipulation attacks and found 
an accuracy of 88% detection rate. They defended that their 
technique could be used in AV’s Radar systems to mitigate 
spoofing attacks, by learning the correlation between 
categorical and numerical features from Radar signals. 

3) GPS Sensors 
Attacks: The GPS spoofing attacks were analysed in study 

[58], where authors explained how it can be easy for an 
attacker to carry out GPS spoofing attacks by using hardware 
capable of generating stronger GPS signals, broadcasting them 
to GPS receivers in a chosen environment to force them to 
switch from legitimate satellite signals and manipulate their 
location calculations. In 2013, a man was arrested in New 
Jersey for using a GPS device that was interfering with GPS 
ground-based receivers of Newark’s Liberty Airport [59]. This 
device was able to block surrounding GPS receivers from 
receiving legitimate GPS signals and he claimed using it in the 
company truck simply to hide from his employer. In [60], 
authors demonstrated a successful GPS attack using a low-cost 
device assembled from conventional components and were 
able to manipulate the navigation data of 38 real cars out of 40 
participants to follow a wrong predetermined destination 
without being noticed. The authors discussed that this attack 
may not succeed when the driver is familiar with the location 
but it represents a high risk for self-driving vehicles. Authors 
in study [61] also demonstrated a new approach to GPS 
attacks that can succeed in manipulating navigation routes on 
vehicles where security mechanisms are used such as internal 
navigation system (INS). The technique consists of exploiting 
existing navigation data between the vehicle’s start and 
destination points to identify similar routes with the original 
trajectory using an algorithm and then forcing the vehicle to 
follow the most similar trajectory. The authors claim that this 
attack can be successfully executed due to the negligible 
inconsistencies between the original and the spoofed routes. 
Also, authors in study [62] proposed a spoofing generator that 
cancels all legitimate GPS signals and allows surrounding 
GPS receivers to collect the attacker’s generated signals. The 
authors defended that their spoofing generator can cover all 
open-sky satellites making this attack difficult to detect based 
on a comparison of signal consistency from different GPS 
receivers. 

Defences: To prevent GPS attacks, the use of multiple 
antennas was proposed in study [63], to receive GPS signals 
and measure their phase differences to detect spoofing attacks 
but this technique would be inefficient under attack methods 
as presented in study [62]. Authors in study [64], proposed the 
use of coding in GPS systems to reduce jamming attacks 
where GPS signals are encoded and modulated by the satellite 
before transmitting to receivers that will then demodulate and 
decode to recover the original GPS signals. However, this 
method requires changes in GPS satellites which is very 

difficult and also, the authors acknowledged that their method 
is less effective when the jamming signals are too strong than 
the legitimate ones. In many applications, a technique known 
as “Receiver autonomous integrity monitoring (RAIM)” is 
used in which, the observed GPS signals are compared with 
the expected signals to determine the integrity of the received 
signals [65]. The RAIM uses a pseudo-ranging measurement 
to produce several GPS positions based on redundant signals 
[66]. However, the Advanced RAIM (ARAIM) used as an 
extension for other navigation systems beyond GPS, was 
criticised in study [67], for having availability issues when one 
or more satellites cannot be reached. Later, authors in [68] 
proposed a solution to improve the availability of ARAIM up 
to 98.75%. Authors in study [69], proposed integrating 
transmission signatures into GPS satellites which will allow 
GPS receivers to authenticate the received signals. This 
method can easily help to detect spoofing attacks but it would 
involve higher costs for changes in satellites. A rotation-based 
technique was proposed in study [70], for GPS receivers that 
can help to determine the angle of arrival of GPS signals from 
different satellites and compare them to detect spoofing 
attacks. Authors in study [71], proposed a GPS spoofing 
detection technique for vehicular GPS receivers based on the 
Doppler Shift associated with them. In their approach, authors 
intentionally perturbed the vehicle’s velocity and observed the 
changes in Doppler Shift value if they were consistent with 
velocity variations or not. Due to the unpredictability of these 
variations, spoofing signals cannot follow the changes. A GPS 
spoofing mitigation technique was proposed in study [72], 
based on the Isolation Forest that consists of detecting the 
attack and isolating the compromised GPS receiver before 
correcting it using the location data of roadside units. The 
authors claimed to achieve good results but this method would 
require the use of multiple GPS receivers to avoid service 
interruption. Authors in study [73] and study [74], 
demonstrated through simulation that machine learning and 
deep learning algorithms can achieve detection of both GPS 
spoofing and jamming attacks with high accuracy. 

4) Image Sensors (Cameras) 
Attacks: A blinding attack was experimented in study [43], 

on a car’s camera (MobilEye C2-270) where authors projected 
different light beams on it. First, an LED matrix of 940nm 5*5 
and an LED spot of 850nm were used and able to blind the 
camera from perceiving images which took 5 seconds to 
recover later. A 650nm laser was then used on it to achieve the 
same results but the camera never recovered again. Authors in 
[75] conducted similar experiments to permanently blind a 
camera and concluded that both LED and Laser beams can 
blind cameras with enough intensity but infrared beams can 
make exceptions due to their narrow frequency band. 
Attackers can also use other methods such as manipulating 
images to cause incorrect predictions of road signs by ML-
based algorithms as described in studies [76], [77], [78], [79]. 
In 2017, Google researchers created stickers with patterns and 
attached them to some important road objects such as speed 
limitations and stop signs [80]. The authors claimed that the 
stickers were able to provoke incorrect predictions in the used 
algorithms. Authors in study [81], experimented with similar 
attacks by decorating stop signs with many black-and-white 
stickers and found a failure of 100% of the algorithm to 
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recognize the stop signs with a fixed camera and 84.8% with a 
moving camera on a vehicle. Authors in study [82], 
experimented with a blinding attack using electromagnetic 
waves to interfere with cameras and were able to cause 
incorrect observation of stop signs. This attack is hard to 
detect because it does not require a physical modification. A 
similar experiment was conducted in study [83], using 
invisible infrared lights which affected the captured image’s 
pixels with a magenta colour in ambient light. The authors 
succeeded in perturbating cameras on the Tesla Model 3 using 
off-the-shelf IR light sources and confirmed the effectiveness 
of their attack in various settings. 

Defences: To mitigate camera blinding attacks, the authors 
in [43] proposed two solutions. The first consists of using 
multiple cameras in the AV to capture redundant images and 
avoid single-camera failure. This strategy makes it difficult to 
attack all cameras simultaneously due to the limited beam 
widths of LED and Laser spots but can increase the cost 
according to the number of cameras. The second solution is to 
integrate a light filter into cameras that can cut near-infrared 
lights. This strategy can be implemented at a low cost but 
lacks experiments to confirm its effectiveness. The authors in 
[83], proposed to implement infrared light filter-based 
software on cameras as mitigation to their attack. Authors in 
[84], proposed the use of ML algorithms to predict images and 
compare them with the captured images and claimed that this 
technique can help to detect blinding attacks and take the 
required actions before any damage. The use of machine 
learning models as a solution against adversarial image attacks 
has also been discussed in the literature. In these models, three 
major aspects are considered including pre-processing input 
images as detailed in [85], [86], [87], [88], training with 
adversarial image samples as proposed in [89], [90], [91], and 
detecting adversarial inputs using run-time information as 
described in study [92]. These models can be integrated into 
ECUs which receive their input images from cameras for the 
AV’s vision. 

B. Control and Processing Units: Attacks and Defences 

The internal components of the AV can exchange 
information through the CAN network, where ECUs receive 
their input data from the different sensors, communication 
interfaces, and/or other ECUs [93], [94], [95]. Therefore, any 
failure from the input source can directly influence the ECU to 
give incorrect output. Also, attackers can observe the CAN 
messages and inject malicious data through OBD ports or 
telematic interfaces to target a specific ECU. 

1) ECU Attacks: Authors in study [96] experimented with 

an attack by connecting a laptop to a vehicle’s OBD port to 

access the CAN network and run a custom code named 

CarShark in targeted ECUs, which was able to compromise 

their initial functions. They warned that no security measures 

were applied during vehicle software updates through the 

OBD port. Authors in study [97] have also shown that an 

attacker can develop a malicious program and let a vehicle 

owner download it as a self-diagnostic application which will 

allow the control of ECUs through OBD connexions. Authors 

in study [98], were able to access a vehicle’s ECUs through 

Bluetooth and long-range connections allowing them to 

analyse the firmware and execute their codes. The authors 

reported that an attacker can use the same process to remotely 

inject malicious codes in a targeted ECU and compromise its 

functions. In Black Hat 2015, some researchers demonstrated 

a successful attack on a Jeep Cherokee ECUs using remote 

interfaces [99]. The authors were able to control the vehicle’s 

braking, steering, and acceleration systems. Authors in study 

[100], focused a study on discovering weaknesses in the 

deployed access control and communication mechanisms on 

Tesla vehicles, the “P85 and P75 models”, and demonstrated 

how ECUs can be remotely controlled by sending malicious 

packets to the CAN via wireless technologies. Authors 

experimented with their attack, to remotely control the 

steering ECU of the Tesla Model S 75 [101]. Authors in study 

[102], demonstrated CAN vulnerabilities using experimental 

fuzzy-testing and reported that an attacker can easily access 

the CAN network and control a targeted ECU of the vehicle 

with necessary protocol analysis tools. 

2) ECU Defences: Many mitigation solutions have been 

proposed in the literature to prevent ECU attacks. Authors in 

[103], proposed an attack detection technique which calculates 

entropy during normal and abnormal CAN communications to 

detect suspicious activities. The authors in study [104], 

proposed a technique to monitor all messages in the CAN 

network where each ECU will use a flag to indicate a message 

transmission time, and therefore, detect unauthorized 

messages based on the time threshold. This method was 

criticized in study [105], because it requires modifications in 

every ECU in the vehicle, then proposed to use identity 

checking of ECUs and observe the frequency of their message 

transmissions. If a significant change in frequency is detected 

from an ECU, then it can be considered compromised. A 

similar technique was proposed in stuy [106], to detect 

abnormal massages based on interval measurements of 

periodic CAN messages. Authors in study [107], proposed to 

use a machine learning-based device that can be connected to 

OBD ports to detect malicious patterns from the CAN traffic 

data and disable the messages when an attack is detected to 

prevent ECUs from being compromised. Authors in study 

[108], proposed to implement a hardware-based protocol that 

can achieve both CAN access authentication and message 

encryptions. Authors in [109], proposed a technique to 

monitor the correlations between ECU messages and estimate 

the behaviour of the vehicle. In this method, a specific ECU is 

detected as compromised when there is a sudden change in its 

messages but a sudden change in the vehicle’s behaviour 

would mean multiple ECU attacks. Authors in study [110], 

proposed an Intrusion Detection System (IDS) to detect CAN 

network attacks based on ML algorithms. They experimented 

with their model using a CAN dataset and claimed to 

successfully classify DoS and Fuzzing attacks with high 

accuracy. Authors in study [111], proposed a secure boot 

scheme based on cryptographic algorithms that can protect the 

CAN network from malicious software being executed by the 
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vehicle’s ECUs. After experiments, the authors claimed to 

achieve good performances with the Cipher-based MAC 

(CMAC) and the elliptic curve digital signature (ECDS) 

algorithms in terms of authentication and execution speed. 

Authors in study [112], also proposed an ML-based anomaly 

detection for CAN networks using the deep autoencoder 

method and claim to achieve high detection accuracy of up to 

99.98%. 

C. Vehicular Communications: Attacks and Defences 

Vehicles are mobile and their interactions with various 
external entities make them vulnerable to several cyberattacks. 

Attacks: Authors in study [113] conducted a simulation on 
a group of cooperative driving AVs where they experimented 
with an attack to compromise one of the vehicles and then 
used it to transmit false information in the vehicular network, 
which resulted in sudden disturbances in vehicles’ speeds. A 
DoS attack was also experimented in study [114], by 
saturating a V2I network channels with excessive noise 
messages through simulation, where authors showed that this 
kind of attack in practice, can block all vehicles from sending 
messages in the network and therefore interrupt the vehicles’ 
cooperation. In study [40], a group of researchers conducted a 
study to explore the security of automotive APIs, telematic 
systems, and the infrastructures that support them. The authors 
discovered multiple vulnerabilities across 19 major global 
suppliers and original equipment manufacturers (OEM) and 
exploited them to remotely control vehicles and access 
sensitive data. 

1) Authentication defence mechanisms: Authors in study 

[115], proposed an authentication method for V2V 

communications in VANET, where vehicles periodically 

broadcast their presence information to others and record the 

received announcements to determine a neighbouring group, 

and then identify malicious nodes by sharing the composition 

of groups. Authors in study [116] proposed a V2I 

authentication method called “Security Credential 

Management System”. The method was based on a public-key 

infrastructure and claimed to provide good privacy protection, 

but it suffers from high computation and communication 

delays. 

Authors in study [117] proposed an authentication method 
to achieve group signatures for short-term communications in 
VANET based on the Boneh-Shacham algorithm. Authors in 
study [118] also proposed an authentication system for 
VANET which generates pseudonyms based on vehicles’ IDs 
through public key cryptography and then uses these 
pseudonyms in the authentication processes for privacy-
preserving purposes. They used an ID-based signature for V2I 
authentication and an ID-based online/offline signature for 
V2V authentication and defended the feasibility and efficiency 
of their method in vehicular networks based on performance 
evaluations. 

Authors in study [119] proposed a lightweight 
authentication method for handover in V2X communications 
where each vehicle can be allocated a temporary identity from 

its home network and then use that identity when moved to a 
new network. The authors claimed to achieve better 
performance with low computation overhead through 
simulations. Authors in [120] proposed a security technique 
for vehicular LTE networks which can mutually authenticate 
vehicle nodes and preserve their privacy. They evaluated their 
method to have better performances in terms of 
communication cost, security level, and less computation. A 
privacy management algorithm based on hybrid cryptography 
was proposed in study [121], to ensure trusted communication 
between vehicles. The authors used an asymmetric identity-
based digital signature and claimed to achieve better 
performances in terms of communication latency, computation 
and storage overheads.  

Authors in study [122] proposed a self-checking 
authentication method for VANET where vehicles and RSUs 
can verify each other without including a Trusted Authority 
(TA). Initially, the TA is responsible for the registration of all 
vehicles and RSUs before they join the vehicular network 
environment and therefore TA will intervene in the vehicle’s 
authentication process through RSUs. This method proposed 
to allocate a group signature to vehicles at their first 
authentication from one RSU domain and then use the same 
signature for authentication in other domains without going 
through the whole process. Authors claim that this method 
meets security requirements and benefits from faster 
authentication. 

Authors in study [123] proposed a multifactor 
authentication process for AVs and claimed to achieve good 
security checks without revealing sensitive information of 
users. Authors in study [124] also proposed a multifactor 
authentication for remote vehicle diagnosis and maintenance 
which requires both biometric and password verifications 
from the vehicle’s owner or the Service Centre to ensure 
legitimate access to the system. Through performance analysis 
of the technique, the authors claimed that it achieves a robust 
security level. An edge-based vehicular authentication 
architecture was proposed in study [125], where different 
vehicles can be grouped to form a vehicular cloud. The 
authors claim easier attack detections using deep learning 
algorithms in this technique that offer a lightweight 
authentication of vehicles for secure V2V communications. 

Authors in study [126] proposed an identity-based 
cryptographic method for V2V authentications and security 
key agreement, where the ID of each vehicle is used as its 
public key, which can expose this method to privacy leakage. 
A Blockchain-based One-Time authentication method was 
proposed in study [127], for V2X communications. In this 
method, the identities of nodes are encrypted before sharing 
instead of revealing the real identities, and different proofs are 
generated to authenticate nodes which are verified through a 
noninteractive blockchain. Based on security analysis, the 
authors claim to achieve secure V2X authentications with 
reduced delay. Authors in study [128], proposed an aggregate 
and continuous authentication technique using federated 
learning for VANET applications. Based on the edge devices 
as learning centre between vehicles and RSUs, the authors 
claimed to achieve a secure and privacy-preserving 
authentication with reduced communication overheads. 
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2) Confidentiality defence mechanisms: In study [129], a 

“cryptographic mix-zone (CMIX)” algorithm was proposed to 

secure exchanged data in vehicular networks. In CMIX, the 

encryption process is based on a group secret key, where the 

same key is shared between all the vehicle nodes in the 

network to save time from individual key sharing. However, 

all the security is compromised when an attacker can intercept 

the encryption key during its broadcasting. 

Authors in study [130] proposed a game theory technique 
known as the Markovian game to achieve secure 
communication, where each vehicle in the network is 
considered a player and players are either data holders (DH) or 
data requesters (DR). In this game, each vehicle earns income 
according to the provided services and uses that income to buy 
access to private data. If a DR node wants to access private 
data from a DH node, it will propose a motivation price then 
the DH will decide a privacy concession according to its 
satisfaction. The problem with this game is that the DH cannot 
verify if the DR is a malicious node or not before privacy 
concession. Therefore, the algorithm should consider other 
parameters to prevent network intrusion. 

Authors in study [131] proposed a secure V2X 
communication method based on a hash chain of secret key 
cryptography and claimed to provide secure messaging 
between vehicles at low cost. The authors in [132] proposed a 
batch verification method using the “Paillier cryptographic 
algorithm” to solve privacy issues in VANETs, in which, 
vehicles can cooperate to identify malicious users without 
disclosing sensitive information. This method can achieve 
privacy-preserving communications but does not guarantee the 
confidentiality of exchanged data. 

3) Network monitoring defence mechanisms: Authors in 

study [133], proposed a security algorithm to detect malicious 

vehicles based on their behaviours in the network and then 

isolate them from the rest of entities. This method can reduce 

the chances of successful sybil attacks but isolating a vehicle 

node from the network as a prevention technique can represent 

a danger in some situations, especially in complex traffic. 

Authors in study [134] proposed an intrusion detection system 

to detect attack scenarios against vehicular networks including 

packet duplication, selective forwarding, resource exhaustion, 

wormhole, black hole, and Sybil attacks. After simulation, the 

authors claim that the proposed algorithm can provide good 

attack detection accuracy with minimum detection time. 

Authors in study [135] proposed an intrusion detection 
system for vehicular networks based on “deep neural network 
(DNN)” to detect attacks. Using an unsupervised training, the 
DNN algorithm could accurately classify normal packets and 
attacked packets and able to detect malicious events against 
the vehicle as a result. Therefore, this method can perform 
better in vehicular networks when many attacked packets from 
different attack scenarios are used in the training process of 
the DNN. 

Authors in study [136] proposed a voting technique to 
identify rogue nodes in VANET. In this method, two vehicles 
vote for each other when they can communicate without any 

security issues. The trust level of a vehicle in the network is 
evaluated according to the number of gathered votes, where a 
vehicle with a small value of a vote is considered a rogue node 
and a potential source of attack. This method can achieve 
good performance in a fixed number of nodes since it is an 
experience-based system but does not perform in scalable 
network scenarios like vehicular networks, where vehicles can 
join a locale network and leave at any time due to their 
mobility. Authors in study [137] proposed a coalitional 
security game to detect malicious nodes in vehicular networks 
based on Dempster-Shafer's theory. The game consists of 
building trusted relationships between vehicles based on their 
reputation, experience, and knowledge. However, attackers 
can target a vehicle with experience and a good reputation and 
use it to perform attacks in the network. Also, vehicles can be 
in new environments at any time due to their mobility without 
previous experience gained from that environment. 

Authors in study [138] proposed an intrusion detection 
system using ML models to detect “Distributed Denial of 
Service (DDoS)” attacks in V2I communications. The authors 
claimed to achieve good detection accuracy after various 
testing. The same approach was proposed in study [139] based 
on the Support Vector Machine algorithm where authors 
achieved high DDoS detection performances through 
simulations. Authors in study [140] proposed an attack 
detection mechanism for AVs that works both in online and 
offline modes. The offline phase is used to establish 
parameters based on which, the detection of attacks and 
responses are executed in the online phase. 

IV. DISCUSSION 

Security is a very active research area for information 
technologies, and the introduction of AVs has increased the 
interest where each newly published work can offer fresh 
approaches to system security problems. However, most of the 
existing security standards are still facing challenges in 
addressing issues in this cutting-edge technology where 
additional critical parameters are being considered regarding 
real-time communication, resource constraint computation, 
user privacy, fault detection, network scalability, quality of 
service, etc. [141]. The previous security mechanisms 
presented in the literature are discussed in this section to point 
out the open security challenges for further investigations. 

A. Sensors 

Sensors represent the perception elements that collect data 
for AVs and are used to make decisions. Therefore, the 
security of sensors is crucial and the proposed attack 
mitigation methods should consider some requirements 
including: 

 Detection of adversarial signals such as spoofing and 
jamming attack signals, and filter them to allow good 
perception of legitimate signals under attack situations; 

 Availability: the solution should not disrupt other 
services during its execution and should have faster 
execution to meet the real-time functionality of AVs; 

The defence strategies related to the security of sensors are 
discussed in Table I. 
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B. The In-Vehicle Network 

In the internal network of the vehicle, the components 
interact to perform driving tasks together, and any successful 
attack or dysfunction can compromise the vehicle’s normal 
operations. Therefore, the security measures should include 
the following requirements: 

 Authentication: Every component should be identified 
and trusted before accessing the CAN network; 

 Attack detection: suspicious activities in the CAN 
network should be identified, and compromised nodes 
should be excluded from sending data in the CAN. 

 Availability: the solution should not disrupt other 
services during its execution and should have faster 
execution to meet the real-time functionality of AVs; 

The defence strategies related to the security of CAN 
networks are discussed in Table II. 

TABLE I.  DISCUSSION OF SECURITY METHODS FOR SENSORS 

Attack 

Types 

Target 

components 
Proposed Defense Strategies Contributions Limitations 

Sensor 

Spoofing 

and 
Jamming 

LiDAR, 

Radar, GPS 

1) “Prevention of spoofing and 
jamming attacks” using 

multiple sensors [44], [63]. 

2) “Detection of spoofing and 
jamming attacks” based on 

signals’ directions [55], [56]. 
3) “Detection of spoofing and 

jamming attacks” using the ML 

models [48], [49], [48], [49], 
[50], [57], [73], [74]. 

4) “Detection of spoofing and 

jamming attacks” based on 
signals’ authentication [45], 

[47], [64], [69]. 

1) The use of multiple sensors provides an 

overlapping coverage of the vehicle’s 
surroundings, which can therefore reduce 

attack chances since it becomes difficult to 

compromise all sensors together. 
2) The detection of attack directions can 

help to reject signals arriving from them 
and therefore prevent attacks. 

3) The ML models increase the detection 

accuracy of spoofing and jamming signals. 
4) The authentication of signals through 

modulation or signature methods, helps to 

identify attack signals from legitimate ones. 

1) The main challenge with the use of multiple 
sensors to mitigate spoofing or jamming attacks 

is its implementation increases the cost. 

2) The detection of attack signals based on their 
directions can be performed when the nodes are 

fixed, which makes it inefficient for vehicular 
applications due to the mobility of vehicles. 

3) The ML-based attack detection methods lack 

experiments to determine their efficiency in 
realistic AV environments. 

4) The authentication of signals requires 

computational modifications in sensor nodes, 
which represents a high implementation cost and 

also involves higher computational delays. 

Open challenges: The spoofing and jamming attacks against sensors remain a serious challenge in the context of AVs. Most of the 

existing solutions aim to detect spoofing and jamming signals, but there is a lack of efficient methods to filter them and allow 
sensors to correctly collect legitimate signals in attack situations. Therefore, further investigations are needed to guarantee the 

security of sensors for AV applications. 

Sensor 

Blinding 

and 
Adversarial 

images 

Cameras 

1) Prevention of blinding 
attacks using multiple cameras 

[43]. 

2) Prevention of blinding 
attacks using light filters in 

cameras [43], [83]. 

3) Detection of blinding and 
adversarial image attacks using 

ML models [84], [85], [86], 

[87], [88], [89], [90], [91], [92]. 

1) Multiple cameras provide overlapping 
views of the vehicle’s surroundings to 

capture redundant images, which makes it 

difficult to blind all cameras together, and 
therefore, reduce attack chances. 

2) The integration of light filters into 

cameras can help to cut near-infrared lights 
and therefore prevent blinding attacks. 

3) The ML models increase the detection 

accuracy of adversarial image attacks. 

1) The main challenge with the use of multiple 
cameras to mitigate blinding attacks is that it 

represents a high implementation cost. 

2) The implementation of light filters needs to be 
experimented on real cameras to validate their 

effectiveness for AV applications. 

3) Complex and adequate dataset of adversarial 
examples are still needed to train ML models 

and extensively experiment them on realistic 

cameras to determine their effectiveness. 
 

TABLE II.  DISCUSSION OF SECURITY METHODS FOR THE CAN NETWORK 

Attack 

Types 

Target 

components 

Proposed Defense 

Strategies 
Contributions Limitations 

Malware 

and 

Message 
Injection 

CAN 

network, 

ECUs 

1) “Detection of CAN 
network attacks” 

based on entropy 

calculation [103]. 
2) “Detection of CAN 

network attacks” 

based on message 
transmission time 

[104]. 

3) “Detection of CAN 
network attacks” 

based on message 

frequency [105], 
[106], [109]. 

4) “Detection of CAN 

network attacks” 
based on 

authentication of 

ECUs [105]. 
5) “Detection of CAN 

network attacks” 

based on ML models 
[107], [110], [112]. 

6) “Prevention of 

1) The changes in entropy can identify 
irregular activities, which can be useful in 

detecting CAN traffic anomalies. 

2) The of message transmission times 
comparison is useful in identifying 

malicious data if the transmission time is 

higher than expected, which can 
particularly prevent message replay attacks 

without heavy computations. 

3) The frequency of messages can help to 
determine the behaviour of different nodes 

in the CAN network, and therefore, detect 

abnormal actions. 
4) The authentication of ECUs can prevent 

other ECUs from receiving malicious data 

from unidentified or illegitimate nodes. 
5) The ML models can detect complex 

attacks with high accuracy. They can 

analyze large volumes of data and easily 
adapt to evolving attack patterns using 

updated datasets. This can monitor the 

CAN network in real-time. 
6) The encryption of messages can prevent 

unauthorized access to data and guarantee 

1) The main challenge with entropy calculation is its high 
sensitivity to data distribution, which must be well modelled 

to provide meaningful entropy values. Also, small changes in 

data distribution can lead to significant changes in entropy 
values making it practically inefficient for vehicular security. 

2) The use of message transmission time can negatively 

impact the network in some unexpected situations such as 
transmission delays due to congestions or routing issues can 

falsely flag legitimate messages as malicious. Also, this can 

be vulnerable when the attacker manipulates the time. 
3) The attack detection based on the frequency of messages 

may only be useful for the security of sensors, which collect 

data at a regular rate. However, this method is inefficient for 
ECUs that randomly transmit messages based on the needs. 

4) The authentication of ECUs requires computational 

modifications in each ECU of the vehicle, which represents a 
high implementation cost and also involves higher delays. 

5) The challenge with ML models is that their Training and 

deployment require significant computational resources, 
which may not be feasible in constrained environments like 

ECUs. Also, there is a lack of experiments to determine the 

effectiveness of the ML models on realistic CAN networks. 
6) Many existing CAN networks lack built-in support for 

encryption, which requires significant hardware or software 
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CAN network 

attacks” using 
encryption techniques 

[108], [111]. 

the integrity of exchanged information in 

the CAN network. 

upgrades. Also, it would be challenging to implement and 

execute encryption algorithms in CAN networks because of 
their limited processing power and memory. 

Open challenges: The AVs remain vulnerable to malware and message injection attacks through OBD ports or telematics. 
Traditionally, the OBD ports are protected by a physical lock, which does not guarantee effective security. However, no security 

method was found in the literature that can distinguish legitimate OBD devices from malicious OBD devices when connected to the 

OBD port. Therefore, further investigations are needed to guarantee the security of ECUs for vehicular applications. 
 

C. Vehicular Communications 

Each AV is an autonomous system susceptible to joining a 
network environment where it will interact with everything 
using wireless interfaces. The exchanged information between 
the vehicle with the outside world will determine its driving 
behaviour in traffic, making it vulnerable to various attacks. 
Therefore, the V2X communications protocols should include 
the following requirements: 

 Authentication: Every entity including vehicles, smart 
devices, and RSUs, should be identified and verified as 
trusted before accessing the vehicular network; 

 Data protection: Exchanged information between 
entities in the vehicular network should be authentic 
and confidential to avoid unauthorized access; 

 Attack detection: The vehicular network should be 
controlled to detect suspicious activities, and exclude 
compromised entities from sending data in the 
network; 

 Compatibility: The solution should not disrupt other 
services during its execution. 

 Computational efficiency: The solution should have 
faster execution with low implementation cost to meet 
real-time and resource-constraint functionality of AVs; 

 Scalability: The solution should accept the changes in 
the number of network entities. 

The defence strategies related to the security of V2X 
communications are discussed in Table III. 

TABLE III.  DISCUSSION OF SECURITY METHODS FOR VEHICULAR COMMUNICATIONS 

Attack Types 
Target 

components 

Proposed Defense 

Strategies 
Contributions Limitations 

Network 

Intrusion attacks 

(identity theft, 
Sybil, replay, 

…) 

 

 

 

 

 

 

 

 

 

Eavesdropping 

(man in the 

middle, data 
manipulation, 

…), 

 

 

 

 

 

 

 

 

Communication 

Protocols 

1) Collaborative 

vehicular 

authentication 
[115], [125]. 

 

 
2) Public key-based 

vehicular 

authentication 
[116], [118], [121], 

[126].  
 

 

3) Group signature-
based vehicular 

authentication 

[117], [122]. 
 

 

4) Identity-based 
vehicular 

authentication 

[119], [120]. 
 

 

 
 

 

5) Multifactor-
based vehicular 

authentication 

[123], [124]. 
 

 

6) Blockchain-
based vehicular 

authentication 

[127]. 
 

1) The collaborative authentication is 
decentralized and reduces the risk of 

single-point vulnerabilities. As multiple 

entities validate a vehicle's credentials, 
this technique can help balance the load 

of authentication tasks and identify 

malicious nodes more effectively. 

2) The public key authentication uses 

strong encryption algorithms suitable for 

large-scale networks like vehicular 
networks, to ensure the integrity and 

authenticity of exchanged messages.  

3) The group signature cancels the need 

for individual authentications, reducing 

communication delays. It also allows 
vehicles to authenticate themselves 

without revealing their specific identity, 

which enhances user privacy. 

4) The identity-based authentication 

uses simple structures rather than 

complex and heavy cryptographic 
algorithms, which reduces computation 

and communication delays, making it 

suitable for time-sensitive applications. 
Also, it is easier to integrate identity-

based methods across different vehicular 

networks to meet specific security 

requirements. 

5) Combining multiple authentication 

factors (e.g., password/PIN, biometric 
data, cryptographic keys) makes it 

significantly harder for attackers to 

compromise the system. 

6) The blockchain provides robust 

cryptographic security and immutability, 

making it difficult for attackers to alter 
authentication records. 

7) The ML models gain from the high 

1) The challenge with collaborative authentication is 
that it involves multiple messages exchanged among 

vehicles or nodes, leading to increased network 

traffic, and therefore introducing communication 
delays. Also, this method can lead to security and 

privacy breaches because of the exchange of vehicles’ 

identity that can be intercepted and manipulated by 
attackers to have access to the network. 

2) The public key operations (e.g., encryption, 

decryption, and signature verification) are 
computationally intensive, which can introduce delays 

and may affect the real-time requirements of vehicular 
networks. Also, this method can put the security of the 

entire network at risk, when the private keys or the 

certificate authority that it relies on, are compromised. 

3) Generating and verifying group signatures can be 

computationally intensive, especially in a large 

number of group participants, which can impact real-
time applications and reduce the network performance 

in real-world vehicular environments. 

4) While promising, identity-based methods are less 
commonly deployed compared to certificate-based 

systems, limiting their effectiveness in verification 

and interoperability with existing infrastructures. 

5) The authentication based on factors like biometrics 

can frequently fail due to mismeasurements or 

environmental conditions (e.g., dirt affecting 
fingerprint scanners). Also, authenticating multiple 

factors can take additional computation time, which 

may affect real-time applications like collision 
avoidance or emergency communications. 

6)  Blockchain transactions can require significant 

time to be validated and added to the ledger, which 
may not meet the real-time requirements of vehicular 

networks. Also, the increase in the number of vehicles 

and authentication transactions can lead to blockchain 
bloat, requiring more storage and computational 

resources. 
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Network 

saturation (DoS 
and DDoS) 

 

7) ML-based 
intrusion detection 

[128], [134], [135], 

[138], [139]. 
 

 

 
8) Game theory-

based intrusion 

detection [130], 
[136], [137]. 

 
 

 

 
 

 

9) Data protection 
based on 

cryptographic 

algorithms [129], 

[131], [132].  

accuracy of attack detection capable of 

analyzing large volumes of data to 
detect complex attacks with the ability 

to adapt to evolving attack patterns by 

retraining with updated datasets. This 
can monitor vehicular communications 

on a real-time basis. 

8) The game theory models allow the 
system to predict and counteract attacker 

strategies effectively by making the cost 

of an attack higher than its potential 
benefit. A well-designed game-theoretic 

approach can enhance the precision of 
attack detection when the attacker's 

behaviour patterns are incorporated. 

9) Cryptographic algorithms provide 
robust protection against unauthorized 

access and ensure data confidentiality 

throughout its lifecycle, even when 
transmitted over insecure channels. 

They can be implemented across various 

systems including vehicular networks. 

7) The challenge with ML models is that their training 

and deployment require significant computational 
resources, which may become intensive for vehicles 

in case of the implementation of multiple ML 

algorithms. Also, there is a lack of experiments to 
determine the effectiveness of the ML models on 

realistic vehicular networks 

8) The main challenge with game theory-based 
security methods is that they require detailed 

knowledge of attacker and defender behaviours to 

create a realistic game-theoretic model. Due to this 
dependency on accurate input data, such as network 

traffic patterns and known attack strategies, the game 
theory model can easily fail to detect an attack 

effectively if the attacker uses strategies outside the 

modelled game. 

9) Cryptographic algorithms can be resource-

intensive, leading to delays in real-time systems like 

vehicular networks. Choosing a stronger encryption 
algorithm often involves a trade-off between security 

and performance, particularly in resource-constrained 

environments like IoT-based systems. 

Open challenges: Due to the high mobility of vehicles, they are permanently vulnerable to attacks through interactions 

with potentially compromised entities. Therefore, strong, efficient, and lightweight security protocols are still needed to 

defend vehicular networks from different intrusion, eavesdropping, and saturation attacks. 
 

V. PROPOSED SECURITY MEASURES 

To achieve good security and privacy requirements for 
vehicular applications while gaining from low computation 
and efficient implementation, we propose the use of powerful 
and innovative techniques. First, the cryptographic hashing 
algorithm is used for identity-based authentication, which 
achieves complex mathematical operations with faster 
computation. Secondly, homomorphic encryption is to be used 
to protect sensitive data communication between network 
entities for enhanced privacy and confidentiality. Finally, to 
build a Machine Learning based intrusion detection system 
using the transfer learning technique for multiple attack 
detection capability with efficient implementation. 

A. Authentication Protocol 

The proposed authentication protocol includes vehicles 
and their respective users, RSUs, and TA as illustrated in Fig. 
10. First, each vehicle should be used by a legitimate user who 
is authenticated before the vehicular authentication in the 
network. The user authentication phase will protect user 
information to preserve privacy and avoid malicious 
traceability. Secondly, every vehicle and RSU is registered by 
the TA before being allowed in the vehicular network. In this 
registration phase, TA protects the privacy of vehicles and 
RSUs and provides secure authentication parameters for them. 
Third, vehicles are authenticated by RSUs to be admitted in 
their respective communication ranges, and vehicles 
authenticate each other to communicate among themselves. 
The authentication phase is based on mutual authentication 
where entities can identify each other and securely agree on a 
communication key. In this phase, each entity uses a 
pseudonym identity and other parameters received from TA 
during the registrations phase which avoid sharing the real 
identity and therefore preserve their privacy in the network. 
Finally, the authenticated or legitimate entities can securely 
participate in vehicular communications. 

 
Fig. 10. Vehicular network authentication. 

B. Privacy and Confidentiality 

The proposed privacy and confidentiality mechanism for 
secure communication between vehicles, is based on 
homomorphic encryption as illustrated in Fig. 11. The 
homomorphic encryption offers the possibility to perform 
complex computations and data analysis on encrypted 
information without the need to decrypt them before [142], 
[143]. This represents a powerful solution for maintaining 
confidentiality and privacy during the transmission and 
processing of sensitive data. In the context of vehicular 
networks, each node can be a potential malicious node trying 
to collect private information. The homomorphic encryption 
can prevent unauthorized access to valuable information and 
therefore reduce the risk of data manipulation and breaches. 
Also, it enables traffic data analysis by the traffic authority 
and transportation companies without compromising the 
privacy of vehicular users and passengers. 
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Fig. 11. Vehicular homomorphic encryption. 

C. Intrusion Detection System 

The proposed intrusion detection system for monitoring 
vehicular communications is based on transfer learning 
techniques as illustrated in Fig. 12. The transfer learning 
makes it possible to train a machine learning model using 
different datasets while gaining knowledge from all of them 
[144]. In this process, the model is trained with a starting 
dataset then the pre-trained model is trained again with a new 
dataset. Instead of implementing different models in the same 
device to detect individual types of attacks, transfer learning 
allows the accumulation of knowledge in a single model to 
save time and resources which is therefore suitable for 
vehicular applications. 

 
Fig. 12. Intrusion detection system based on transfer learning. 

VI. CONCLUSION 

Future transportation is expected to improve the quality of 
living by providing more safer and reliable mobility. While 
the introduction of autonomous vehicles has been presented to 
achieve this goal, it is also opening a new space for 
cyberattacks. Therefore, the cybersecurity concerns in the 
transportation area have raised interest from researchers and 
security experts to investigate and propose security measures 
for a trusted deployment. This paper reviewed the state of the 
art of cybersecurity issues defence strategies for AVs based on 
existing experiments and discussed methods in the literature. 
The review is organized by grouping attack methods and 
proposed defence techniques according to the target AV 
components. Based on this review, three major attack 
scenarios against AVs have been identified: 1) the attacker can 
target a component to interrupt its operations; 2) the attacker 
can target a component to have control over its operations 
without interrupting it; 3) the attacker can observe exchanged 
information without interrupting or controlling a component’s 
operations. In response to the attacks, different defence 
approaches were proposed, which can also be categorised into 
three aspects including authentication, data protection, and 
intrusion detection. The authentication consists of identity 

verification and communication establishment to ensure that 
only trusted and legitimate entities are interacting. Data 
protection ensures that data transmitted between legitimate 
entities are trusted and secured from third parties. And, 
intrusion detection focuses on monitoring the interaction 
environment of legitimate entities to detect suspicious 
activities. The existing defence strategies were discussed to 
highlight their benefits in securing autonomous vehicles and 
also to show their limitations in satisfying critical 
requirements of vehicular networks, such as real-time and 
resource constraint applications, which can motivate further 
investigations. Furthermore, this paper presents some research 
directions that can be used to develop robust, efficient, and 
lightweight security measures, and therefore, contribute to 
building a trustworthy autonomous transportation ecosystem. 

ACKNOWLEDGMENT 

This work has been supported by the “Partnership for 
Skills in Applied Sciences, Engineering and Technology - 
Regional Scholarship and Innovation Fund (PASET-RSIF) 
through the African Centre of Excellence in Internet of Things 
(ACEIoT)”. 

REFERENCES 

[1] P. Suresh, J. V. Daniel, and R. H. Aswathy, “A state of the art review on 
the Internet of Things ( IoT ) History , Technology and fields of 
deployment,” in International Conference on Science, Engineering and 
Management Research (ICSEMR 2014), IEEE, 2014. 

[2] P. Liu, “Internet of Thing Based Vehicular Network System and 
Application,” in Advances in Intelligent Systems Research, 2018, pp. 
298–302. 

[3] F. Zhu, Y. Lv, Y. Chen, X. Wang, G. Xiong, and F. Y. Wang, “Parallel 
Transportation Systems: Toward IoT-Enabled Smart Urban Traffic 
Control and Management,” IEEE Transactions on Intelligent 
Transportation Systems, vol. 21, no. 10, pp. 4063–4071, 2020, doi: 
10.1109/TITS.2019.2934991. 

[4] SAE International, “Taxonomy and Definitions for Terms Related to 
Driving Automation Systems for On-Road Motor J3016_202104.” 
Accessed: Dec. 14, 2023. [Online]. Available: 
https://www.sae.org/standards/content/j3016_202104/ 

[5] J. Wang, J. Liu, and N. Kato, “Networking and Communications in 
Autonomous Driving: A Survey,” IEEE Communications Surveys & 
Tutorials, vol. 21, no. 2, pp. 1243–1274, Apr. 2019, doi: 
10.1109/COMST.2018.2888904. 

[6] S. Muthuramalingam, A. Bharathi, S. Rakesh kumar, N. Gayathri, R. 
Sathiyaraj, and B. Balamurugan, “IoT Based Intelligent Transportation 
System (iot-its) for Global Perspective: A Case Study,” Internet of 
Things and Big Data Analytics for Smart Generation. Springer Nature 
Switzerland AG 2019, pp. 279–300, 2019. doi: 10.1007/978-3-030-
04203-5_13. 

[7] A. O. Al Zaabi, C. Y. Yeun, and E. Damiani, “Autonomous Vehicle 
Security: Conceptual Model,” in 2019 IEEE Transportation 
Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), 
IEEE, May 2019, pp. 1–5. doi: 10.1109/ITEC-AP.2019.8903691. 

[8] B. K. Ren, Q. Wang, C. Wang, Z. Qin, and X. Lin, “The Security of 
Autonomous Driving : Threats , Defenses , and Future Directions,” 
Proceedings of the IEEE, pp. 1–16, 2019, doi: 
10.1109/JPROC.2019.2948775. 

[9] K. Kim, J. S. Kim, S. Jeong, J.-H. Park, and H. K. Kim, “Cybersecurity 
for autonomous vehicles: Review of attacks and defense,” Comput 
Secur, vol. 103, p. 102150, Apr. 2021, doi: 10.1016/j.cose.2020.102150. 

[10] X. Sun, F. R. Yu, and P. Zhang, “A Survey on Cyber-Security of 
Connected and Autonomous Vehicles (CAVs),” IEEE Transactions on 
Intelligent Transportation Systems, vol. 23, no. 7, pp. 6240–6259, Jul. 
2022, doi: 10.1109/TITS.2021.3085297. 

 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 2, 2025 

863 | P a g e  

www.ijacsa.thesai.org 

[11] Y. Takefuji, “Connected Vehicle Security Vulnerabilities 
[Commentary],” IEEE Technology and Society Magazine, vol. 37, no. 1, 
pp. 15–18, Mar. 2018, doi: 10.1109/MTS.2018.2795093. 

[12] K. Rudd, “Security of Autonomous Systems Employing Embedded 
Computing and Sensors,” pp. 80–86, 2013. 

[13] M. Kalmeshwar and K. S. Nandini Prasad, “Development of On-Board 
Diagnostics for Car and it’s Integration with Android Mobile,” in 2017 
2nd International Conference on Computational Systems and 
Information Technology for Sustainable Solution (CSITSS), IEEE, Dec. 
2017, pp. 1–6. doi: 10.1109/CSITSS.2017.8447540. 

[14] A. Rizwan et al., “Simulation of IoT-based Vehicular Ad Hoc Networks 
(VANETs) for Smart Traffic Management Systems,” Wirel Commun 
Mob Comput, vol. 2022, pp. 1–11, May 2022, doi: 
10.1155/2022/3378558. 

[15] M. M. A. Muslam, “Enhancing Security in Vehicle-to-Vehicle 
Communication: A Comprehensive Review of Protocols and 
Techniques,” Vehicles, vol. 6, no. 1, pp. 450–467, Feb. 2024, doi: 
10.3390/vehicles6010020. 

[16] S. Adnan Yusuf, A. Khan, and R. Souissi, “Vehicle-to-everything (V2X) 
in the autonomous vehicles domain – A technical review of 
communication, sensor, and AI technologies for road user safety,” 
Transp Res Interdiscip Perspect, vol. 23, p. 100980, Jan. 2024, doi: 
10.1016/j.trip.2023.100980. 

[17] A. Chattopadhyay and K. Lam, “Security of Autonomous Vehicle as a 
Cyber-Physical System,” 2017. 

[18] M. N. Ahangar, Q. Z. Ahmed, F. A. Khan, and M. Hafeez, “A Survey of 
Autonomous Vehicles: Enabling Communication Technologies and 
Challenges,” Sensors, vol. 21, no. 3, p. 706, Jan. 2021, doi: 
10.3390/s21030706. 

[19] K. Abboud, H. A. Omar, and W. Zhuang, “Interworking of DSRC and 
Cellular Network Technologies for V2X Communications: A Survey,” 
IEEE Trans Veh Technol, vol. 65, no. 12, pp. 9457–9470, Dec. 2016, 
doi: 10.1109/TVT.2016.2591558. 

[20] Z. Wang, H. Wei, J. Wang, X. Zeng, and Y. Chang, “Security Issues and 
Solutions for Connected and Autonomous Vehicles in a Sustainable 
City: A Survey,” Sustainability, vol. 14, no. 19, p. 12409, Sep. 2022, 
doi: 10.3390/su141912409. 

[21] M. Pham and K. Xiong, “A survey on security attacks and defense 
techniques for connected and autonomous vehicles,” Comput Secur, vol. 
109, p. 102269, Oct. 2021, doi: 10.1016/j.cose.2021.102269. 

[22] B. R. Mudhivarthi, P. Thakur, and G. Singh, “Aspects of Cyber Security 
in Autonomous and Connected Vehicles,” Applied Sciences, vol. 13, no. 
5, p. 3014, Feb. 2023, doi: 10.3390/app13053014. 

[23] B. Sheehan, F. Murphy, M. Mullins, and C. Ryan, “Connected and 
autonomous vehicles: A cyber-risk classification framework,” Transp 
Res Part A Policy Pract, vol. 124, pp. 523–536, Jun. 2019, doi: 
10.1016/j.tra.2018.06.033. 

[24] A. Singandhupe and H. M. La, “A Review of SLAM Techniques and 
Security in Autonomous Driving,” in 2019 Third IEEE International 
Conference on Robotic Computing (IRC), IEEE, Feb. 2019, pp. 602–
607. doi: 10.1109/IRC.2019.00122. 

[25] A. M. Wyglinski, X. Huang, T. Padir, L. Lai, T. R. Eisenbarth, and K. 
Venkatasubramanian, “Security of Autonomous Systems Employing 
Embedded Computing and Sensors,” IEEE Micro, vol. 33, no. 1, pp. 80–
86, Jan. 2013, doi: 10.1109/MM.2013.18. 

[26] J. Cui and B. Zhang, “VeRA: A Simplified Security Risk Analysis 
Method for Autonomous Vehicles,” IEEE Trans Veh Technol, vol. 69, 
no. 10, pp. 10494–10505, Oct. 2020, doi: 10.1109/TVT.2020.3009165. 

[27] S. Parkinson, P. Ward, K. Wilson, and J. Miller, “Cyber Threats Facing 
Autonomous and Connected Vehicles: Future Challenges,” IEEE 
Transactions on Intelligent Transportation Systems, vol. 18, no. 11, pp. 
2898–2915, Nov. 2017, doi: 10.1109/TITS.2017.2665968. 

[28] A. Nanda, D. Puthal, J. J. P. C. Rodrigues, and S. A. Kozlov, “Internet 
of Autonomous Vehicles Communications Security: Overview, Issues, 
and Directions,” IEEE Wirel Commun, vol. 26, no. 4, pp. 60–65, Aug. 
2019, doi: 10.1109/MWC.2019.1800503. 

[29] Q. Xiao, X. Pan, Y. Lu, M. Zhang, J. Dai, and M. Yang, “Exorcising 
‘“Wraith”’: Protecting LiDAR-based Object Detector in Automated 
Driving System from Appearing Attacks,” Proceedings of the 32nd 

USENIX Conference on Security Symposium, pp. 2939–2956, Mar. 
2023, [Online]. Available: http://arxiv.org/abs/2303.09731 

[30] K. Ren, Q. Wang, C. Wang, Z. Qin, and X. Lin, “The Security of 
Autonomous Driving: Threats, Defenses, and Future Directions,” 
Proceedings of the IEEE, vol. 108, no. 2, pp. 357–372, Feb. 2020, doi: 
10.1109/JPROC.2019.2948775. 

[31] H. M. Furqan, M. S. J. Solaija, H. Turkmen, and H. Arslan, “Wireless 
Communication, Sensing, and REM: A Security Perspective,” IEEE 
Open Journal of the Communications Society, vol. 2, pp. 287–321, 2021, 
doi: 10.1109/OJCOMS.2021.3054066. 

[32] S. Tout, M. Abualkibash, and P. Patil, “Emerging Research in the 
Security of Modern and Autonomous Vehicles,” in 2018 IEEE 
International Conference on Electro/Information Technology (EIT), 
IEEE, May 2018, pp. 0543–0547. doi: 10.1109/EIT.2018.8500204. 

[33] A. Ferdowsi, U. Challita, W. Saad, and N. B. Mandayam, “Robust Deep 
Reinforcement Learning for Security and Safety in Autonomous Vehicle 
Systems,” in 2018 21st International Conference on Intelligent 
Transportation Systems (ITSC), IEEE, Nov. 2018, pp. 307–312. doi: 
10.1109/ITSC.2018.8569635. 

[34] L. Zhang, X. Yan, and D. Ma, “A Binarized Neural Network Approach 
to Accelerate in-Vehicle Network Intrusion Detection,” IEEE Access, 
vol. 10, pp. 123505–123520, 2022, doi: 
10.1109/ACCESS.2022.3208091. 

[35] D. Uhlir, P. Sedlacek, and J. Hosek, “Practial overview of commercial 
connected cars systems in Europe,” in 2017 9th International Congress 
on Ultra Modern Telecommunications and Control Systems and 
Workshops (ICUMT), Munich: IEEE, Nov. 2017, pp. 436–444. doi: 
10.1109/ICUMT.2017.8255178. 

[36] S. Zamfir and R. Drosescu, “Automotive Black Box and Development 
Platform Used for Traffic Risks Evaluation and Mitigation,” in The 30th 
SIAR International Congress of Automotive and Transport Engineering, 
Cham: Springer International Publishing, 2020, pp. 426–438. doi: 
10.1007/978-3-030-32564-0_50. 

[37] J. Kang, D. Lin, E. Bertino, and O. Tonguz, “From Autonomous 
Vehicles to Vehicular Clouds: Challenges of Management, Security and 
Dependability,” in 2019 IEEE 39th International Conference on 
Distributed Computing Systems (ICDCS), IEEE, Jul. 2019, pp. 1730–
1741. doi: 10.1109/ICDCS.2019.00172. 

[38] S. McCall, C. Yucel, and V. Katos, “Education in Cyber Physical 
Systems Security: The Case of Connected Autonomous Vehicles,” in 
2021 IEEE Global Engineering Education Conference (EDUCON), 
IEEE, Apr. 2021, pp. 1379–1385. doi: 
10.1109/EDUCON46332.2021.9454086. 

[39] A. A. Mehta et al., “Securing the Future: A Comprehensive Review of 
Security Challenges and Solutions in Advanced Driver Assistance 
Systems,” IEEE Access, vol. 12, pp. 643–678, 2024, doi: 
10.1109/ACCESS.2023.3347200. 

[40] Upstream Security Ltd, “H1’2023: AUTOMOTIVE CYBER TREND 
REPORT,” 2023. Accessed: Dec. 08, 2023. [Online]. Available: 
https://upstream.auto/reports/h1-2023-automotive-cyber-trend-report/ 

[41] Upstream Security Ltd, “GLOBAL AUTOMOTIVE 
CYBERSECURITY REPORT: AUTOMOTIVE CYBER THREAT 
LANDSCAPE IN LIGHT OF NEW REGULATIONS,” 2022. Accessed: 
Dec. 08, 2023. [Online]. Available: https://upstream.auto/2022report/ 

[42] B. G. B. Stottelaar, “PRACTICAL CYBER-ATTACKS ON 
AUTONOMOUS VEHICLES,” University of Twente, 2015. 

[43] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote Attacks on 
Automated Vehicles Sensors: Experiments on Camera and LiDAR,” in 
Black Hat Europe, 2015, p. 995. Accessed: May 12, 2024. [Online]. 
Available: blackhat.com 

[44] H. Shin, D. Kim, Y. Kwon, and Y. Kim, “Illusion and Dazzle: 
Adversarial Optical Channel Exploits Against Lidars for Automotive 
Applications,” in Cryptographic Hardware and Embedded Systems – 
CHES 2017, W. Fischer and N. Homma, Eds., in Lecture Notes in 
Computer Science. , Cham: Springer International Publishing, 2017, pp. 
445–467. doi: 10.1007/978-3-319-66787-4_22. 

[45] Q. Wang et al., “Pseudorandom modulation quantum secured lidar,” 
Optik (Stuttg), vol. 126, no. 22, pp. 3344–3348, Nov. 2015, doi: 
10.1016/j.ijleo.2015.07.048. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 2, 2025 

864 | P a g e  

www.ijacsa.thesai.org 

[46] D. Davidson, H. Wu, and R. Jellinek, “Controlling UAVs with Sensor 
Input Spoofing Attacks,” in 10th USENIX Workshop on Offensive 
Technologies (WOOT ’16), Austin: USENIX, Aug. 2016, pp. 1–11. 

[47] R. Matsumura, T. Sugawara, and K. Sakiyama, “A Secure LiDAR with 
AES-Based Side-Channel Fingerprinting,” in 2018 Sixth International 
Symposium on Computing and Networking Workshops (CANDARW), 
Takayama: IEEE, Nov. 2018, pp. 479–482. doi: 
10.1109/CANDARW.2018.00092. 

[48] Y. Cao et al., “Adversarial Sensor Attack on LiDAR-based Perception in 
Autonomous Driving,” in Proceedings of the 2019 ACM SIGSAC 
Conference on Computer and Communications Security, New York, 
NY, USA: ACM, Nov. 2019, pp. 2267–2281. doi: 
10.1145/3319535.3339815. 

[49] K. M. A. Alheeti, A. Alzahrani, and D. Al Dosary, “LiDAR Spoofing 
Attack Detection in Autonomous Vehicles,” in 2022 IEEE International 
Conference on Consumer Electronics (ICCE), IEEE, Jan. 2022, pp. 1–2. 
doi: 10.1109/ICCE53296.2022.9730540. 

[50] H. Zhang, Z. Li, S. Cheng, and A. Clark, “Cooperative Perception for 
Safe Control of Autonomous Vehicles under LiDAR Spoofing Attacks,” 
in Proceedings Inaugural International Symposium on Vehicle Security 
& Privacy, Reston, VA: Internet Society, 2023. doi: 
10.14722/vehiclesec.2023.23066. 

[51] R. Chauhan, “A Platform for False Data Injection in Frequency 
Modulated Continuous Wave Radar,” Utah State University, 2014. 
[Online]. Available: https://digitalcommons.usu.edu/etd/3964 

[52] R. Komissarov and A. Wool, “Spoofing Attacks Against Vehicular 
FMCW Radar,” in Proceedings of the 5th Workshop on Attacks and 
Solutions in Hardware Security, New York, NY, USA: ACM, Nov. 
2021, pp. 91–97. doi: 10.1145/3474376.3487283. 

[53] A. Lazaro, A. Porcel, M. Lazaro, R. Villarino, and D. Girbau, “Spoofing 
Attacks on FMCW Radars with Low-Cost Backscatter Tags,” Sensors, 
vol. 22, no. 6, p. 2145, Mar. 2022, doi: 10.3390/s22062145. 

[54] Walter E. Buehler, Roger M. Whitson, and Michael J. Lewis, 
“AIRBORNE RADAR JAMMING SYSTEM,” US00883 0112B1, Sep. 
09, 2014 

[55] Y. Shoukry, P. Martin, Y. Yona, S. Diggavi, and M. Srivastava, 
“PyCRA: Physical Challenge-Response Authentication For Active 
Sensors Under Spoofing Attacks,” in Proceedings of the 22nd ACM 
SIGSAC Conference on Computer and Communications Security, New 
York, NY, USA: ACM, Oct. 2015, pp. 1004–1015. doi: 
10.1145/2810103.2813679. 

[56] P. Kapoor, A. Vora, and K.-D. Kang, “Detecting and Mitigating 
Spoofing Attack Against an Automotive Radar,” in 2018 IEEE 88th 
Vehicular Technology Conference (VTC-Fall), Chicago: IEEE, Aug. 
2018, pp. 1–6. doi: 10.1109/VTCFall.2018.8690734. 

[57] S. Cohen, E. Levy, A. Shaked, T. Cohen, Y. Elovici, and A. Shabtai, 
“RadArnomaly: Protecting Radar Systems from Data Manipulation 
Attacks,” Sensors, vol. 22, no. 11, p. 4259, Jun. 2022, doi: 
10.3390/s22114259. 

[58] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On 
the requirements for successful GPS spoofing attacks,” in Proceedings 
of the 18th ACM conference on Computer and communications security, 
New York, NY, USA: ACM, Oct. 2011, pp. 75–86. doi: 
10.1145/2046707.2046719. 

[59] A. Helfrick, “Question: Alternate position, navigation timing, APNT? 
Answer: ELORAN,” in 2014 IEEE/AIAA 33rd Digital Avionics Systems 
Conference (DASC), Colorado: IEEE, Oct. 2014, pp. 1–9. doi: 
10.1109/DASC.2014.6979452. 

[60] K. Zeng et al., “All Your GPS Are Belong To Us: Towards Stealthy 
Manipulation of Road Navigation Systems,” in Proceedings of the 27th 
USENIX Security Symposium, Baltimore: USENIX, Aug. 2018, pp. 
1527–1544. Accessed: Jan. 07, 2025. [Online]. Available: 
https://www.usenix.org/conference/usenixsecurity18/presentation/zeng 

[61] S. Narain, A. Ranganathan, and G. Noubir, “Security of GPS/INS Based 
On-road Location Tracking Systems,” in 2019 IEEE Symposium on 
Security and Privacy (SP), San Francisco: IEEE, May 2019, pp. 587–
601. doi: 10.1109/SP.2019.00068. 

[62] Q. Meng, L.-T. Hsu, B. Xu, X. Luo, and A. El-Mowafy, “A GPS 
Spoofing Generator Using an Open Sourced Vector Tracking-Based 

Receiver,” Sensors, vol. 19, no. 18, p. 3993, Sep. 2019, doi: 
10.3390/s19183993. 

[63] Paul Y. Montgomery, Todd E. Humphreys, and Brent M. Ledvina, 
“Receiver-Autonomous Spoofing Detection: Experimental Results of a 
Multi-Antenna Receiver Defense against a Portable Civil GPS Spoofer,” 
in Proceedings of the Institute of Navigation, National Technical 
Meeting, Anaheim: Institute of Navigation, Jan. 2010, pp. 124–130. doi: 
10.15781/T2GB1Z038. 

[64] A. Purwar, D. Joshi, and V. K. Chaubey, “GPS signal jamming and anti-
jamming strategy — A theoretical analysis,” in 2016 IEEE Annual India 
Conference (INDICON), Bangalore: IEEE, Dec. 2016, pp. 1–6. doi: 
10.1109/INDICON.2016.7838933. 

[65] B. W. O’Hanlon, M. L. Psiaki, J. A. Bhatti, D. P. Shepard, and T. E. 
Humphreys, “Real-Time GPS Spoofing Detection via Correlation of 
Encrypted Signals,” Navigation, vol. 60, no. 4, pp. 267–278, Dec. 2013, 
doi: 10.1002/navi.44. 

[66] Y. Yang and J. Xu, “GNSS receiver autonomous integrity monitoring 
(RAIM) algorithm based on robust estimation,” Geod Geodyn, vol. 7, 
no. 2, pp. 117–123, Mar. 2016, doi: 10.1016/j.geog.2016.04.004. 

[67] Q. MENG, J. LIU, Q. ZENG, S. FENG, and R. XU, “Impact of one 
satellite outage on ARAIM depleted constellation configurations,” 
Chinese Journal of Aeronautics, vol. 32, no. 4, pp. 967–977, Apr. 2019, 
doi: 10.1016/j.cja.2019.01.004. 

[68] Q. Meng, J. Liu, Q. Zeng, S. Feng, and R. Xu, “Improved ARAIM fault 
modes determination scheme based on feedback structure with 
probability accumulation,” GPS Solutions, vol. 23, no. 1, p. 16, Jan. 
2019, doi: 10.1007/s10291-018-0809-8. 

[69] M. Foruhandeh, A. Z. Mohammed, G. Kildow, P. Berges, and R. 
Gerdes, “Spotr: GPS spoofing detection via device fingerprinting,” in 
Proceedings of the 13th ACM Conference on Security and Privacy in 
Wireless and Mobile Networks, New York, NY, USA: ACM, Jul. 2020, 
pp. 242–253. doi: 10.1145/3395351.3399353. 

[70] S. Liu et al., “Stars can tell: A robust method to defend against GPS 
spoofing attacks using off-the-shelf chipset,” in Proceedings of the 30th 
USENIX Security Symposium, 2021. 

[71] M. Ahmad and Y. Wang, “A Low-Cost Approach to Securing 
Commercial GPS Receivers Against Spoofing Attacks,” in Lecture 
Notes in Control and Information Sciences, vol. 489, 2022, pp. 149–175. 
doi: 10.1007/978-3-030-83236-0_6. 

[72] F. Wang, Y. Hong, and X. Ban, “Infrastructure-Enabled GPS Spoofing 
Detection and Correction,” IEEE Transactions on Intelligent 
Transportation Systems, vol. 24, no. 12, pp. 13878–13892, Dec. 2023, 
doi: 10.1109/TITS.2023.3298785. 

[73] M. Shabbir, M. Kamal, Z. Ullah, and M. M. Khan, “Securing 
Autonomous Vehicles Against GPS Spoofing Attacks: A Deep Learning 
Approach,” IEEE Access, vol. 11, pp. 105513–105526, 2023, doi: 
10.1109/ACCESS.2023.3319514. 

[74] K. S. Jasim, K. M. Ali Alheeti, and A. K. A. Najem Alaloosy, 
“Intelligent Detection System for Spoofing and Jamming Attacks in 
UAVs,” 2023, pp. 97–110. doi: 10.1007/978-3-031-21101-0_8. 

[75] C. Yan, W. Xu, and J. Liu, “Can You Trust Autonomous Vehicles : 
Contactless Attacks against Sensors of Self-driving Vehicle,” ACM 
SIGARCH Computer Architecture News, pp. 1–13, 2016, doi: 
10.1145/1235. 

[76] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing 
Adversarial Examples,” ICLR 2015, pp. 1–11, Dec. 2014, [Online]. 
Available: http://arxiv.org/abs/1412.6572 

[77] J. Kos, I. Fischer, and D. Song, “Adversarial Examples for Generative 
Models,” in 2018 IEEE Security and Privacy Workshops (SPW), IEEE, 
May 2018, pp. 36–42. doi: 10.1109/SPW.2018.00014. 

[78] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, 
“Universal Adversarial Perturbations,” in 2017 IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), Honolulu: IEEE, Jul. 
2017, pp. 86–94. doi: 10.1109/CVPR.2017.17. 

[79] C. Sitawarin, A. N. Bhagoji, A. Mosenia, M. Chiang, and P. Mittal, 
“DARTS: Deceiving Autonomous Cars with Toxic Signs,” ACM CCS 
2018, pp. 1–18, Feb. 2018, [Online]. Available: 
http://arxiv.org/abs/1802.06430 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 2, 2025 

865 | P a g e  

www.ijacsa.thesai.org 

[80] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adversarial 
Patch,” 31st Conference on Neural Information Processing Systems 
(NIPS 2017), pp. 1–6, Dec. 2017, [Online]. Available: 
http://arxiv.org/abs/1712.09665 

[81] K. Eykholt et al., “Robust Physical-World Attacks on Deep Learning 
Visual Classification,” in 2018 IEEE/CVF Conference on Computer 
Vision and Pattern Recognition, IEEE, Jun. 2018, pp. 1625–1634. doi: 
10.1109/CVPR.2018.00175. 

[82] K. B. Kelarestaghi, M. Foruhandeh, K. Heaslip, and R. Gerdes, 
“Intelligent Transportation System Security: Impact-Oriented Risk 
Assessment of in-Vehicle Networks,” IEEE Intelligent Transportation 
Systems Magazine, vol. 13, no. 2, pp. 91–104, Jun. 2021, doi: 
10.1109/MITS.2018.2889714. 

[83] W. Wang, Y. Yao, X. Liu, X. Li, P. Hao, and T. Zhu, “I Can See the 
Light: Attacks on Autonomous Vehicles Using Invisible Lights,” in 
Proceedings of the 2021 ACM SIGSAC Conference on Computer and 
Communications Security, New York, NY, USA: ACM, Nov. 2021, pp. 
1930–1944. doi: 10.1145/3460120.3484766. 

[84] [84] Sharath Yadav and A. Ansari, “Autonomous Vehicles Camera 
Blinding Attack Detection Using Sequence Modelling and Predictive 
Analytics,” in SAE Technical Paper 2020-01-0719, Apr. 2020. doi: 
10.4271/2020-01-0719. 

[85] C. Guo, M. Rana, M. Cisse, and L. van der Maaten, “Countering 
Adversarial Images using Input Transformations,” International 
Conference on Learning Representations, pp. 1–12, Oct. 2017, [Online]. 
Available: http://arxiv.org/abs/1711.00117 

[86] V. Zantedeschi, M.-I. Nicolae, and A. Rawat, “Efficient Defenses 
Against Adversarial Attacks,” in Proceedings of the 10th ACM 
Workshop on Artificial Intelligence and Security, New York, NY, USA: 
ACM, Nov. 2017, pp. 39–49. doi: 10.1145/3128572.3140449. 

[87] G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A study of the effect 
of JPG compression on adversarial images,” International Society for 
Bayesian Analysis (ISBA 2016) World Meeting, pp. 1–8, Aug. 2016, 
[Online]. Available: http://arxiv.org/abs/1608.00853 

[88] W. Xu, D. Evans, and Y. Qi, “Feature Squeezing: Detecting Adversarial 
Examples in Deep Neural Networks,” in Proceedings 2018 Network and 
Distributed System Security Symposium, Reston, VA: Internet Society, 
Feb. 2018, pp. 1–15. doi: 10.14722/ndss.2018.23198. 

[89] W. Jiang, H. Li, S. Liu, X. Luo, and R. Lu, “Poisoning and Evasion 
Attacks Against Deep Learning Algorithms in Autonomous Vehicles,” 
IEEE Trans Veh Technol, vol. 69, no. 4, pp. 4439–4449, Apr. 2020, doi: 
10.1109/TVT.2020.2977378. 

[90] C. Szegedy et al., “Intriguing properties of neural networks,” ArXiv, pp. 
1–10, Dec. 2013, [Online]. Available: http://arxiv.org/abs/1312.6199 

[91] T. Miyato, S. Maeda, M. Koyama, K. Nakae, and S. Ishii, 
“Distributional Smoothing with Virtual Adversarial Training,” 
International Conference on Learning Representations, pp. 1–12, Jul. 
2015, [Online]. Available: http://arxiv.org/abs/1507.00677 

[92] J. Buckman, A. Roy, C. Raffel, and I. Goodfellow, “THERMOMETER 
ENCODING: ONE HOT WAY TO RESIST ADVERSARIAL 
EXAMPLES,” in International Conference on Learning 
Representations, 2018, pp. 1–22. 

[93] Q. He, X. Meng, and R. Qu, “Towards a Severity Assessment Method 
for Potential Cyber Attacks to Connected and Autonomous Vehicles,” J 
Adv Transp, vol. 2020, pp. 1–15, Sep. 2020, doi: 
10.1155/2020/6873273. 

[94] V. L. L. Thing and J. Wu, “Autonomous Vehicle Security: A Taxonomy 
of Attacks and Defences,” in 2016 IEEE International Conference on 
Internet of Things (iThings) and IEEE Green Computing and 
Communications (GreenCom) and IEEE Cyber, Physical and Social 
Computing (CPSCom) and IEEE Smart Data (SmartData), IEEE, Dec. 
2016, pp. 164–170. doi: 10.1109/iThings-GreenCom-CPSCom-
SmartData.2016.52. 

[95] C.-W. Lin and A. Sangiovanni-Vincentelli, “Cyber-Security for the 
Controller Area Network (CAN) Communication Protocol,” in 2012 
International Conference on Cyber Security, Washington : IEEE, Dec. 
2012, pp. 1–7. doi: 10.1109/CyberSecurity.2012.7. 

[96] K. Koscher et al., “Experimental Security Analysis of a Modern 
Automobile,” 2010 IEEE Symposium on Security and Privacy 
Experimental, vol. 34, pp. 447–462, 2010, doi: 10.1109/SP.2010.34. 

[97] S. Woo, H. J. Jo, and D. H. Lee, “A Practical Wireless Attack on the 
Connected Car and Security Protocol for In-Vehicle CAN,” IEEE 
Transactions on Intelligent Transportation Systems, vol. 16, no. 2, pp. 
1–14, Apr. 2014, doi: 10.1109/TITS.2014.2351612. 

[98] S. Checkoway et al., “Comprehensive Experimental Analyses of 
Automotive Attack Surfaces,” in 20th USENIX security symposium, 
2011, pp. 447–462. 

[99] A. Boudguiga, J. Letailleur, R. Sirdey, and W. Klaudel, “Enhancing 
CAN Security by Means of Lightweight Stream-Ciphers and Protocols,” 
in SAFECOMP 2019 Workshops, LNCS 11699, 2019, pp. 235–250. doi: 
10.1007/978-3-030-26250-1_19. 

[100] S. Nie, L. Liu, and Y. Du, “FREE-FALL : HACKING TESLA FROM 
WIRELESS TO CAN BUS,” Keen Security Lab of Tencent, pp. 1–16, 
2017. 

[101] T. Keen Security Lab, “Experimental Security Research of Tesla 
Autopilot,” Mar. 2019. Accessed: Jan. 28, 2024. [Online]. Available: 
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Res
earch_of_Tesla_Autopilot.pdf 

[102] D. S. Fowler, J. Bryans, M. Cheah, and P. Wooderson, “A Method for 
Constructing Automotive Cybersecurity Tests , a CAN Fuzz Testing 
Example,” in 2019 IEEE 19th International Conference on Software 
Quality, Reliability and Security Companion (QRS-C), IEEE, 2019, pp. 
1–8. doi: 10.1109/QRS-C.2019.00015. 

[103] M. Muter and N. Asaj, “Entropy-based anomaly detection for in-vehicle 
networks,” in 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-
Baden: IEEE, Jun. 2011, pp. 1110–1115. doi: 
10.1109/IVS.2011.5940552. 

[104] T. Matsumoto, M. Hata, M. Tanabe, K. Yoshioka, and K. Oishi, “A 
Method of Preventing Unauthorized Data Transmission in Controller 
Area Network,” in 2012 IEEE 75th Vehicular Technology Conference 
(VTC Spring), Yokohama: IEEE, May 2012, pp. 1–5. doi: 
10.1109/VETECS.2012.6240294. 

[105] M. Gmiden, M. H. Gmiden, and H. Trabelsi, “An intrusion detection 
method for securing in-vehicle CAN bus,” in 2016 17th International 
Conference on Sciences and Techniques of Automatic Control and 
Computer Engineering (STA), Sousse,: IEEE, Dec. 2016, pp. 176–180. 
doi: 10.1109/STA.2016.7952095. 

[106] Kyong-Tak Cho and Kang G. Shin, “Fingerprinting Electronic Control 
Units for Vehicle Intrusion Detection,” in 25th USENIX Security 
Symposium, Austin: USENIX Association, Aug. 2016, pp. 910–927. 

[107]  C. Valasek and Charlie Miller, “A Survey of Remote Automotive 
Attack Surfaces,” Jul. 2014. 

[108] A. S. Siddiqui, Y. Gui, J. Plusquellic, and F. Saqib, “Secure 
communication over CANBus,” in 2017 IEEE 60th International 
Midwest Symposium on Circuits and Systems (MWSCAS), Boston: IEEE, 
Aug. 2017, pp. 1264–1267. doi: 10.1109/MWSCAS.2017.8053160. 

[109] Z. Tyree, R. A. Bridges, F. L. Combs, and M. R. Moore, “Exploiting the 
Shape of CAN Data for In-Vehicle Intrusion Detection,” in 2018 IEEE 
88th Vehicular Technology Conference (VTC-Fall), Chicago: IEEE, 
Aug. 2018, pp. 1–5. doi: 10.1109/VTCFall.2018.8690644. 

[110] D. Basavaraj and S. Tayeb, “Towards a Lightweight Intrusion Detection 
Framework for In-Vehicle Networks,” Journal of Sensor and Actuator 
Networks, vol. 11, no. 1, pp. 1–20, 2022, doi: 10.3390/jsan11010006. 

[111] S. Adly, A. Moro, S. Hammad, and S. A. Maged, “Prevention of 
Controller Area Network (CAN) Attacks on Electric Autonomous 
Vehicles,” Applied Sciences (Switzerland), vol. 13, no. 16, pp. 1–23, 
2023, doi: 10.3390/app13169374. 

[112] F. W. Alsaade and M. H. Al-Adhaileh, “Cyber Attack Detection for 
Self-Driving Vehicle Networks Using Deep Autoencoder Algorithms,” 
Sensors, vol. 23, no. 8, pp. 1–26, 2023, doi: 10.3390/s23084086. 

[113] M. Amoozadeh et al., “Security vulnerabilities of connected vehicle 
streams and their impact on cooperative driving,” IEEE Communications 
Magazine, vol. 53, no. 6, pp. 126–132, Jun. 2015, doi: 
10.1109/MCOM.2015.7120028. 

[114] N. Ekedebe, W. Yu, H. Song, and C. Lu, “On a simulation study of 
cyber attacks on vehicle-to-infrastructure communication (V2I) in 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 2, 2025 

866 | P a g e  

www.ijacsa.thesai.org 

Intelligent Transportation System (ITS),” in Mobile Multimedia/Image 
Processing, Security, and Applications 2015, S. S. Agaian, S. A. Jassim, 
and E. Y. Du, Eds., Baltimore,: SPIE, May 2015, p. 94970B. doi: 
10.1117/12.2177465. 

[115] J. Grover, M. S. Gaur, V. Laxmi, and N. K. Prajapati, “A sybil attack 
detection approach using neighboring vehicles in VANET,” in 
Proceedings of the 4th international conference on Security of 
information and networks, New York, NY, USA: ACM, Nov. 2011, pp. 
151–158. doi: 10.1145/2070425.2070450. 

[116] W. Whyte, A. Weimerskirch, V. Kumar, and T. Hehn, “A security 
credential management system for V2V communications,” in 2013 IEEE 
Vehicular Networking Conference, Boston: IEEE, Dec. 2013, pp. 1–8. 
doi: 10.1109/VNC.2013.6737583. 

[117] M. Alimohammadi and A. A. Pouyan, “Sybil attack detection using a 
low cost short group signature in VANET,” in 2015 12th International 
Iranian Society of Cryptology Conference on Information Security and 
Cryptology (ISCISC), Rasht: IEEE, Sep. 2015, pp. 23–28. doi: 
10.1109/ISCISC.2015.7387893. 

[118] J. Li, H. Lu, and M. Guizani, “ACPN: A Novel Authentication 
Framework with Conditional Privacy-Preservation and Non-Repudiation 
for VANETs,” IEEE Transactions on Parallel and Distributed Systems, 
vol. 26, no. 4, pp. 938–948, Apr. 2015, doi: 
10.1109/TPDS.2014.2308215. 

[119] S. Taha, M. Alhassany, and X. Shen, “Lightweight Handover 
Authentication Scheme for 5G-Based V2X Communications,” in 2018 
IEEE Global Communications Conference (GLOBECOM), IEEE, Dec. 
2018, pp. 1–6. doi: 10.1109/GLOCOM.2018.8648020. 

[120] C. Xu, X. Huang, M. Ma, and H. Bao, “A Secure and Efficient Message 
Authentication Scheme for Vehicular Networks based on LTE-V,” KSII 
Transactions on Internet and Information Systems, vol. 12, no. 6, Jun. 
2018, doi: 10.3837/tiis.2018.06.022. 

[121] S. Tangade, S. S. Manvi, and P. Lorenz, “Trust Management Scheme 
Based on Hybrid Cryptography for Secure Communications in 
VANETs,” IEEE Trans Veh Technol, vol. 9545, pp. 1–12, 2020, doi: 
10.1109/TVT.2020.2981127. 

[122] H. Jiang, L. Hua, and L. Wahab, “SAES: A self-checking authentication 
scheme with higher efficiency and security for VANET,” Peer Peer 
Netw Appl, vol. 14, no. 2, pp. 528–540, Mar. 2021, doi: 10.1007/s12083-
020-00997-0. 

[123] J. Miao, Z. Wang, X. Ning, N. Xiao, W. Cai, and R. Liu, “Practical and 
secure multifactor authentication protocol for autonomous vehicles in 
5G,” John Wiley & Sons, Ltd, pp. 1–18, 2022, doi: 10.1002/spe.3087. 

[124] R. Ma, J. Cao, D. Feng, H. Li, X. Li, and Y. Xu, “A robust 
authentication scheme for remote diagnosis and maintenance in 5G 
V2N,” Journal of Network and Computer Applications, vol. 198, p. 
103281, Feb. 2022, doi: 10.1016/j.jnca.2021.103281. 

[125] H. P. Hyunhee Park, “Edge Based Lightweight Authentication 
Architecture Using Deep Learning for Vehicular Networks,” Journal of 
Internet Technology, vol. 23, no. 1, pp. 195–202, Jan. 2022, doi: 
10.53106/160792642022012301020. 

[126] Q. Li, “A V2V Identity Authentication and Key Agreement Scheme 
Based on Identity-Based Cryptograph,” Future Internet, vol. 15, no. 1, p. 
25, Jan. 2023, doi: 10.3390/fi15010025. 

[127] J. Noh, Y. Kwon, J. Son, and S. Cho, “Blockchain-Based One-Time 
Authentication for Secure V2X Communication Against Insiders and 
Authority Compromise Attacks,” IEEE Internet Things J, vol. 10, no. 7, 
pp. 6235–6248, Apr. 2023, doi: 10.1109/JIOT.2022.3224465. 

[128] X. Feng, X. Wang, H. Liu, H. Yang, and L. Wang, “A Privacy-
Preserving Aggregation Scheme With Continuous Authentication for 
Federated Learning in VANETs,” IEEE Trans Veh Technol, vol. 73, no. 
7, pp. 9465–9477, Jul. 2024, doi: 10.1109/TVT.2024.3369942. 

[129] L. Zhang, “OTIBAAGKA : A New Security Tool for Cryptographic 
Mix-Zone Establishment in Vehicular Ad Hoc Networks,” IEEE 
Transactions on Information Forensics and Security, pp. 1–13, 2017, 
doi: 10.1109/TIFS.2017.2730479. 

[130] A. Riahi Sfar, Y. Challal, P. Moyal, and E. Natalizio, “A Game 
Theoretic Approach for Privacy Preserving Model in IoT-Based 
Transportation,” IEEE Transactions on Intelligent Transportation 
Systems, vol. 20, no. 12, pp. 4405–4414, 2019, doi: 
10.1109/TITS.2018.2885054. 

[131] S. A. A. Hakeem, M. A. A. El-gawad, and H. Kim, “Comparative 
Experiments of V2X Security Protocol Based on Hash Chain 
Cryptography,” MDPI Sensors, vol. 5719, no. 20, pp. 2–23, 2020. 

[132] C. Zhao, N. Guo, T. Gao, X. Deng, and J. Qi, “PEPA: Paillier 
cryptosystem-based efficient privacy-preserving authentication scheme 
for VANETs,” Journal of Systems Architecture, vol. 138, pp. 1–10, 
2023, doi: 10.1016/j.sysarc.2023.102855. 

[133] U. Khan, S. Agrawal, and S. Silakari, “Detection of Malicious Nodes 
(DMN) in vehicular ad-hoc networks,” Procedia Comput Sci, vol. 46, 
pp. 965–972, 2014, doi: 10.1016/j.procs.2015.01.006. 

[134] H. Sedjelmaci and S. M. Senouci, “An accurate and efficient 
collaborative intrusion detection framework to secure vehicular 
networks,” Computers and Electrical Engineering, vol. 43, pp. 33–47, 
2015, doi: 10.1016/j.compeleceng.2015.02.018. 

[135] M. J. Kang and J. W. Kang, “Intrusion Detection System using Deep 
Neural Network for In-Vehicle Network Security,” PLoS One, vol. 11, 
no. 6, pp. 1–17, 2016, doi: 10.1371/journal.pone.0155781. 

[136] S. M. Sangve, R. Bhati, and V. N.Gavali, “Intrusion Detection System 
for Detecting Rogue Nodes in Vehicular Ad-hoc Network,” in 2017 
International Conference on Data Management, Analytics and 
Innovation (ICDMAI), Pune, India: IEEE, 2017, pp. 127–131. 

[137] A. Anwar, T. Halabi, and M. Zulkernine, “A coalitional security game 
against data integrity attacks in autonomous vehicle networks,” 
Vehicular Communications, vol. 37, pp. 1–10, 2022, doi: 
10.1016/j.vehcom.2022.100517. 

[138] P. K. Singh, S. Kumar Jha, S. K. Nandi, and S. Nandi, “ML-Based 
Approach to Detect DDoS Attack in V2I Communication Under SDN 
Architecture,” in TENCON 2018 - 2018 IEEE Region 10 Conference, 
Jeju: IEEE, Oct. 2018, pp. 0144–0149. doi: 
10.1109/TENCON.2018.8650452. 

[139] G. O. Anyanwu, C. I. Nwakanma, J.-M. Lee, and D.-S. Kim, “RBF-
SVM kernel-based model for detecting DDoS attacks in SDN integrated 
vehicular network,” Ad Hoc Networks, vol. 140, p. 103026, Mar. 2023, 
doi: 10.1016/j.adhoc.2022.103026. 

[140] M. Zhao, D. Qin, R. Guo, and G. Xu, “Efficient Protection Mechanism 
Based on Self-Adaptive Decision for Communication Networks of 
Autonomous Vehicles,” Mobile Information Systems, vol. 2020, pp. 1–9, 
Jun. 2020, doi: 10.1155/2020/2168086. 

[141] A. Al-Sabaawi, K. Al-Dulaimi, E. Foo, and M. Alazab, “Addressing 
Malware Attacks on Connected and Autonomous Vehicles: Recent 
Techniques and Challenges,” in Malware Analysis Using Artificial 
Intelligence and Deep Learning, Cham: Springer International 
Publishing, 2021, pp. 97–119. doi: 10.1007/978-3-030-62582-5_4. 

[142] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A Survey on 
Homomorphic Encryption Schemes,” ACM Comput Surv, vol. 51, no. 4, 
pp. 1–35, Jul. 2019, doi: 10.1145/3214303. 

[143] X. Sun, F. R. Yu, P. Zhang, W. Xie, and X. Peng, “A Survey on Secure 
Computation Based on Homomorphic Encryption in Vehicular Ad Hoc 
Networks,” Sensors, vol. 20, no. 15, p. 4253, Jul. 2020, doi: 
10.3390/s20154253. 

[144] F. Zhuang et al., “A Comprehensive Survey on Transfer Learning,” 
Proceedings of the IEEE, vol. 109, no. 1, pp. 43–76, Jan. 2021, doi: 
10.1109/JPROC.2020.3004555. 

 


