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Abstract—Machine learning techniques are increasingly used 

in orthopaedic surgery to assess risks such as length of stay, 

complications, infections, and mortality, offering an alternative 

to traditional methods. However, model performance varies 

depending on private institutional data, and optimizing 

hyperparameters for better predictions remains a challenge. This 

study incorporates automatic hyperparameter tuning to improve 

readmission prediction in orthopaedics using a public medical 

dataset. Bayesian Optimization was applied to optimize 

hyperparameters for seven machine learning algorithms—

Extreme Gradient Boosting, Stochastic Gradient Boosting, 

Random Forest, Support Vector Machine, Decision Tree, Neural 

Network, and Elastic-net Penalized Logistic Regression—

predicting readmission risk after Total Hip Arthroplasty (THA). 

Data from the MIMIC-IV database, including 1,153 THA 

patients, was used. Model performance was evaluated using 

Precision, Recall, and AUC-ROC, comparing optimized 

algorithms to those without hyperparameter tuning from 

previous studies. The optimized Extreme Gradient Boosting 

algorithm achieved the highest AUC-ROC of 0.996, while other 

models also showed improved accuracy, precision, and recall. 

This research successfully developed and validated optimized 

machine learning models using Bayesian Optimization, 

enhancing readmission prediction following THA based on 

patient demographics and preoperative diagnosis. The results 

demonstrate superior performance compared to prior studies 

that either lacked hyperparameter optimization or relied on 

exhaustive search methods. 
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I. INTRODUCTION 

Total Hip Arthroplasty (THA) is a surgery to replace the 
entire hip joint with an artificial joint, called an implant, and is 
typically performed on patients with severe osteoarthritis and 
having a prevalent rate of 1.2% [1], [2], [3]. THA is an 
effective option for reducing pain and improving hip joint 

function in patients with severe symptomatic osteoarthritis, 
with a success rate of more than 85% and clinical outcomes 
lasting for 15 to 25 years [4], [5], [6], [7]. The demand for 
THA procedures has significantly increased and is expected to 
continue to rise until 2040 [8], [9], [10]. However, like all 
surgery procedures, THA comes with risks concerning a 
patient's condition for infection, dislocation, and mortality and 
may require unplanned hospital readmission for a corrective 
procedure or even a revision surgery. Dislocation, complication 
(both implant and non-implant-associated complication), 
including infection and mental status, are identified as the 
reasons for readmission after THA [11], [12]. Meanwhile, 30-
day readmission rate of 5% to 9.5% and 5% to 10% for 90-day 
readmission have also been reported [13], [14], [15], [16], [17], 
[18]. 

Bundled payments in healthcare have been established in 
several countries, such as United States, The Netherlands, 
Sweden, United Kingdom, and Indonesia, as part of a transition 
toward value-based treatment. This payment structure makes 
healthcare providers receive incentives for coordinating 
treatments, preventing complications and failures, and reducing 
unnecessary or duplicate tests and treatments, including 
unplanned hospital readmission [19], [20], [21], [22]. 
Therefore, a readmission risk prediction system for THA 
surgery is valuable in not only improving cost management, 
but also in improving patient care quality. It serves as a tool in 
the cooperative decision-making process between patients and 
doctors regarding the final decision to undertake the elective 
THA surgery, as well as in providing pre- and post-operative 
treatment tailored to the patient's condition [23], [24], [25]. 
Based on the predicted risks, in which is very individuals for 
each patient, doctors may design a customized treatment 
procedure such as medication prescription, diets, and/or 
supervised exercise before and after the surgery. The 
readmission risk prediction system is also a source of 
information for the hospital to manage the distribution of its 
resources, such as specialty doctors, operating rooms, inpatient 
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rooms, and medical equipment [26], [27]. With the rise of 
medical expenses, implementing effective and efficient 
procedures across all channels puts hospital management to the 
test while maintaining the quality of care, as often mirrored by 
the concept of patient-centered care [28]. 

Both classical and machine learning-based methods have 
already applied to predict the risk, including readmission risk, 
of THA surgery. Classical methods to predict the risk of THA 
surgery, as well as general surgery, are currently used, such as 
the Risk Assessment and Predictor Tool (RAPT) [29], 
Charlson Comorbidity Index (CCI) [30], and Elixhauser 
Comorbidity Index (ECI) [31], [32]. CCI and ECI measure 
risks associated with mortality, hospital length of stay, and 
hospital charges based on the overall severity of comorbidities. 
Instead, RAPT predicts discharge destination and length of stay 
for patients after hip or knee arthroplasty.  With the rising 
complexity of patient electronic medical history data, a 
solution based on artificial intelligence (AI) and machine 
learning (ML) is critical to understanding each unique health 
profile of a patient and providing more accurate information 
related to risks to doctors and patients. 

Machine learning (ML) algorithms have been effectively 
introduced and used in a variety of medical sectors such as 
predicting length of stay of lung cancer patients [33], elderly 
patients readmission risk prediction [34], and heart disease 
classification [35]; nonetheless, its technology is relatively new 
in the field of orthopaedic surgery [36]. Although classical 
approaches to calculate complication and mortality risks using 
patient demographic characteristics and comorbidities do exist, 
they are considered having weak discrimination, are not 
verified, and not general enough to accurately predict risk 
preoperatively and mostly are developed using multivariable 
regressions techniques [37]. According to the authors' 
preliminary literature review [38], various ML algorithms have 
been utilized to predict THA outcomes using AI/ML 
technology. Among them are Logistic Regression [39], [40], 
[41], Linear Support Vector Machine [39], [42], Linear 
Discriminant Analysis [39], Elastic Net Penalized Linear 
Regression [40], [43], Random Forest [40], [42], [43], Neural 
Networks [42], [43], Stochastic Gradient Boosting [42], [43], 
[44], and an automated machine learning tool developed for 
prognosis (dubbed AutoPrognosis) [45]. Specifically for 
predicting readmission risk, some machine learning tools used 
were a Random Forest approach with Natural Language 
Processing (NLP) feature [46], Linear Regression, Support 
Vector Machine, Random Forest to predict 90-day readmission 
[47], Logistic Regression [48], and Light Gradient Boosting 
Machine [49]. 

Research by Kuo et al. [50] aimed to predict periprosthetic 
joint infection by implementing two levels of ML architecture. 
Naïve-Bayes, eXtreme Gradient Boosting, Linear Regression, 
and Random Forest were put in the first level as base 
classifiers, while Support Vector Machine as the meta-
classifier acted in the second level as the final decision maker 
based on the prediction result of the first level. Some patient-
related variables used were demographic, biomedical, 
comorbidity, surgery-related variables and had a very good 
Area under Curve (AUC) score of 0.988. There was no 

additional information on hyperparameters fixed for the final 
classification algorithms in each level. 

Research by Klemt [36] investigated the risk of failure of a 
revision THA involving similar variables to [50] using Neural 
Network, Elastic-net penalized logistic regression, and 
Random Forest and achieved the highest AUC score of 0.85 for 
Neural Network. 

The investigation to predict complication and irregular 
surgery duration was performed in study [44] using eXtreme 
Gradient Boosting algorithm which incorporated 12 (twelve) 
variables related to patient demographic, implant type, and 
surgeon experience. The AUC scores were 0.64 for 
complication prediction and 0.89 for surgery duration. Based 
on the supplied codes in GitHub, hyperparameters search was 
performed using GridSearch method. 

Nham et al. [39] conducted a study exploring various tree-
based algorithms, neural networks, statistical and probabilistic 
approaches, and Support Vector Machine (SVM) to predict in-
patient mortality, discharge disposition, and length of stay. The 
study incorporated patient-specific variables, such as 
demographic, diagnosis, and mortality risk, and also situational 
variables, such as operation location, hospital type, and number 
of hospital beds. The best three algorithms were different for 
each predicted outcome, but Linear Support Vector Machine 
(LSVM) and Decision List (DL) were the most frequent to 
appear in the best three. Again, there was no discussion on how 
to select the best hyperparameters for each algorithm. 

A machine learning prediction of all-cause complications 
within two years of primary THA was introduced by Kunze 
[42] using preoperative variables, such as demographics, 
comorbidities, known allergies, and Modified Harris Hip 
Score. The study investigated several machine learning 
algorithms such as stochastic gradient boosting, random forest, 
support vector machine, neural network, and Elastic-net 
penalized logistic regression, including their hyperparameter 
settings which were tuned through a grid search approach. The 
best performing algorithm was Elastic-net penalized logistic 
regression with an AUC value of 0.93 on test set. 

Research by Shah et al. [37] is one of the studies that 
applied Bayesian Optimization to optimize hyperparameters in 
an Automated Machine Learning (AutoML) environment. It 
consists of an ensemble of several machine learning pipelines, 
each fitted with its own hyperparameters, to make prediction 
on complications after THA procedure. It achieved AUC value 
of 0.732 and claimed to exceed the performance of other 
single-type machine learning algorithms such as Logistic 
Regression, XGBoost, Gradient Boosting, AdaBoost, and 
Random Forest. 

Specifically for predicting readmission risk, research by 
Slezak et al. used and compared multiple machine learning 
techniques such as Light Gradient Boosting Machine (LGBM), 
Logistic Regression (LR), eXtreme Gradient Boosting (XGB), 
and Random Forests (RF) to predict risk for readmission after 
Total Joint Replacement surgery [49]. They included American 
Society of Anaesthesiologists Physical Status Classification 
(ASA) and modified Frailty Index (mFI-5) as the contributing 
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factors and achieved an AUC value of 0.672 with LGBM being 
the best algorithm for readmission prediction. 

Unplanned 90-day readmission after THA was also 
predicted with LR [48] and the predictive performance of the 
model was evaluated using the validation dataset, resulting in 
an AUC value of 0.715. All variables were grouped into five 
categories, including demographics, perioperative factors, past 
surgical histories, comorbidities, and medication usages, where 
contributing factors for each category were identified. 

Another prediction of 90-day readmission after TJA (Total 
Joint Arthroplasty) using comprehensive data from electronic 
medical records and patient-reported outcome measures was 
investigated in study [47] by utilizing a variety of machine 
learning algorithms including LR, LR with LASSO (Least 
Absolute Shrinkage and Selection Operator) penalty, SVM, 
and RF. They achieved quite an impressive AUC score of 
0.862 with LR-LASSO being the best performing algorithm 
and selected nine significant variables including diabetes, prior 
use of corticosteroid medication, and number of follow-up 
visits to orthopaedic clinics as the significant risk factors. 

Most of the machine learning algorithms applied require 
fine-tuning on a number of the hyperparameters (i.e., the pre-
set algorithm parameters to control the learning process and 
determine the values of model parameters) to achieve the best 
result (i.e., highest accuracy and precision, lowest error, or 
highest discriminant value). Finding the best hyperparameters 
are a manual trial-and-error process, though there has been an 
increase in using automatic search algorithms (i.e., 
Hyperparameter Optimization) such as Grid Search, Random 
Search, Evolutionary-based Search, and Bayesian 
Optimization. Only a few earlier studies on predicting THA 
outcomes using machine learning have included automatic 
hyperparameter tuning with Grid Search [42] and the Bayesian 
Optimization methodology [37]. 

In addition, risk prediction of THA patients in earlier 
studies were based on data from respective authors’ 
affiliations, thus might not be suitable for benchmarking the 
algorithms’ performance and is difficult in terms of 
reproducibility to verify the results [51]. To the author's 
knowledge, no previous research related to predicting 
outcomes following Total Hip Arthroplasty surgery has used 
public datasets. 

Machine learning techniques have proven to be effective in 
creating models to predict post-operative risks in THA patients, 
albeit there is no definitive technique best suited for all 
outcomes. Several previously cited articles briefly discussed 
how to determine the appropriate hyperparameters for each 
machine learning algorithm utilized using Grid Search 
approach, such as [42] and [44], which include systematically 
testing all possible hyperparameter combinations in the search 
space, but it is a time consuming and repetitive activity. With 
the rapidly increasing number and complexity of electronic 
medical records generated in this big data era, sweeping 
hyperparameters in the hyperparameter search space 
thoroughly as Grid Search does would take hours or days as the 
number of hyperparameters increases and finding the best ones 
remains a challenge. While Random Search provides better 
solution by randomly sampling points in the search domain, it 

is also less efficient for expensive evaluation functions [52]. 
Another more advanced method such as Bayesian 
Optimization capable of finding global optimization in a 
complex problem is gaining more recognition [37], [45]. 
Consequently, this study aims to provide a Bayesian 
Optimization approach to MLA in readmission risk predicting 
after THA operation. This research performed experiments on 
various machine learning algorithms commonly utilized in 
existing research with the optimization enhancement on a 
publicly available medical dataset MIMIC and evaluate the 
generalizability of the algorithms’ claimed performance. 

Hyperparameter optimization is particularly advantageous 
in improving the performance of machine learning algorithms 
and reducing tedious human effort to find the best setting [53]. 
It is also widely known that different hyperparameter settings 
work best for different datasets [54]. In the prediction of THA 
outcome context, one can expect a more accurate readmission 
risk prediction while delivering broader and easy-to-use 
machine learning tools to benefit non-technical expert users 
(i.e., doctors), incorporating hyperparameter optimization in 
the machine learning algorithms used. An automated 
hyperparameter optimization provides the search for the best 
hyperparameter configuration for each machine learning 
algorithm used automatically, thus improving accuracy and 
efficiency, as well as lowering error [55]. Meanwhile, 
automation makes it easier and simpler for non-technical 
experts to use various machine-learning technologies and gain 
more from the outcomes [53], [56]. The suggested system's 
contributions include the following: 

1) Development of readmission risk prediction method: 

The study proposes to incorporate automatic hyperparameters 

tuning to the machine learning algorithm selected by users, 

providing a more accurate and precise prediction result while 

offering ease and simplicity in applying and customizing 

machine learning algorithms to non-technical expert users. 

2) Exploration of hyperparameters optimization algorithm 

based on statistical approach: The study introduces a 

Bayesian Optimization method which is based on statistical 

calculation to find the best hyperparameters setting of the 

machine learning algorithm selected by users. 

3) Performance evaluation on known public tabular 

dataset (Medical Information Mart for Intensive Care-IV) 

MIMIC-IV: To evaluate the generalizability of high 

performing machine learning algorithms acclaimed in 

previous studies, this study uses a known public medical 

dataset MIMIC-IV [57], which is based on real medical 

dataset. 

4) Performance evaluation with robust metrics: to assess 

the effectiveness of the proposed system, the study introduces 

four evaluation metrics: Accuracy, Precision, Recall, and Area 

under the Curve Receiver Operating Characteristic (AUC-

ROC) values. These metrics measure the algorithm’s 

performance quality quantitatively. 

This journal article is organized as follows: Section I 
introduces the background, objectives, and significance of the 
study; Section II details the methods, including data sources, 
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preprocessing, and machine learning techniques; Section III 
presents the results of the experiments; Section IV discusses 
the findings in comparison to existing research; and Section V 
concludes with key takeaways and future research directions. 

II. METHODS 

A. System Overview 

The proposed readmission risk prediction system after 
THA operation furnishes decision support feature to both 
patients and healthcare professionals in the domain of peril 
prognosis. The system processes medical data from the 
electronic medical record dataset which integrates various 
relevant attributes from a number of tables. All related data 
from patients underwent THA procedure are extracted, 
including demographics, diagnosis, and postoperative 
procedures of medical rehabilitation, if any. Additionally, some 
data imputations of missing values from the attributes were 
performed and the readmission status of patients within a year 
after the THA procedure is set to be the target value of 
prediction. The system includes a varied array of classification 
algorithms in previous studies, including eXtreme Gradient 
Boosting (XGB), Stochastic Gradient Boosting (SGB), 
Random Forest (RF), Support Vector Machine (SVM), 
Decision Tree (DT), Neural Network (NN), and Elastic-net 
Penalized Logistic Regression (EnPLR). The best 
hyperparameters of those algorithms are then selected using 
Bayesian Optimization (BO) technique to ensure maximum 
results of the classification algorithms in predicting the 
readmission risk. Evaluation metrics such as Precision, Recall, 
and Area under the Receiver Operating Characteristic 
(AUROC) curve are employed to measure the algorithms’ 
performance quality. Fig. 1 explicates the system overview of 
the proposed readmission risk prediction system. 

 

Fig. 1. System overview of optimized readmission risk prediction model. 

The proposed method predicts the readmission risk of a 
THA patient based on one’s demographics and preoperative 
diagnosis to help doctors plan preoperative treatments, aid 
patients in making informed decision on the surgery, and to 
assist hospitals managing their resources efficiently and 

properly with data-driven decision making. The system 
involved steps as follows: 

1) Preprocess the patient dataset from MIMIC-IV 

(Medical Information Mart for Intensive Care version IV, 

which is a large de-identified public dataset of patients 

admitted to the emergency unit at the Beth Israel Deaconess 

Medical Center in Boston, MA). Duplicate data is identified 

and removed. 

2) Identify the hyperparameters of previously utilized 

machine learning algorithms, including XGB, SGB, RF, SVM, 

DL, NN, and EnPLR, and perform the Bayesian Optimization 

technique to find the best hyperparameters for each algorithm. 

3) Divide the dataset into 70% training and 30% testing 

set with stratified sampling.  

4) Compare the model performance using evaluation 

metrics such as Precision, Recall, and AUROC. 

B. Algorithm Introduction 

1) eXtreme Gradient Boosting (XGB): XGB is a tree 

boosting machine learning algorithm whose capability of 

handling sparse data becomes one of its highlight features. 

The algorithm was introduced by Chen and Guestrin [58] and 

has won various machine learning competitions. It implements 

gradient boosting technique to perform additive optimization 

and incorporates a regularized model to prevent overfitting 

using L1 and L2 regularization methods. The algorithm is 

available in various popular languages such as Python, R, C, 

C++, and Java. 

2) Stochastic Gradient Boosting (SGB): Introduced long 

before XGB, SGB has different approach to prevent 

overfitting in a general gradient boosting technique. It 

proposed a randomness into the algorithm by drawing a 

subsample, which is a fraction 𝑓 of the size of the training set, 

to replace the full training data set at each iteration [59]. In 

scikit-learn, SGB is implemented with 

GradientBoostingClassifier by defining subsample 

hyperparameter < 1. 

3) Random Forest (RF): RF works by building multiple 

decision trees and combines the output to give a single result. 

RF technique extends the bagging approach by combining 

bagging and feature randomness to generate an uncorrelated 

forest of decision trees [60]. Some of key benefits of RF are 

its capability to handle classification and regression tasks, and 

it is also easy to determine feature importance from the 

prediction result. This advantage can help to identify which 

features contribute the most to the prediction made. 

4) Support Vector Machine (SVM): SVM has the ability to 

perform both linear and non-linear classification using a 

kernel trick. It works by constructing a hyperplane in a high 

dimension space and determine functional margin of data 

points (called support vectors) which define a separation 

boundary between classes [61]. 

5) Decision Tree (DT): In this study, DT is used as a 

replacement of Decision List (DL), since a Python’s scikit-

learn implementation of DL is not available. DT is a simpler 
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version of RF which consists of decision nodes, chance nodes, 

and end nodes. Following the path from root and making 

decisions at every branch according to the attribute value 

leading to an end node will create a rule that defines the 

temporal or causal relations among attributes. 

6) Neural network: The Neural Network implemented in 

this study is Multi-Layer Perceptron (MLP), which is a 

supervised learning algorithm that maps a number of inputs to 

a number of outputs with a number of nodes in between 

(called hidden layers). The nodes in the hidden layers 

transform the values from the previous layer by adjusting the 

nodes’ weights and propagate the result to the next layer. MLP 

implements a regularization technique (called L2) to avoid 

overfitting by punishing weights of large magnitudes. 

7) Elastic-net Penalized Logistic Regression (EnPLR): 

EnPLR is a modified version of the classic Logistic 

Regression with a regularization method to overcome 

overfitting that linearly combines L1 (LASSO-Least Absolute 

Shrinkage and Selection Operator) and L2 (Ridge Regression). 

In scikit-learn, EnPLR is implemented with 

LogisticRegression model by setting hyperparameters 

solver=saga, penalty=elasticnet, and l1_ratio=0.5. 

8) Hyperparameter optimization with Bayesian 

Optimization (BO): Hyperparameter optimization is a process 

to fine tuning the hyperparameter values of machine learning 

algorithms to obtain the best setting which yield the best 

result, in a classification or regression problem. The domains 

of hyperparameter may range from real values (i.e. learning 

rate), integer (i.e. number of layers), binary (i.e. with or 

without early stopping), to category (i.e. a selection of 

optimizer functions). Let 𝒜 be a machine learning algorithm 

with N hyperparameters. The domain of 𝑛-th hyperparameter 

is denoted as 𝛬𝑛 and the overall configuration hyperparameter 

space is denoted as 𝛬 = 𝛬1 𝑥 𝛬2 𝑥 … 𝛬𝑁 . A hyperparameter 

vector is denoted as 𝜆 ∈ 𝛬 and a machine learning algorithm 

with its instantiated hyperparameter 𝜆 is denoted as 𝒜𝜆. Given 

a dataset 𝒟, the goal of hyperparameter optimization is to find 

Eq. (1) as in [53]: 

𝜆∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜆∈𝒜

 𝔼(𝐷𝑡𝑟𝑎𝑖𝑛,𝐷𝑣𝑎𝑙𝑖𝑑)~𝒟𝑽(ℒ, 𝒜𝜆, 𝐷𝑡𝑟𝑎𝑖𝑛 , 𝐷𝑣𝑎𝑙𝑖𝑑)  (1) 

with 𝑽(ℒ, 𝒜𝜆, 𝐷𝑡𝑟𝑎𝑖𝑛 , 𝐷𝑣𝑎𝑙𝑖𝑑) measures the loss value of the 
model generated by algorithm A with hyperparameter λ on the 
training data 𝐷𝑡𝑟𝑎𝑖𝑛  and evaluated on validation data 𝐷𝑣𝑎𝑙𝑖𝑑 . 
𝐷~𝒟 denoted the finite data which its expectation needs to be 
approximated. 

Grid Search and Random Search are the two most basic and 
simple hyperparameter optimization methods. While Grid 
Search performs exhaustive search on the hyperparameter 
search space, Random Search [56] samples a hyperparameter 
configuration randomly until it satisfies a defined threshold 
value. On the other hand, Bayesian Optimization (BO) is a 
global optimization framework approach of a black box 
objective function with high complexity and undefined shape 
and offers better efficiency given limited evaluation budget 
[62], [63]. 

BO is used in hyperparameter optimization (HO) that 
constructs a probability model of an objective function and use 
it to select the most promising hyperparameters to be evaluated 
in the real objective function [64]. Utilizing a Bayesian 
approach, BO takes note of the result of the previous 
evaluation to build a probability model which maps 
hyperparameters onto a probability score of an objective 
function, P(score|hyperparameters), called a surrogate 
function. Compared to the original function, the new function 
is easier to be evaluated and the Bayesian method works by 
finding the next hyperparameter having the best performance 
on the surrogate function to be evaluated on the real objective 
function. In a BO, a Gaussian Process (GP) is used as a 
surrogate function to produce a posterior distribution over the 
function values based on observed data. 

Meanwhile, an acquisition function selects the next point 
for the surrogate function, with common options including 
probability of improvement, expected improvement, and upper 
confidence bounds. This study uses the Bayesian Optimization 
library bayes-opt, which defaults to upper confidence bounds 
to balance exploitation of high surrogate values and 
exploration of uncertain regions. 

C. Datasets 

The proposed study utilized public medical dataset from 
MIMIC-IV (Medical Information Mart for Intensive Care 
version IV) [62] from Beth Israel Deaconess Medical Centre in 
Boston, MA, United States. The dataset consists of 223,452 
patients in its hospitalization hosp module and after a careful 
selection resulted in 1,153 unique THA patients’ data. The 
target variable is readmission within one year of first THA 
procedure which is a Boolean value TRUE or FALSE. 

A comprehensive description of characteristics of the 
patient data is provided in Table I. Most of the demographic-
related variables are summarized as mean values, while the rest 
are written based on their respective numbers and percentage. 
The numbers in preoperative diagnosis variable do not sum up 
to the total number of patients as a patient may have more than 
one diagnosis. 

D. Preprocessing 

Data preprocessing involves identifying and removing 
duplicates, missing values, and erroneous information from the 
data. Proper techniques such as Label Encoding and One-Hot 
Encoding are applied to transform categorical data into a 
numerical format [63]. Additionally, a standard scaler is 
applied to ensure all attribute values are standardized. The 
overall preprocessing step is summarized in Fig. 2. 

Data preprocessing involved extracting relevant data from 
the general dataset, identifying 1,153 unique THA patients 
with 55 variables (54 inputs and 1 output), as summarized in 
Table I. Patients had up to 39 preoperative diagnoses, totalling 
1,881 distinct diagnoses coded in International Classification of 
Diseases ICD-9 and ICD-10. 

In addition, a feature processing was applied. Missing 
values in weight, height, and Body Mass Index (BMI) were 
handled by filling with the mean value of the attribute column. 
All 1,881 diagnosis ICDs were assigned integer values from 1 
to 1881 (a value of 9999 was given to empty cells), implant 
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materials variable in categorical type were assigned 1 to 7 (99 
for empty cells), implant type in categorical were assigned 
values of 1 to 4 (9 for empty cells), and insurance type in 
categorical were assigned values of 1 to 3. 

TABLE I.  CHARACTERISTICS OF THA PATIENTS 

Variables 
All Patients (n=1,153) 

Mean (IQR) 

Demographics   

Age (years) 65.66 16 (58-74) 

Weight (pounds) 180.91 65.75 (146.25-212) 

Height (feet) 43.67 67 (0-67) 

Body Mass Index (kg/m2) 28.98 8.05 (24.6-32.65) 

Preoperative Blood pressure    

Systole 131.62 20 (120-140) 

Diastole 74.88 15 (67-82) 

 Number (%) 

Male Sex 506 43.88 

Insurance type   

Medicare 505 43.80 

Medicaid 35 3.03 

Other 613 53.16 

Preoperative diagnosis   

Osteoarthritis 1,023 8.9 

Hypertension 579 5.04 

Hyperlipidemia 440 3.83 

Esophageal reflux 336 3.83 

Nicotine/tobacco dependence 207 2.93 

Anemia 338 2.94 

Depressive disorder 111  0.97 

Anxiety disorder 154 1.34 

Sleep apnea 200 1.74 

Diabetes 260 2.26 

Asthma 155 1.35 

Others 7,679 66.88 

Implant material   

Synthetic 196 16.99 

Metal on Polyethylene 85 7.37 

Ceramic on Polyethylene 437 37.90 

Ceramic 31 2.69 

Ceramic on Ceramic 4 0.34 

Metal 6 0.52 

Oxidized Zirconium  
on Polyethylene 

2 0.17 

N/A 392 33.99 

Implant type   

Cemented 36 3.12 

Cementless 300 26.02 

Not Specified 217 18.82 

N/A 600 52.04 

Readmission within one-year post-THA 237 20.55 

 

Fig. 2. Preprocessing steps. 

Since the dataset is imbalanced, with 237 TRUE and 916 
FALSE, a simple random oversampling method to duplicate 
examples in the minority class was applied using imbalanced-
learn library [64]. The oversampling method produced equal 
size of data for each target class, which were 916 TRUE and 
916 FALSE. 

III. RESULTS 

A. Algorithm Selection and Hyperparameter Optimization 

(HO) 

The experiment was conducted in two modes for each 
algorithm: without and with hyperparameter optimization 
(HO). A limitation of the bayes-opt library is its restriction to 
numeric attributes, preventing the optimization of categorical 
and Boolean hyperparameters. Five numerical hyperparameters 
were optimized for each algorithm, except for Support Vector 
Machine and Elastic-net Penalized Logistic Regression, which 
had only three due to categorical constraints. Table II presents 
the optimized hyperparameters, their values, and a comparison 
of accuracy and AUROC between Bayesian Optimization (BO) 
and default hyperparameters. 

The convergence plot in Fig. 3 shows that six of seven 
algorithms (except SVM) reached a steady value within six 
iterations, indicating BO has effectively estimated the 
optimization target. Even SVM's sharp increase in the 14th 
iteration [Fig. 3(d)] remained within the 95% Confidence 
Interval (CI). 

The objective plot in Fig. 4 visualizes the distribution of 
hyperparameter values when the BO searched for the 
optimized ones. The diagonal subplots represent histograms of 
the sampled values for each parameter and aid in visualizing 
the distribution of parameter values used during optimization. 
This illustrates how BO investigated the parameter space. The 
red dashed line represents the optimized hyperparameter value 
while the blue line plots the AUC-ROC value as the objective 
target around the optimized hyperparameter value. If the 
majority of a parameter's samples are concentrated in a specific 
range, it may indicate that this range has values that are near 
ideal. For example, four straight lines in the diagonal subplots 
of XGB [Fig. 4(a)] indicates that all the sampled values of 
expGamma (an exponential transformation of Gamma), 
learning_rate, max_depth, and min_child_weight between their 
respective ranges yield a near optimal AUC-ROC value, i.e. 
0.9955. Meanwhile, the off-diagonal contour subplots show 
pairwise interactions between two hyperparameters, where 
darker colors indicate better values. The contour identifies 
regions where the parameter combinations yield optimal 
results. For example, the off-diagonal subplot between 
expGamma and expC (the exponential transformation of C) in 
Fig. 4(c) indicates that the red star value ( 𝑒𝑥𝑝𝐺𝑎𝑚𝑚𝑎 =
0.584 , thus 𝐺𝑎𝑚𝑚𝑎 = 100.584 = 3.837 ) in the dark region 
represents the optimal value of expGamma when combined 
with the value of expC. In Fig. 4(a), the red star in n_estimators 
plot (n_estimators=1818.9744) resides within the narrow 
darker area, indicating that the value is optimal or near optimal. 
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TABLE II.  THE HYPERPARAMETERS OF EACH ALGORITHM AND THEIR OPTIMIZED VALUES 

Algorithm Hyperparameters 
Bounds optimized 

value 

without HO with HO 

min max auc-roc fit time (s) auc-roc elapsed time (s) 

XGB learning_rate 0.01 0.8 0.0352 

0.9955 0.18 0.9958 582.11 

 min_child_weight 0 5 1.5814 

 max_depth 1 50 50 

 gamma 1e-5 1.0 0.0731 

 n_estimators 5 5000 1818.9744 

         

SGB learning_rate 0.01 0.8 0.4091 

0.8790 0.72 0.9936 747.03 

 n_estimators 10 250 151.6208 

 subsample 0.1 0.9 0.8513 

 min_sample_split 2 25 11.3614 

 max_depth 0 500 155.4370 

         

RF max_depth 0 500 34.0807 

0.9945 0.66 0.9936 541.20 

 max_features 0.1 0.999 0.3961 

 max_leaf_nodes 0 5000 1556.2286 

 min_samples_split 2 25 6.0441 

 n_estimators 10 250 219.7180 

         

SVM C 1e-6 1e+6 1230.18891 

0.7655 0.25 0.9915 6060.32  gamma 1e-4 1e+5 2.359238 

 tol 1e-9 0.1 0.1 

         

DT max_depth 1 500 179.5508 

0.8782 0.03 0.8783 4.75 

 min_samples_split 2 25 10.5158 

 min_samples_leaf 1 5 3.8508 

 max_features 0.1 0.999 0.5504 

 max_leaf_nodes 2 1000 715.1166 

         

MLP alpha 1e-6 10 0.0226 

0.9142 3.12 0.9503 485.52 

 learning_rate_init 1e-6 10 0.0012 

 batch_size 10 300 65.5406 

 max_iter 100 1000 801.9782 

 tol 1e-9 0.01 0.0003 

         

EnPLR tol 1e-9 0.01 0.0000002 

0.6592 1.67 0.6622 923.93  C 0.001 1000 526.6542 

 max_iter 5000 10000 8923.7024 

 

(a) 

 

(b)  

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

Fig. 3. The convergence plot in bayesian optimization technique for algorithm: (a) Extreme gradient boosting (XGB), (b) Stochastic gradient boosting (SGB), (c) 

Random forest (RF), (d) Support vector machine (SVM), (e) Decision tree (DT), (f) Multilayer perceptron (MLP), and (g) Elastic-net penalized linear regression 
(EnPLR). 

XGB SGB RF SVM 

DT MLP 
EnPLR 
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(a) 

 
(b) 

 
(c) 

Fig. 4. The objective plot of (a) XGB, (b) EnPLR, and (c) SVM. The red 

stars represent the best values of each hyperparameter. 

B. Performance Evaluation 

Table II shows the time required for each approach to 
complete optimization. All seven algorithms took longer with 
Bayesian Optimization (BO) than with default 
hyperparameters, with execution times increasing from 155 
times longer (MLP) to 24,605 times longer (SVM). This added 
duration is expected in hyperparameter tuning, balancing 
computational cost with improved AUC-ROC performance. 

Table III presents performance metrics: Accuracy, 
Precision, Recall, and AUC-ROC. SGB, SVM, and MLP 
showed improvements in all four metrics after optimization, 
while RF and DT performed worse. Optimization had minimal 
impact on XGB and EnPLR. 

Additionally, MLP’s default setting (max_iter = 200) failed 
to converge, requiring an increase to max_iter = 1000 in the 
optimized version. Similarly, EnPLR failed to converge in both 
cases, even after raising max_iter to 10,000 in the optimized 
version. 

TABLE III.  PERFORMANCE EVALUATION COMPARISON OF ALGORITHM 

Alg. 

Accuracy Precision Recall AUROC 

w/o 

HO 
with HO w/o HO with HO w/o HO with HO w/o HO with HO 

XGB 0.945 0.950 0.908 0.916 0.991 0.991 0.995 0.996 

SGB↑ 0.801 0.976 0.767 0.971 0.866 0.982 0.879 0.994 

RF↓ 0.978 0.967 0.965 0.947 0.991 0.989 0.994 0.994 

SVM↑ 0.693 0.991 0674 0.947 0.750 0.989 0.764 0.994 

DT↓ 0.878 0.820 0.814 0.780 0.985 0.894 0.878 0.878 

MLP↑ 0.862 0.900 0.813 0.843 0.942 0.986 0.914 0.950 

EnPLR 0.630 0.632 0.623 0.624 0.668 0.672 0.660 0.662 

↑: an increased value when using BO; ↓: a decreased value when using BO 

XGB 

EnPLR 

SVM 
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IV. DISCUSSION 

Previous THA-related studies have employed machine 
learning techniques using institution-specific datasets, 
contributing to research advancements. However, many relied 
on Grid Search for hyperparameter tuning or default algorithm 
settings, limiting optimization efficiency. Only a few studies 
explored advanced methods such as Bayesian Optimization 
(BO) to enhance predictive performance, despite its potential 
for complex optimization problems. 

This study applies BO across multiple machine learning 
algorithms commonly used in previous research to improve 
readmission prediction. Our results demonstrate that optimized 
hyperparameters significantly enhance AUC-ROC scores 
compared to default settings. While prior studies addressed 
different adverse event predictions, they shared a common 
challenge: imbalanced datasets, as adverse events are rare. 

Comparing model performance, this study outperformed 
previous research across several algorithms. The Extreme 
Gradient Boosting (XGB) algorithm achieved the highest 
AUC-ROC score (0.996), surpassing [44], other cited works 
[36], [37], [39], [42], [50], and specifically [49] for predicting 
readmission risk. Similarly, the Multilayer Perceptron (MLP) 
achieved an AUC-ROC of 0.914, higher than the Neural 
Network in [36] (0.85). The Support Vector Machine (SVM) in 
this study achieved 0.994, far outperforming previous studies 
[39], which reported 0.74 (Length of Stay), 0.8 (Discharge), 
and 0.97 (Mortality). The Stochastic Gradient Boosting (SGB) 
algorithm improved to 0.994, higher than 0.88 in [42]. Random 
Forest (RF) achieved 0.994, surpassing 0.80 in [36], 0.91 in 
[42], and 0.83 in [47] for readmission prediction. However, 
Elastic-Net Penalized Logistic Regression (EnPLR) 
underperformed (0.662), falling below 0.732 in [37], 0.93 in 
[42], and 0.86 in [47]. These findings highlight the 
effectiveness of Bayesian Optimization in tuning machine 
learning models, addressing limitations in previous studies that 
relied on basic or exhaustive hyperparameter searches. 

Additionally, the MIMIC-IV dataset used in this study 
provides a publicly available benchmark to validate models 
trained on private institutional datasets, which often restrict 
benchmarking and generalizability. SVM, which performed 
best in some studies [39], [50], showed weaker performance 
before optimization, while XGB, previously considered 
suboptimal [39], [44], demonstrated superior results. This 
suggests that models trained on private datasets may not 
always generalize well to broader patient populations. 

Furthermore, Table III indicates that Recall scores are 
consistently higher than Accuracy and Precision, suggesting 
that models prioritize identifying positive cases, reducing false 
negatives. This is critical in medical applications, where 
minimizing false negatives (missed readmission cases) is more 
important than false positives, which can be addressed with 
further evaluation [65], [66], [67]. 

The discrepancy in comparative results between datasets 
may stem from differences in patient populations, clinical 
settings, and data preprocessing. The MIMIC-IV dataset 
includes a more diverse patient cohort from multiple 

institutions, whereas private datasets from previous studies 
may be more homogeneous. Additionally, the 
inclusion/exclusion criteria and feature selection may introduce 
variability in model performance. 

The varying performance of models across datasets 
suggests that some algorithms are more sensitive to dataset 
structure. For instance, tree-based models (XGB, RF, SGB) 
performed consistently well, likely due to their robustness in 
handling structured tabular data. SVM, which performed best 
in some previous studies, showed inferior performance before 
optimization in our dataset, suggesting that hyperparameter 
tuning plays a crucial role in improving its adaptability to 
different data distributions. Our results show that Bayesian 
Optimization significantly improves performance consistency 
across datasets. Without proper hyperparameter tuning, models 
such as SVM and MLP may underperform in certain datasets 
due to suboptimal parameter selection. This highlights the 
importance of adaptive optimization techniques in ensuring 
machine learning models generalize well across different 
clinical datasets. 

Despite its contributions, this study has several limitations. 
First, as a retrospective analysis relying on past medical 
records and billed ICD codes, it is susceptible to errors such as 
miscoding or missing values, which could impact machine 
learning predictions. Second, the bayes-opt library used for 
hyperparameter tuning is still under active development, and its 
latest version (1.5.1 as of July 10, 2024) does not yet support 
categorical and Boolean hyperparameters. As a result, key 
parameters such as SVM kernels, MLP activation functions, 
and RF criteria could not be optimized, potentially limiting 
model performance. Lastly, the dataset exhibited class 
imbalance, with significantly fewer TRUE cases than FALSE 
cases. While this study employed oversampling to address the 
issue, more advanced techniques could further enhance 
predictive accuracy. Future research should explore alternative 
resampling strategies and hyperparameter tuning methods to 
refine model performance. 

V. CONCLUSION 

This study successfully developed, trained, tested, and 
validated Bayesian Optimization for hyperparameter tuning 
across seven machine learning algorithms to predict 
readmission risk following Total Hip Arthroplasty (THA). By 
comparing these optimized models to previous studies that 
either lacked hyperparameter tuning or employed different 
optimization methods, the results demonstrated that Bayesian 
Optimization significantly enhances predictive performance. 
This underscores the critical role of hyperparameter tuning in 
maximizing model accuracy, improving decision-making, and 
increasing confidence in integrating machine learning into 
THA patient management. 

Additionally, this study highlights the importance of 
external evaluation using a publicly available dataset, ensuring 
that machine learning models trained on institution-specific 
data can generalize effectively across different patient 
populations. The findings suggest that standardized evaluation 
is essential for ensuring model robustness and reliability in 
clinical applications. 
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While this study addressed key challenges in predictive 
modeling for THA readmission, limitations remain, 
particularly regarding class imbalance and the scope of 
readmission prediction. Future research may explore advanced 
resampling techniques to further improve model performance 
and investigate more specific predictive outcomes, such as 
infection-related readmission, revision THA, or Length of 
Stay. 
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