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Abstract—Noninvasive and accurate methods for diagnosing 

respiratory diseases are essential to improving healthcare 

consequences. The Internet of Medical Things (IoMT) is critical 

in driving developments in this field. This work presents an 

IoMT-enabled approach for lung disease detection and 

classification, using deep learning techniques to analyze lung 

sounds. The proposed approach uses three datasets: the 

Respiratory Sound, the Coronahack Respiratory Sound, and the 

Coswara Sound. Traditional machine learning models, including 

the Extra Tree Classifier and AdaBoost Classifier, are used to 

benchmark performance. The Extra Tree Classifier achieved 

94.12%, 95.23%, and 94.21% across the datasets, while the 

AdaBoost Classifier showed improvements with 95.42%, 96.33%, 

and 94.76%. The proposed deep neural network (DNN) achieves 

accuracies of 98.92%, 99.33%, and 99.36% for the same datasets. 

This study explores the transformative potential of the Internet 

of Medical Things (IoMT) in augmenting diagnostic precision 

and advancing the field of respiratory healthcare. 

Keywords—Deep learning; respiratory sound; coronahack 

respiratory sound and coswara sound; IoMT 

I. INTRODUCTION 

According to epidemiological statistics on respiratory 
disorders published by the World Health Organization (WHO), 
210 million people worldwide suffer from chronic obstructive 
pulmonary disease (COPD), and 30 million people have 
asthma. Studies show that between 15 and 25 million people in 
India have asthma [1]. Physicians often use the noninvasive, 
low-cost lung auscultatory technique to assess the state of the 
lungs [2]. The noises the lungs make while air passes through 
them during breathing are known as lung sounds [3]. 

It is critical for recognizing lung diseases because it 
provides precise lung function data. Aberrant and accidental 
lung sounds are the two general classifications for lung sounds 
[4]. The Vesicular, Bronchial, Broncho-Vesicular, and 
Tracheal lung sounds are common [5]. Accidental lung sounds 
can be classified as constant or intermittent, depending on their 
duration and persistence [6]. Early identification and close 
observation of pneumonia are essential for adequate medical 
care [7]. Lung inspection is a standard clinical procedure for 
diagnosing respiratory disorders [8]. It involves hearing the 
sounds of an individual's lungs with a stethoscope. Usually, 
these noises are classified as either abnormal or normal [9]. 

The frequent unusual noises audible over characteristic lung 
sounds are crackles, wheezes, and squawks; they commonly 
exist in a lung condition [10]. 

Common lung sounds and cyclical patterns represent air 
passage during breathing. Pulmonary illnesses characterized by 
persistent, incomplete reversible airflow obstruction and 
normal breathing [11]. Auscultation using a listening 
instrument is only a qualitative diagnostic tool, even though it 
provides direct information [12]. However, the results of 
auscultation evaluation are inadequate due to several factors, 
such as inter and intra-observer inconsistency, bias errors in 
distinguishing fine sound structures, and frequency reduction 
[13]. Lung sound-based diagnosis is accurate and free of 
subjectivity errors due to the application of computer-based 
automated approaches and developments in lung sound 
recording techniques [14]. Computer-based lung sound 
assessment allows for a comprehensive assessment of lung 
sound features through visual representations, recording 
evaluations, suppression of noise contaminants, and evaluation 
of changes in lung sound action [15]. The sounds generated by 
air passing through the tracheobronchial tree are sounds 
produced by the respiratory system [16]. 

A. Common Lungs Disease 

Asthma is a chronic respiratory condition characterized by 
inflammation and narrowing of the airways, leading to 
recurring episodes of wheezing, shortness of breath, chest 
tightness, and coughing [17]. It affects people of all ages but 
often starts in childhood and can persist into adulthood[18]. 
New opportunities for the early identification and 
categorization of lung diseases related to asthma are created by 
the combination of deep learning algorithms and heart sound 
analysis [19]. These algorithms can identify intricate patterns 
in cardiac sound data, which makes it possible to create precise 
and effective diagnostic models [20]. 

The respiratory ailment known as bronchitis is typified by 
discomfort in the bronchial tubes, the airways that supply 
oxygen to the lungs [21]. Two primary types of bronchitis can 
be distinguished: acute and chronic. Pneumonia is a dangerous 
respiratory system infection that affects the lungs [22]. 
Numerous pathogens, such as bacteria, viruses, fungi, or 
parasites, cause it. All ages are susceptible to pneumonia, but 
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young children, aged people, and those with compromised 
immune systems are most at risk. 

The symptoms of Chronic Obstructive Pulmonary Disease 
(COPD) frequently include wheezes and reduced breath 
sounds, which indicate airway narrowing and blockage. These 
auditory characteristics are analyzed by deep learning models 
to consistently identify COPD trends in IoMT-enabled, 
noninvasive detection. These devices capture precise auditory 
cues, allowing for early and accurate COPD monitoring and 
classification, facilitating proactive treatment and intervention. 

Crackles in lung sounds, a sign of respiratory disorders like 
pneumonia or bronchitis, are detected using IoMT-enabled, 
noninvasive lung disease detection. Deep learning models 
analyze these acoustic patterns, providing accurate 
classification and automated assessment of potential lung 
abnormalities. Wheezes, high-pitched sounds during 
exhalation, indicate airway obstructions in conditions like 
asthma or COPD. IoMT-enabled lung disease detection uses 
deep learning algorithms to improve diagnostic accuracy, 
distinguishing between obstructive and restrictive respiratory 
disorders and facilitating timely medical interventions. 

B. Research Objectives and Motivation 

1) Develop a noninvasive system for detecting and 

classifying lung diseases using lung sound data collected via 

IoMT (Internet of Medical Things) devices. 

2) Implement deep learning techniques, including an 

Extra Tree Classifier, an AdaBoost Classifier, and a Deep 

Neural Network, to classify lung disease from sound data. 

3) Analyze the effectiveness of enabling monitoring, 

correct diagnosis, and efficient data processing for remote 

healthcare applications. 

Motivation: Respiratory health is safety-critical for human 
life, as effective diagnosis and treatment are essential to 
prevent severe consequences. Traditional methods are invasive 
and inaccessible, so there is a need for advancements in this 
domain. This work includes developing a noninvasive IoMT-
enabled using deep learning for accurate and accessible lung 
disease detection, ensuring diagnosis, and supporting remote 
healthcare solutions. 

II. LITERATURE REVIEW 

Neural network model, lowering data leakage and memory 
utilization. CNN-LSTM layers, self-attention layers, dropout, 
Fully Linked (FC), and softmax layers comprise the model 
using the ICBHI 2017 dataset. The purpose of hyperparameter 
tuning is to reduce training failure. Self-attention is an 
independent layer that works with LSTM and CNN models 
[23]. According to experimental data, the suggested 
CNN+LSTM+Selfattention model performs better overall in 
terms of accuracy score than the CNN+LSTM+Hybrid 
CNN+LSTM, CNN+LSTM+Simple Attention, and 
CNN+GRU+Selfattention models. With a score of 57.02% for 
the initial train-test split, the model produces more dependable 
results. 

A DNN is developed to diagnose interstitial lung diseases 
(ILD) in patients with connective tissue diseases (CTD), and 

preprocessing methods are evaluated on various lung sound 
data sets. The DNN offers remarkable accuracy on high-
resolution CT scans, with an F1-score and an F2-score of 97% 
[24]. Since screening for ILD in patients with chronic 
autoimmune disorders is still a work in progress, this technique 
serves as an enabler for the early, safe, accurate, and affordable 
identification of CTD-ILD. 

Augmentation techniques to resolve the imbalanced dataset 
problem. The model, which has two LSTM layers, five 
convolutional blocks, and no augmentation, achieves a 
remarkable F1 score of 0.9887 in 91 s per training epoch. 
Misclassifications accounted for just 3.05% of COVID-19 data 
and mostly happened in typical instances [25]. While the 
standard class showed recall and an F1 score, the pneumonia 
class showed exceptional precision. Deep Residual Network 
(DRN) uses a fractional water cycle swarm optimizer (Fr-
WCSO-based DRN) to identify lung disorders from respiratory 
sound waves. The Fr-WCSO is a novel design that combines 
the Water Cycle Algorithm and Competitive Swarm Optimizer 
with Fractional Calculus and Water Cycle Swarm Optimizer 
(WCSO). To reduce overfitting problems, the system 
preprocesses respiratory input sound signals, identifies relevant 
features, and augments data [26]. DRN training and feature 
selection are then carried out using the Fr-WCSO algorithm. 

Hybrid Interpretable Strategies with Ensemble Techniques 
(HISET) for respiratory sound classification. The first 
approach uses a GSSR technique, and the second uses a novel 
Realm Revamping Sparse Representation Classification (RR-
SRC) technique, the third uses Distance Metric dependent 
Variational Mode Decomposition (DM-VMD) with Extreme 
Learning Machine (ELM) classification process, the fourth 
uses Harris Hawks Optimization with  Scaling Factor based 
Pliable Differential Evolution (SFPDE), and the fifth uses Gray 
Wolf Optimization based Support Vector Classification 
(GWO-SVC) and Grasshopper Optimization Algorithm (GOA) 
based Sparse Autoencoder for dimensionality reduction 
techniques [27]. The ICBHI dataset is used to analyze the 
results, and the best results are obtained for the 2-class 
classification when Manhattan distance-based VMD-ELM is 
used. This method reported an accuracy of 95.39% for the 3-
class classification, 90.61% for the 3-class classification, and 
89.27% for the 4-class classification. The classification of 
pulmonary sounds obtained from patients with connective 
tissue illnesses using deep learning techniques [28]. 

Features such as Wavelet Entropy (WE) and wavelet packet 
energy (WPE) are extracted from the LS. Various classifiers, 
including Support Vector Machine (SVM), Decision Tree 
(DT), k-nearest Neighbor (KNN), and Discriminant Analysis 
(DA), are employed to classify healthy, COPD, and asthma 
cases using WE and WPE features. The proposed algorithm 
achieves a notable classification accuracy of 99.3% with the 
Decision Tree (DT) classifier, effectively distinguishing 
between healthy individuals and those with asthma or COPD 
based on LS[29]. Future work will validate this algorithm with 
real-time LS data from asthmatic and COPD patients. 

Section I introduces the research work, focusing on using 
IoMT and deep learning for noninvasive lung disease 
diagnosis. Section II reviews the existing literature, 
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highlighting the limitations of conventional methods and the 
potential of IoMT technologies. Section III discusses the 
background studies, describing foundational principles and 
relevant advancements in IoMT and lung sound analysis. 
Section IV outlines the materials and methods, including data 
acquisition and deep learning techniques. Section V presents 
the results and discussions, analyzing findings. Section VI 
concludes the study, summarizing contributions, implications, 
and recommendations for future work. 

III. BACKGROUND STUDIES 

A. Internet of Medical Things 

The Internet of Medical Things (IoMT) refers to a network 
of interconnected medical devices, software applications, and 
healthcare systems designed to collect, transmit, and analyze 
patient data in real time. IoMT advanced technologies, i.e., 
sensors, wearable devices, remote monitoring tools, and cloud 
computing, to provide continuous healthcare solutions. These 
systems enable personalized patient care, early disease 
detection, and effective chronic disease management by 
continuously tracking vital signs and other health parameters. 

IoMT enhances patient outcomes by enabling remote 
consultations, reducing hospital visits, and facilitating 
proactive treatment through real-time alerts. It also streamlines 
healthcare workflows by integrating data from diverse sources, 
improving clinical decision-making. However, IoMT faces 
challenges, including data security, interoperability, and 
compliance with regulatory standards. Despite these hurdles, 
IoMT represents a transformative advancement in modern 
healthcare, driving a shift toward precision medicine and 
empowering patients to actively engage in health management. 

B. Extra Tree Classifier 

One method of group decision-tree education is called the 
Extra Trees Classifier. When splitting a tree node, the Extra 
Trees classifier strongly randomizes the choice of features and 
reduces points, producing an unpruned collection of decision 
trees and trees. Extra trees function by combining the output of 
several de-correlated decision trees into a forest, from which 
they derive the classification result determined by the bulk of 
the voting technique. Compared to conventional decision trees 
or even random forests, this model adds more randomness by 
constructing multiple decision trees using arbitrary portions of 
characteristics and splitting at random points. This volatility 
reduces overfitting and improves the model's ability to 
generalize. Features taken from the audio recordings, such as 
time-domain, frequency-domain, and time-frequency domain 
characteristics, are fed into the Extra Tree classifier in the 
context of lung sound analysis. The model uses the rich and 
varied feature set to differentiate between various lung sounds, 
including wheezes, crackles, and other pathological sounds 
connected to illnesses like pneumonia, COPD, or asthma, as 
well as typical breathing. 

C. AdaBoost Classifier 

The AdaBoost methodology is a method for improving the 
performance of a model by combining weak classifiers. It 
involves extracting relevant features from audio recordings, 
such as time-domain and frequency-domain features, and 
training a weak classifier, typically a decision tree with a single 

split. Classifier kj can express an opinion, denoted by kj(xi) 
when their proposal is considered a training example for 
classifier acquisition for a given input model xi. Taking into 
account the issue of splitting the learning vector gathering into 
two classes, kj(xi) only accepts two values, such as 0 or 1, 
respectively, as shown in equation Sign C(xi), the sign of the 
linear mixture of the weighted total of the sub-classifiers' 
opinions, determines the classifier K's ultimate decision. 

𝐶(𝑥𝑖) =  𝑎1𝑘1(𝑥𝑖) + 𝑎2𝑘2(𝑥𝑖) + 𝑎𝑙𝑘𝑙(𝑥𝑖) 

Where weights are denoted bya_1, a_2,..., a_l And sub-
classifiers by k_1, k_2,..., k_l. To generate a set of subpar 
learners, the adaboost technique keeps track of weights across 
instruction data and continually adjusts them after each weak 
learning cycle. The weights of training instances that the 
current weak learner incorrectly classifies will be increased, 
while the weights of training instances that are correctly 
classified will be decreased. 

D. Deep Neural Network 

The components of deep learning networks developed in 
the two-stage model will be clarified in the following part on 
artificial neural networks. Artificial Neural Networks (ANNs) 
are dynamic models that can adapt their internal architectures 
to meet specific functional requirements, making them ideal for 
managing nonlinear type issues. The essential parts of an ANN 
are the links and nodes that make up it, each with an output and 
input for interaction with other nodes or the surroundings. Each 
neuron in the network applies an activation function to 
introduce non-linearity through weighted connections. A 
labeled dataset is used to train the network, which uses a loss 
function to minimize the error between predicted and actual 
class labels during training by adjusting the weights of the 
connections through backpropagation. The learning process is 
one of the core characteristics of ANN, as they can understand 
the connections that define the data by adapting its connection 
to the information structure that makes up its surroundings. 
Neurons can be arranged in any topological configuration 
based on the kind and volume of input data. The feed towards 
construction is used in designing the most widely used ANN, 
with an input layer typically consisting of a particular amount 
of neurons paired. The data is sent to the secret layer or layers 
operating within the ANN and the output layer are created 
specifically to address the issue and provide the solution. Each 
neuron in the layer below is linked to every other neuron, with 
a fixed number of inputs and weights. Measurements are 
crucial for operating the deep neural network as they can be 
learned parameters. 

𝐶(𝑥𝑖) =  𝑎1𝑘1(𝑥𝑖) + 𝑎2𝑘2(𝑥𝑖) + ⋯+ 𝑎𝑙𝑘𝑙(𝑥𝑖)  

Weight values are randomly initialized to be near zero but 
not zero before acquiring starts. The values of the data are 
modified to new information during learning, and this 
modification will aid in determining the significance of inputs. 
The activation function translates the weighted average from 
one neuron into the afterwards neuron's stimulation. Numerous 
mechanisms for activation are described in this research. Two 
factors influence the selection of rectified linear activation 
units in hidden layers in this work: (1) their ease of 
computation; and (2) the possibility of deep neural network 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 2, 2025 

880 | P a g e  

www.ijacsa.thesai.org 

optimization because of their linear behaviour. After receiving 
input from hidden layer #2, the network's output layer 
transforms it into a binary (zero = unhealthy or one = healthy). 
The following equation is a representation of the sigmoid 
activation function: 

Ў = 
1

1 + 𝑒−𝑧′
                      

Where ў the neuron's results and z is the hidden layer #2 
outputs.The average error was determined for each sample 
using the loss function with cross entropy. Here is a 
representation of the cross-entropy loss function in equation. 

𝐻 (𝑦, ў) =  − ∑𝑦𝑖 − Log(Ў𝑖)

𝑛

𝑖=1

              

Where ў the network's output and y is is the real value. 
After every single propagation forward, the neural network 
searches for a set of heavy objects that minimizes the variance 
among the expected and actual values. 

IV. MATERIAL AND METHODS 

A. Dataset Descriptions 

The audio files used in the thesis came from three distinct 
data sets. A variety of numbers of audio files from different 
datasets are included to create a balanced dataset. Table I 
Describes  three Datasets used in this work. 

1) Respiratory sound: The Respiratory Sound is a 

collection of 920 audio recordings from two research teams in 

different countries. Samples gathered at the Hospital Infante 

D. Pedro in Aveiro, Portugal, and the ESSUA Respiratory 

Research and Rehabilitation Laboratory by the School of 

Health Sciences, University of Aveiro research team. The 

second research team, from the Universities of Coimbra and 

Aristotle University of Thessaloniki, gathered respiratory 

sounds at the Papanikolaou General Hospital in Thessaloniki 

and the General Hospital of Imathia in Greece. Most of the 

database consists of audio, with samples from two hospitals in 

Portugal and Greece. The researchers analyzed the recordings 

using various instruments, including stethoscopes and 

microphones. They found 761 recordings suitable for 

evaluation, and 761 audio files were added to the model 

dataset without additional requirements [30]. The database 

includes 6898 breathing cycles from 126 patients, with 1864 

having crackles, 886 having wheezes, and 506 having both. 

2) Coronahack respiratory sound: The Coronahack 

Respiratory Sound includes respiration sound files from both 

COVID-19-affected and non-affected users. The file Corona-

Hack-Respiratory-Sound-Metadata.csv includes additional 

disturbances and demographic data about the user. Audio 

recordings of patients with asthma or pneumonia were 

included in the dataset. Respiratory sound recordings from 

people with asthma or pneumonia were carefully selected 

from records that did not indicate probable COVID-19. The 

dataset contained these recordings [31]. 

3) Coswara sound: Coswara aims to develop a cost-

effective method for diagnosing COVID-19 using speech, 

cough, and breath sounds. The study focuses on respiratory 

distress, a common symptom of the illness, and measures 

disease biomarkers in the acoustics of these noises. The 

project collects voice samples from healthy and sick 

individuals, examining nine categories of breathing, coughing, 

vowel phonation, and counting. Age, gender, location, current 

health status, and co-morbidities are collected. The dataset 

includes audio recordings from patients who have not 

contracted COVID-19 or recovered, tagged as "Asthma" or 

"Pneumonia." Thirty-eight healthy voice files with respiratory 

sound for at least 10 seconds were included in the dataset. The 

study includes 38 healthy, 58 asthmatic, and nine pneumonia 

voice recordings under specific conditions. The Coswara 

dataset is valuable for understanding and diagnosing COVID-

19[32]. 

B. Preprocessing 

Preprocessing is essential for IoMT-enabled noninvasive 
lung disease classification and detection. Fig. 1 displays the 
proposed methodology for this work  Preprocessing procedures 
are necessary to prepare the data for successful categorization 
since lung sound recordings frequently contain noise and 
unpredictability due to patient movements and natural 
influences. Special values in proportional variables are crucial 
for maintaining data integrity and optimizing model 
performance in lung disease detection and classification from 
lung sound analysis. 'Nan' values, which occur when numerator 
and denominator are zero, are removed in the first 
preprocessing step. Normalization or scaling techniques can be 
used to handle these special cases. When the denominator is 

zero, special values arise, such as positive infinity (+∞) or 

negative infinity (-∞), as shown in Eq. (1). These extreme 

values can significantly impact deep learning model 
performance during training. 

𝑋 =  

{
 

 
𝑁

𝐷
              𝑖𝑓 𝐷 ≠ 0

+ ∞    if   N > 0 and D = 0
                 

−∞   if   N < 0 and D = 0

                 (1) 

TABLE I.  THREE DATASETS USED IN THIS WORK 

Dataset Name Audio Samples Patients Key Features Source 

Respiratory Sound 920 recordings, 761 used 
126 patients, 6898 breathing cycles 
(1864 crackles, 886 wheezes, 506 both) 

Breathing sounds recorded using 
stethoscopes and microphones 

[30] 

Coronahack 

Respiratory Sound 

Varied, includes both COVID-19 

and non-COVID-19 patients 

Includes asthmatic, pneumonia, and 

COVID-19-negative patients 

Demographic data, respiratory conditions, 

and sound disturbances included 
[31] 

Coswara Sound 
38 healthy, 58 asthmatic, 9 
pneumonia 

Data collected includes age, gender, 
health status, and co-morbidities 

Focus on speech, cough, and breath 
sounds for diagnosing respiratory distress 

[32] 
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Fig. 1. Proposed methodology for this work.

The Weight of Evidence (woe) measures how well an 
organizing technique can discriminate between positive and 
negative results, or between 1 and 0. This method works for 
any issue where the binary variable is the target, even though it 
was initially created to create a predictive model for assessing 
credit default risk in the finance and credit sectors. The amount 
of evidence that either confirms or disproves a hypothesis is 
measured by its weight. The Weight of Evidence is determined 
as follows in Eq. (2): 

𝑊𝑜𝐸 = ln (
𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 1′𝑠

𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 0′𝑠
) ∗ 100            (2) 

Feature elimination is crucial for optimizing model 
performance by removing unnecessary, redundant, or noisy 
features from the dataset using statistical testing, correlation 
analysis, and machine learning algorithms. Feature elimination 
techniques such as Recursive Feature Elimination (RFE) 
remove irrelevant or redundant features, reducing overfitting 
and computational load. The model's performance metric is 
calculated without feature removal, and the impact of 
eliminating features is assessed. The model's performance 
metric J is calculated without feature x_j, and the impact of 
elimination x_j is shown in Eq. (3). 

𝐽−𝑥𝑗 = 𝐽 (𝑋 {𝑥𝑗})                          (3) 

C. Feature Extraction 

An individual measurable functionality or characteristic 
that defines a phenomenon is called a feature in machine 
learning. Useful algorithmic methods for classification rely on 
selecting independent, making distinctions, and useful 
characteristics. In this work, 1522 features from different 
categories were created for each sound recording as follows: 

1) Time domain features: Three distinct groups are 

created from the signal's time series features: the audio 

recording's 0–1 s, 0–6 s, and 0–10 s segments. The relevant 

signal's increasing average series and accumulative series 

were calculated. The number of data points in the initial 

collection always equals the total moving average's term 

count, as shown in Eq. (4). 𝐶𝑘  Is defined recursively as 

follows, where x1, x2,..., xn are the related respiration sound 

time series and C1, C2,..., Cn are the accumulated average 

with weights a series. 

𝐶𝑘 =
(𝑥𝑘+(𝑘−1)∗ 𝑥𝑘−1)

𝑘
                       (4) 

2) Spectral feature: It is essential to differentiate between 

typical and abnormal respiratory conditions by capturing the 

frequency domain characteristics of lung sounds through 

features. 

a) Time-frequency spectrogram statistical features: 

Mel-spectrogram, MFCC, Short-Term Fourier Transform, and 

Chroma In the earlier part, each respiration sound was 

subjected to a Short Term Fourier Transform to transform it 

into a time-frequency spectroscopy and extract features akin to 

those found in a spirometer. After computations, a long list of 

factors is created, which includes the statistical properties of 

the time-frequency spectra obtained for the 0–1, 0–6, and 0–

10 s periods of each audio recording. 

b) Power spectrogram statistical features: Power 

spectrogram statistical features provide insights into power 

distribution across different frequencies over time, which is 

essential for identifying and distinguishing various respiratory 

conditions, is described in Eq. (5). 

𝑓(𝑥) =  𝑐𝑜 + 𝑐1 ∗ 𝑥                        (5) 

Where 𝑐1  Is the coefficient of the corresponding column 
and 𝑐𝑜  is the constant term. 

D. Feature Elimination Process 

Feature elimination is crucial for optimizing model 
performance by removing unnecessary, redundant, or noisy 
features from the dataset using statistical testing, correlation 
analysis, and machine learning algorithms. 

1) GINI Elimination: The Receiver Operating 

Characteristic (ROC) curve is a crucial tool in signal detection 
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theory, used alongside the Neyman-Pearson method to 

visualize a classifier's efficacy. It is used for assessing and 

comparing the overall efficacy of testing or diagnostic 

procedures. The AUC index, a summary of the ROC curve, is 

often used in this assessment. The process is summarized as 

follows: 

a) The training and test sets of the data set are split 

80/20. 

b) The single-variate regression procedure was applied 

to each variable's training set to determine the AUC of each 

variable. 

c) Using the AUC values as a guide, the Gini coefficient 

for each variable was determined using the formula below Eq. 

(6): 

𝐺𝐼𝑁𝐼 = (2 ∗ 𝐴𝑈𝐶 − 1) ∗ 100             (6) 

E. Machine Learning Models 

This section includes the details of two-stage machine/deep 
learning models and the working principles of applied 
algorithms. The Extra Tree Classifier and Ada Boost Classifier 
techniques with the most effective binary categorization were 
chosen as modeling algorithms using Python's open-source 
"pycaret" library. 

Weight values are randomly initialized to be near zero but 
not zero before acquiring starts. The values of the data are 
modified to new information during learning, and this 
modification will aid in determining the significance of inputs. 
The activation function translates the weighted average from 
one neuron into the afterwards neuron's stimulation. Numerous 
mechanisms for activation are described in this research. Two 
factors influence the selection of rectified linear activation 
units in hidden layers in this work: (1) their ease of 
computation; and (2) the possibility of deep neural network 
optimization because of their linear behaviour. After receiving 
input from hidden layer #2, the network's output layer 
transforms it into a binary (zero = unhealthy or one = healthy). 
The following Eq. (7) is a representation of the sigmoid 
activation function: 

Ў =  
1

1+ 𝑒−𝑧′
                                  (7) 

Where ў the neuron's results and z is the hidden layer #2 
outputs. The average error was determined for each sample 
using the loss function with cross entropy. Here is a 
representation of the cross-entropy loss function in Eq. (8): 

𝐻 (𝑦, ў) =  − ∑ 𝑦𝑖 − Log(Ў𝑖)
𝑛
𝑖=1             (8) 

Where ў the network's output and y is the real value. After 
every single propagation forward, the neural network searches 
for a set of heavy objects that minimizes the variance between 
the expected and actual values. 

Dropout is a regularization technique for deep neural 
networks that helps lessen learning when nerve cells are 
interconnected. It suggests that a subset of randomly chosen 
neurons from a particular layer may be removed during 
learning. As a result, during a specific forward or backward 

pass, the results of the eliminated nerve cells disappear. In the 
present study, every iteration saw the removal of 0.1% of the 
neurons in the relevant layer from the input and hidden layers. 

F. Evaluation Measures 

We utilize various assessment measures to evaluate the 
effectiveness of the proposed models. These measures provide 
insight into the models' accuracy, predictive power, and 
generalization capability. The percentage of accurately 
categorized cases out of all instances is known as accuracy, as 
shown in Eq. (9). 

Accuracy = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
∗ 100     (9) 

Other evaluation measures adopted for assessing the 
proposed models are specificity, sensitivity, and F1 score, 
shown in Eq. (10) and Eq. (11). The specificity and sensitivity 
formula are as follows: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
      (10) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
      (11) 

True positives (TP) are positive in the test set and correctly 
labeled as positive by the classifier. True negatives (TN) are 
negative in the test set and correctly labeled as negative by the 
classifier. False positives (FP) are negative in the test set but 
incorrectly labeled as positive by the classifier. False negatives 
(FN) are positive in the test set but incorrectly labeled as 
negative by the classifier. Eq. (12) shows that the F1 score is 
the harmonic mean of precision and recall, providing a 
combined measure of precision and recall. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
            (12) 

Where precision and recall are calculated Eq. (13) and Eq. 
(14), respectively. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
       (13) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
         (14) 

 

V. DISCUSSION AND RESULTS 

Spectrogram (top) and onset strength analysis (bottom) of 
lung sound data, critical for IoMT-enabled noninvasive lung 
disease detection. The spectrogram visualizes frequency (Hz) 
over time, with color intensity indicating sound energy. It 
highlights distinct acoustic patterns associated with respiratory 
cycles, facilitating feature extraction for disease classification. 
The onset strength graph below shows temporal variations in 
sound intensity, with detected onsets marked by red dashed 
lines, capturing significant events like wheezes or crackles. 
These features, analyzed using deep learning, improve the 
precision of lung sound classification, aiding in early and 
accurate detection of pulmonary diseases. Fig. 2 represents 
Spectro-Temporal Analysis for IoMT-Based Lung Disease 
Detection.
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Fig. 2. Spectro-Temporal analysis for IoMT-Based lung disease detection.

Onset detection and energy analysis for lung sounds, 
crucial for IoMT-based noninvasive respiratory disease 
classification. The top graph visualizes onset strength with raw 
onsets (blue peaks) and backtracked onsets (red vertical lines). 
These onsets correspond to significant acoustic events, such as 
wheezes or crackles, indicative of lung abnormalities. By 
combining onset detection and energy analysis, these features 

enhance the ability of deep learning algorithms to accurately 
classify lung diseases, enabling early diagnosis through 
efficient feature extraction and temporal event mapping. This 
dual-layer analysis improves robustness in detecting subtle 
patterns in lung sounds, aiding real-time and remote healthcare 
applications. Fig. 3 shows Onset and Energy Analysis for Lung 
Sound Classification. 

 
Fig. 3. Onset and energy analysis for lung sound classification.

 
Fig. 4. Training history. 

The Fig. 4 shows the training and validation accuracy 
trends over 50 epochs in a machine learning model. The x-axis 
represents epochs, and the y-axis represents accuracy values 
ranging from 0 to 1. The training accuracy (blue line) steadily 
improves, indicating the model's ability to fit the training data, 
with slight fluctuations towards the later epochs. The validation 
accuracy (orange line) increases initially, stabilizes, and 
exhibits minor oscillations, reflecting the model's 
generalization performance. The gap between training and 
validation accuracy suggests potential overfitting, as training 
accuracy surpasses validation accuracy in later epochs. This 
trend presents the need for optimization or regularization 
techniques. 
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Fig. 5. Unaltered audio spectrogram. 

The Fig. 5 show spectrograms visualizing feature extraction 
from an audio signal under different augmentations. The first 
plot (original) shows the unaltered spectrogram. Subsequent 
plots depict the effects of augmentations: noise addition, time 
shift, time stretching (two variations), and pitch shifting. These 
transformations simulate variability in audio datasets to 
improve machine learning model generalizability. The model 
can robustly learn features under varying conditions by 
augmenting the original signal, critical in tasks like speech 
recognition or environmental sound classification. 

The results presents analysis of three machine learning 
models—AdaBoost Classifier, Extra Tree Classifier, and Deep 
Neural Network—evaluated on three datasets: the Respiratory 
Sound, Coronahack Respiratory Sound, and Coswara Sound. 
Each model's performance is measured using precision, recall, 
F1-score, and overall accuracy across diseases like crackles, 
wheezes, COVID-19, asthma, pneumonia, and healthy cases. 

Table II, III and IV  shows the performance of the models. 
Accuracy ranged from 94.12% to 95.23%, with consistent 
precision, recall, and F1-scores for all diseases, indicating 
robust yet moderate effectiveness. Table II displays the 
AdaBoost Classifier's assessment, which improved accuracy 
(95.42%–96.33%) and balanced precision-recall for detecting 
COVID-19 and other diseases, suggesting its superior 
predictive reliability compared to the ensemble approach. 
Table III evaluates a Deep Neural Network, showcasing the 
highest performance metrics, with accuracy surpassing 98% 
across all datasets. The network's precision, recall, and F1 
scores consistently reached 0.99 for most diseases, 
demonstrating its efficacy in detecting subtle respiratory 
anomalies. 

TABLE II.  PERFORMANCE MEASURES OF EXTRA TREE CLASSIFIER 

Dataset used for experiments Diseases Precision Recall F1-score Overall Accuracy 

Respiratory Sound 
Crackles 0.95 0.96 0.95 

94.12% 
Wheezes 0.93 0.94 0.96 

Coronahack respiratory sound 
COVID-19 0.94 0.95 0.93 

95.23% 
Healthy 0.96 0.93 0.92 

Coswara sound 

Asthma 0.92 0.94 0.94 

94.21% Pneumonia 0.94 0.93 0.94 

Healthy 0.92 0.94 0.94 

TABLE III.  PERFORMANCE MEASURES OF ADA BOOST CLASSIFIER 

Dataset used for experiments Diseases Precision Recall F1-score Accuracy 

Respiratory Sound 
Crackles 0.96 0.94 0.95 

95.42% 
Wheezes 0.94 0.96 0.95 

Coronahack respiratory sound 
COVID-19 0.97 0.96 0.97 

96.33% 
Healthy 0.95 0.96 0.96 

Coswara sound 

Asthma 0.96 0.95 0.94 

94.76% Pneumonia 0.97 0.96 0.95 

Healthy 0.95 0.95 0.96 

TABLE IV.  PERFORMANCE MEASURES OF DEEP NEURAL NETWORK 

Dataset used for experiments Diseases Precision Recall F1-score Accuracy 

Respiratory Sound 
Crackles 0.99 0.98 0.98 

98.92% 
Wheezes 0.99 0.99 0.99 

Coronahack respiratory sound 
COVID-19 0.98 0.99 0.99 

99.33% 
Healthy 0.99 0.99 0.99 

Coswara sound 

Asthma 0.99 0.99 0.99 

99.36% Pneumonia 0.98 0.99 0.99 

Healthy 0.97 0.98 0.99 
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VI. CONCLUSION AND FUTURE WORK 

This work presents an IoMT-based noninvasive approach 
to lungs disease detection and classification. The work uses an 
IoMT-enabled, noninvasive approach for lung disease 
detection and classification using Respiratory Sound, 
Coronahack Respiratory Sound, and Coswara Sound. Using 
machine learning models such as the Extra Trees classifier and 
AdaBoost classifier alongside a proposed deep learning model, 
this approach achieved impressive accuracy levels across 
various respiratory conditions. . The DNN achieves accuracy 
across all datasets, with 98.92% for the Respiratory Sound, 
99.33% for the Coronahack Respiratory Sound, and 99.36% 
for the Coswara Sound. These results highlight the potential of 
deep learning models to support reliable and accurate 
respiratory health assessment in IoMT applications. Future 
work will enhance model robustness to handle diverse datasets 
and real-world variations and optimize the model for low-
power IoMT devices to facilitate clinical deployment. Future 
work will optimize the proposed model for real-world 
applications, explore additional features such as multi-modal 
data for improved accuracy, and conduct large-scale 
evaluations across diverse network environments to assess 
generalizability. 
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