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Abstract—Service composition in the Internet of Things (IoT) 

poses significant challenges owing to the dynamics in IoT 

ecosystems and the exponential increase in service candidates. 

This paper proposes an Enhanced Whale Optimization Algorithm 

(EWOA) by introducing the Fibonacci search principle for service 

composition optimization to overcome certain shortcomings of 

conventional approaches, including slow convergence and being 

stuck in local optima, in addition to imbalanced exploration-

exploitation trade-offs. The proposed EWOA combines the 

application of nonlinear crossover weights with a Fibonacci search 

to optimize the global exploration and local exploitation searches 

of the basic version, thereby producing a better solution. Several 

simulations were performed for IoT functions. Among the 

experiments involving different QOS-based service compositions, 

the results show that the EWOA achieves superior and faster 

convergence capability with enhanced convergence compared to 

recent methods. 
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service; whale optimization; Fibonacci search 

I. INTRODUCTION 

The Internet of Things (IoT) is driving a revolution in 

modern technologies, enabling the world to grow further 

connected, and billions of devices can communicate and share 

data effectively [1]. This rapid growth of services has led to a 

vast repository of functionalities that address different 

application areas [2]. However, this immense size and 

dynamism introduce a severe challenge: efficiently composing 

multiple IoT services to satisfy user demands [3]. Efficient 

service composition guarantees the realization of desired 

functionalities and optimizes the quality attributes of execution 

time, reliability, and cost in dynamic IoT ecosystems [4]. 

Traditional optimization methods and swarm-intelligence-

based algorithms offer great promise for solving service 

composition problems [5]. However, these methods typically 

incur severe limitations due to slow convergence rates, 

premature stagnation at local optima, or failure to balance 

exploration and exploitation efficiently [6]. These challenges 

impede efficient solutions, particularly for large-scale and 

complex IoT service composition problems; hence, advanced 

approaches are required to ensure their robustness and 

scalability [7]. 

This paper presents an improved QoS-based service 

composition using a new metaheuristic approach. The 

contribution of this work is to improve the solution accuracy, 

accelerate convergence, and overcome local optima entrapment 

by addressing the limitations of existing algorithms. Thus, this 

work aims to find a globally optimal balance between local 

exploitation and global exploration and ensure a more effective 

and efficient service composition in dynamic IoT 

environments. 

These include the development of the Fibonacci search 

principle to improve the performance of the WOA on global 

optimization problems and applying nonlinear weights in the 

WOA to maintain balance within its processes. In general, this 

contributes to reaching the optimality of a solution by 

increasing exploration during the initialization stage, thus 

creating faster convergence, whereas adopting this modified 

WOA to tackle the optimal solution in IoT service composition. 

Intensive validation showed the excellent performance of this 

algorithm owing to better convergence speed and stability in 

results, hence providing a concrete base for more challenging 

tasks within IoT service optimization processes. 

The remainder of this paper is organized as follows: Section 

II presents a comprehensive literature review, discussing 

previous studies and existing optimization techniques for IoT 

service composition. Section III details the proposed algorithm. 

Section IV describes the experimental setup and presents the 

simulation results. Section V provides a critical discussion and 

comparative analysis of the findings. Finally, Section VI 

concludes the study, summarizing key contributions and 

outlining potential future research directions. 

II. LITERATURE REVIEW 

The authors in study [8] propose an Artificial Neural 

Network-based Particle Swarm Optimization (ANN-PSO) 

hybrid algorithm for cloud-edge computing to improve QoS 

factors. They utilized a formal verification process through 

functional transitions and constraint logic to ensure correctness 

regarding functional and non-functional aspects. Their 

approach shows enhanced memory, response time, availability, 

and price, yielding higher fitness values than others. 
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In study [9], a Hidden Markov Model (HMM) integrated 

with Ant Colony Optimization (ACO) was suggested for IoT 

service composition. HMM was trained for QoS prediction, and 

the Viterbi approach enhanced the emissions and transitions. 

The ACO algorithm identified optimal service paths, achieving 

better response time, reliability, energy consumption, and cost 

than prior approaches. 

The authors of study [10] developed a semantic middleware 

to address IoT service composition challenges, incorporating 

contextual service search and semantic analysis. Automated, 

scalable service composition enhanced scalability, validated on 

innovative city scenarios, with improved service discovery, 

selection, and composition metrics versus existing methods. 

In study [11], a fuzzy-driven hybrid algorithm combining 

ACO and Artificial Bee Colony (ABC) methods was proposed 

for cloud-fog IoT service composition. The approach optimized 

QoS metrics, including energy consumption, availability, 

reliability, and cost, achieving significant performance 

improvements over contemporary techniques. 

Moreover, in study [12], a service composition technique 

based on Grey Wolf Optimization (GWO) within the 

MapReduce methodology was presented for QoS-aware IoT 

applications. The model achieved energy savings, reduced 

response times, and enhanced availability and cost metrics, with 

average performance gains over baseline algorithms. 

The authors in study [13] proposed an enhanced ABC with 

a dynamic dimensionality reduction-inspired mechanism for 

IoT Service Composition. Further, the dimensions of disparity 

adjustment among solutions enable a method that has improved 

convergence rates and a more balanced exploration of solution 

exploitation. This significantly facilitates energy consumption 

to enhance availability and reliability with cost metrics. 

In study [14], the Discrete Adjustable Lion Optimization 

Algorithm (DALOA) was proposed for composing IoT 

services, employing sub-populations and operators like 

roaming, mating, and migration. The approach provided a 

strong balance between exploitation and exploration, achieving 

near-optimal QoS-aware compositions in reduced execution 

time. A QoS-aware service discovery, developed using WOA 

and GA, is proposed in study [15]. This bioinspired technique 

has proven efficient in selecting a way of optimally utilizing 

energy, data access time, and cost-effectiveness in IoT service 

discovery. 

While some existing approaches, as summarized in Table I, 

represent significant advances in IoT service composition, 

several critical gaps remain. Most of these approaches, such as 

HMM-based or semantic middleware-based, are not 

sufficiently adaptive for wider-scale IoT environments because 

of computational overhead or energy inefficiency in IoT 

devices. The majority of them experience performance bounds 

in highly dynamic IoT scenarios. 

TABLE I.  RECENT LITERATURE IN IOT SERVICE COMPOSITION 

Algorithm Key features Performance gains Shortcomings 

ANN-PSO [8] 

Hybrid approach combining ANNs for QoS enhancement 

and PSO for candidate service selection. Formal 

verification using labeled transition systems ensures 
correctness. 

Achieved better response time, 

availability, and cost efficiency. 

Demonstrated improved fitness function 
values compared to other algorithms. 

High computational complexity 
due to the hybrid approach and 

formal verification methods. 

HMM + ACO 

[9] 

The hidden Markov Model predicts QoS metrics based on 
emissions and transitions optimized by the Viterbi 

algorithm. ACO is used for service path identification. 

Enhanced QoS regarding energy usage, 

cost, reliability, and response time. 

Outperformed prior techniques in 
availability and efficiency. 

Limited scalability for real-time 

large-scale IoT environments due 

to the computational overhead of 
HMM. 

Semantic 

middleware 

[10] 

Modular and context-aware semantic abstraction for 

discovering IoT services, semantic filtering, and 
lightweight automatic service composition. Validated in 

smart city scenarios. 

Improved scalability of service discovery 

by 15%, selection by 20%, and 
composition by 40% compared to state-of-

the-art methods. 

It focuses primarily on scalability 

but lacks energy efficiency and 

response time optimizations. 

ACO + ABC 

(Fuzzy-based 
hybrid) [11] 

A hybrid algorithm combining ACO and ABC algorithms 

with a fuzzy logic system. Focuses on energy-aware and 
QoS-based service selection in cloud-fog architectures. 

Reduced energy utilization by 17%, 
improved availability by 8%, enhanced 

reliability by 4%, and lowered cost by 21% 

on average. 

Increased complexity due to 
hybridization and dependency on 

parameter tuning for optimal 

performance. 

GWO + 
MapReduce 

[12] 

Combines GWO with the MapReduce framework to enable 
large-scale IoT service composition optimization. Targets 

QoS metrics like response time, cost, and energy savings. 

Achieved a 24% reduction in cost, an 11% 
gain in availability, a 14% drop in response 

time, and a 40% energy savings. 

MapReduce overhead may impact 
performance in highly dynamic 

IoT scenarios. 

ABC with 

dynamic 
reduction [13] 

The enhanced ABC algorithm introduces a dynamic 
reduction mechanism. Adjusts dimension disparities 

among solutions dynamically for better exploration-

exploitation balance. 

Decreased energy consumption by 17%, 
increased availability by 10%, improved 

reliability by 8%, and lowered cost by 23% 

compared to alternatives. 

Potential convergence issues if 

initial dimension disparities are 
not set optimally. 

DALOA [14] 

Discrete adaptive lion optimization algorithm with unique 
operators (roaming, mating, migration). Balances strong 

global exploration through nomad roaming and efficient 

local exploitation via pride searching. 

Achieved the best trade-off between 
exploration and exploitation. Reduced 

execution time and provided near-optimal 

IoT service compositions. 

Increased complexity due to 
multiple operators and higher 

execution time for larger 

populations. 

WOA + GA 

[15] 

Integrates WOA with genetic algorithm for efficient IoT 
service discovery and selection. Bio-inspired optimization 

enhances QoS awareness in dynamic environments. 

Optimized energy utilization, reduced data 

access time, and improved cost-

effectiveness compared to traditional 
methods. 

Lacks adaptability to large-scale 

IoT environments due to limited 

scalability and high 
computational cost. 
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In addition, the optimal balance between exploitation and 

exploration limits the possibility of obtaining a globally optimal 

solution with high efficiency. This study attempts to fill these 

gaps by incorporating the Fibonacci search principle into the 

WOA to leverage its global optimization strengths to enhance 

the convergence rates, stability, and QoS outcomes in IoT 

service composition. 

III. PROPOSED METHODOLOGY 

A. Problem Formulation and Statement 

An IoT service refers to functional components within the 

IoT environment that facilitate the interaction and exchange of 

information between devices [16]. These services can be 

defined as a triple (𝑇𝐷𝑃, 𝐹𝐷𝑃, 𝑄𝑜𝑆𝐷𝑃) where TDP stands for 

the text description of services, providing a semantic 

explanation of its functionality; FDP represents the functional 

description of services, detailing its operations and capabilities; 

and QoSDP refers to the Quality of Service (QoS) 

characteristics associated with IoT services, describing non-

functional properties like execution time, cost, reliability, and 

trust. The QoS attributes provide measurable criteria for 

assessing service performance and ensuring non-functional 

requirements are met. These attributes are particularly crucial 

when selecting services for specific tasks in IoT applications. 

Abstract IoT services represent a set of service instances 

that perform similar or identical functions. These services are 

abstracted into individual tasks within a requirements workflow 

and ensure functional compatibility but differ in their QoS 

values, making them key candidates in the service composition 

process [17]. 

As shown in Fig. 1, the composition of IoT services can 

follow various control logic structures based on user 

requirements. In the loop, certain tasks are repeated iteratively 

for a specified number of iterations (Fig. 1(a)). In the selection 

fashion, tasks are chosen based on specific conditions or 

decision points (Fig. 1(b)). In the parallel way, multiple tasks 

are executed simultaneously to improve performance (Fig. 1 

(c)). Lastly, in the sequential approach, tasks are executed one 

after the other in a predefined order (Fig. 1 (d)). Given the focus 

on simplicity and efficiency, this paper exclusively considers 

sequential structures for IoT service composition. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1. IoT service composition structures: (a) Loop, (b) Selection, (c) Parallel, and (d) Sequential. 
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Fig. 2. Optimization process for selecting optimal IoT services from candidate sets. 

The IoT service composition involves selecting specific 

services from a large pool of candidates to satisfy user 

requirements and QoS constraints. As illustrated in Fig. 2, the 

optimization process begins with a task workflow 𝑇1, 𝑇2, …, 𝑇𝑛, 

where each task represents an abstract IoT service. For each 

task 𝑇𝑖, there exists a candidate service set 𝑆(𝑖, 𝑀), from which 

the most optimal service must be selected. Each task 𝑇𝑖 has 

several service options 𝑆(𝑖, 1), 𝑆(𝑖, 2), …, 𝑆(𝑖, 𝑀). The selected 

services from all tasks are represented as an array [3, 5, 7, 10, 

…, 38], where each number corresponds to the selected service 

for a specific task. For a system with 𝑛 tasks and 𝑀 service 

candidates per task, the total number of possible combinations 

is 𝑀𝑛. This combinatorial complexity makes the service 

composition problem an NP-hard optimization challenge. 

Several key QoS metrics are considered to evaluate the 

effectiveness of an IoT service composition, including 

reliability, credibility, service cost, and execution time. 

Reliability indicates the likelihood that the IoT service 

composition can complete tasks successfully without failure, 

calculated using Eq. (1) [18]. 

𝑄𝑟 = ∏𝑞𝑖
𝑟

𝑛

𝑖=1

 (1) 

Credibility measures the user’s trust level in the service 

composition based on factors such as reputation, expressed by 

Eq. (2) [19]. 

𝑄𝑐 =
1

𝑛
∑𝑞𝑖

𝑐

𝑛

𝑖=1

 (2) 

Service cost refers to the monetary cost incurred by the user 

for utilizing the IoT service composition, calculated by Eq. (3) 

[20]. 

𝑄𝑐𝑜 = ∑𝑞𝑖
𝑐𝑜

𝑛

𝑖=1

 (3) 

Execution time represents the total time required for the 

service composition to execute, including the processing time 

of all tasks, calculated by Eq. (4) [21]. 

𝑄𝑡 = ∑𝑞𝑖
𝑡

𝑛

𝑖=1

 (4) 

The aggregated QoS value of an IoT service composition is 

calculated as a weighted sum of the above QoS metrics using 

Eq. (5). 

𝑄 = ∑ 𝑄𝑘𝜔𝑘

𝑘𝜖{𝑟,𝑐,𝑐𝑜,𝑡}

 (5) 

Where 𝜔𝑘 denotes the weight assigned to each QoS metric. 

This weight reflects the relative importance of the 

corresponding attribute in the overall composition. 

The objective is to select one service instance for each task 

in the workflow such that the aggregated QoS value 𝑄 is 

maximized. This optimization ensures that the composition 

meets user-defined QoS requirements and achieves the best 

possible performance in terms of execution time, cost, 

credibility, and reliability. 

B. Enhanced Whale Optimization Algorithm 

The WOA, introduced by Mirjalili and Lewis [22], is a 

heuristic optimization approach inspired by the hunting 

behavior of humpback whales. The algorithm mimics the 

whales' bubble-net feeding strategy as its central mechanism for 

solving optimization problems. The overall process of WOA is 

illustrated in Fig. 3. WOA consists of three main phases: 

encircling prey, bubble-net feeding, and searching for prey. 
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These phases emulate the whales’ local exploitation and global 

exploration strategies, making WOA a versatile optimization 

framework. 

The first phase of WOA involves encircling the prey, which 

represents the best solution found so far. Whales are assumed 

to position themselves around the prey to prepare for attack. 

Mathematically, this behavior is modeled using Eq. (6) and (7). 

�⃗⃗� = |𝐶 . 𝑋 𝑏𝑒𝑠𝑡(𝑡) − 𝑋 (𝑡)| (6) 

𝑋 (𝑡 + 1) = 𝑋 𝑏𝑒𝑠𝑡(𝑡) − 𝐴 . �⃗⃗�  (7) 

Where 𝐴  𝑎𝑛𝑑 𝐶  are coefficient vectors, �⃗⃗�  stands for the 

distance between the whale and the prey, 𝑋 (𝑡) is the current 

position of the whale, and 𝑋 𝑏𝑒𝑠𝑡(𝑡) is the position vector of the 

best solution (prey) at iteration 𝑡. The vectors 𝐴  and 𝐶  are 

computed using Eq. (8) and (9). 

𝐴 = 2. 𝑎 . 𝑟 1 − 𝑎  (8) 

𝐶 = 2. 𝑟 2 (9) 

Where 𝑟 1 and 𝑟 2 range between [0, 1], and 𝑎  drops linearly 

from 2 to 0 with increasing iterations. 

The bubble-net feeding phase simulates whales' two 

simultaneous strategies to capture prey: shrinking, encircling, 

and spiral updating. These strategies reflect both global and 

local search mechanisms. 

Shrinking encircling reduces the distance between whales 

and prey over time by decreasing the range of |𝐴 | . This is 

accomplished by progressively lowering the value of 𝑎 . Spiral 

updating mimics the spiral-shaped trajectory of whales around 

their prey. This phenomenon is represented mathematically 

using Eq. (10) and (11). 

𝑋 (𝑡 + 1) = �⃗⃗� 𝑝. 𝑒
𝑏𝑙. 𝑐𝑜𝑠(2𝜋𝑙) + 𝑋𝑏𝑒𝑠𝑡(𝑡) (10) 

�⃗⃗� 𝑝 = |𝑋 𝑏𝑒𝑠𝑡(𝑡) − 𝑋 (𝑡)| (11) 

Where �⃗⃗� 𝑝 refers to the distance between the whale and the 

prey, b defines the shape of the logarithmic spiral, and l 

signifies a random number in the range [-1, 1]. 

To combine these two strategies, WOA uses a probabilistic 

mechanism where a random number 𝑃 determines which 

behavior is applied in each iteration, calculated using Eq. (12). 

𝑋 (𝑡 + 1) = {
�⃗⃗� 𝑝. 𝑒

𝑏𝑙 . 𝑐𝑜𝑠(2𝜋𝑙) + 𝑋𝑏𝑒𝑠𝑡(𝑡),   𝑃 < 0.5

𝑋 𝑏𝑒𝑠𝑡(𝑡) − 𝐴 . �⃗⃗� ,   𝑃 ≥ 0.5
 (12) 

 

Fig. 3. WOA flowchart. 
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This probabilistic combination of behaviors balances global 

exploration and local exploitation. The final phase focuses on 

exploration by searching for prey. When the condition |𝐴 | ≥ 1 

is satisfied, and whales move randomly for better solutions. 

This behavior is modeled using Eq. (13) and (14). 

�⃗⃗� = |𝐶 . 𝑋 𝑟𝑎𝑛𝑑(𝑡) − 𝑋 (𝑡)| (13) 

𝑋 (𝑡 + 1) = 𝑋 𝑟𝑎𝑛𝑑(𝑡) − 𝐴 . �⃗⃗�  (14) 

Where 𝑋 𝑟𝑎𝑛𝑑(𝑡)  is the position vector of a randomly 

selected whale. This phase prevents WOA from getting stuck 

on local optimum and enhances the algorithm's global search 

capability. 

The enhanced WOA (EWOA) builds upon the original 

WOA by addressing its inherent shortcomings, such as slow 

convergence, poor accuracy, and proneness to local optima. 

This improvement is achieved by integrating a nonlinear cross-

weight mechanism and the Fibonacci Search Method (FSM). 

The enhanced algorithm ensures optimal equilibrium between 

diversification (exploration) and intensification (exploitation), 

key components of any robust optimization method. Fig. 4 

presents the pseudocode of the EWOA. 

 

Fig. 4. Pseudocode of the EWOA. 

Diversification explores the entire search space to identify 

global optima, while intensification involves focusing on local 

regions for fine-tuning solutions. The original WOA struggles 

with achieving an optimal balance between these two 

processes, often leading to stagnation at local optima. EWOA 

addresses this by introducing a nonlinear crossover weight to 

enhance solution diversity during exploration and incorporating 

the FSM for a more efficient local search, improving solution 

accuracy and convergence speed. 

The EWOA incorporates crossover weights during location 

updates. The revised position update model is defined using Eq. 

(15). 

𝑋 (𝑡 + 1)

= {
(𝑋 𝑏𝑒𝑠𝑡(𝑡) − 𝐴 . �⃗⃗� ). 𝐶𝑅1,   𝑖𝑓 𝑎 < 0.5

�⃗⃗� ′. 𝑒𝑏𝑙 . 𝑐𝑜𝑠(2𝜋𝑙). 𝐶𝑅2 + 𝑋 𝑏𝑒𝑠𝑡(𝑡). (1 − 𝐶𝑅2),   𝑖𝑓 𝑎 ≥ 0.5
 

(15) 

Where �⃗⃗� ′ stands for the distance between the current and 

best solutions, 𝐶𝑅1 = 𝑒𝑥𝑝 (𝑡𝑎𝑛(𝑟𝑎𝑛𝑑(1, 𝑁))) , 𝐶𝑅2 =

3. (0.5 − 𝑟𝑎𝑛𝑑(1, 𝑁)). 𝑓, and 𝑓 = 𝑒𝑥𝑝 (−
𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
). This 

mechanism ensures that solutions generated during exploration 

maintain sufficient diversity while enabling convergence 

during exploitation. 

FSM is incorporated into EWOA to improve local search 

efficiency. FSM minimizes the search space by applying 

Fibonacci sequences, which guide the selection of optimal 

intervals. It operates as follows: 

Generate Fibonacci numbers: The Fibonacci sequence 𝐹 =
[𝐹1, 𝐹2, . . . , 𝐹𝑛] is expressed by Eq. (16). 

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2,   𝐹0 = 1,   𝐹1 = 1 (16) 
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Calculate initial points: Two points 𝑡1 and 𝑡2 are defined in 

the search range [LL, UL] using Eq. (17). 

𝑡1 = 𝐿𝐿 +
𝐹𝑛−2

𝐹𝑛

. (𝑈𝐿 − 𝐿𝐿)  

𝑡2 = 𝑈𝐿 −
𝐹𝑛−2

𝐹𝑛

. (𝑈𝐿 − 𝐿𝐿) 

(17) 

Where 𝑈𝐿 and 𝐿𝐿 define the upper and lower bounds of the 

range. 

Evaluate function values: Compare the function values at 𝑡1 

and 𝑡2: 

If (𝑡2) > (𝑡1), shift the range to the left. 

If (𝑡1) > (𝑡2), shift the range to the right. 

IV. RESULTS 

The effectiveness of the proposed EWOA was evaluated for 

optimizing the QoS-based IoT service composition 

optimization problem. EWOA effectiveness was evaluated 

against standard WOA [22], DALOA [14], and Genetic 

Algorithm (GA) [23] using three key evaluation criteria: 

effectiveness, convergence, and stability. The tests were carried 

out in a Windows 10 system powered by an Intel Core i7-

12700F processor, 16 GB RAM, and PyCharm Community 

Edition 2022.3. 

The experiments used randomly generated datasets based 

on the QoS value ranges defined in Table II. Four QoS 

attributes, including execution time, service cost, credibility, 

and reliability, were evaluated for candidate IoT service 

instances. The dataset scales were represented as 𝐴 × 𝐼, where 

𝐴 denotes the number of abstract service tasks, and 𝐼 signifies 

the number of candidate services per task. The datasets included 

the following scales: 10×50, 10×100, 20×50, 20×100, 30×50, 

and 30×100. Each experiment was repeated 100 times to ensure 

robustness, and the results were analyzed to measure the 

algorithm’s performance under varying scales and iterations. 

TABLE II.  QOS VALUE RANGES 

Attributes Reliability Credibility Service cost 
Execution 

time 

Ranges (0.1,1] (2,10] (0,100] (0,60] 

The effectiveness of the algorithms was assessed by the 

average fitness values obtained after 100 global iterations. 

EWOA demonstrated significantly higher efficacy than WOA, 

DALOA, and GA, as shown in Table III and Fig. 5-7. Key 

observations include: 

 For smaller scales (e.g., 10×50), EWOA slightly 

outperformed other algorithms, achieving higher-

quality solutions. 

 For larger scales (e.g., 30×100), EWOA's advantage 

became more evident, delivering higher fitness values 

with a broader margin. 

TABLE III.  FITNESS VALUES FOR VARIOUS SERVICE COMPOSITION SCALES 

No. of abstract service 

tasks 

No. of candidate 

services 

Fitness values 

GA DALOA WOA EWOA 

10 
50 3.75 4.13 4.22 4.92 

100 4.02 4.21 4.36 4.85 

20 
50 6.49 6.75 7.06 9.53 

100 7.16 7.53 8.12 9.61 

30 
50 9.15 9.91 10.58 13.91 

100 10.13 11.54 12.02 14.05 

 

 

Fig. 5. Fitness value comparison for 10 service tasks. 

 

Fig. 6. Fitness value comparison for 20 service tasks. 
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Fig. 7. Fitness value comparison for 30 service tasks. 

The nonlinear crossover weights dynamically adjust 

exploration/exploitation, ensuring sufficient solution diversity 

at the beginning and accurate refinement in later iterations. The 

Fibonacci search strategy effectively narrowed the search 

space, leading to higher solution accuracy and better 

optimization of QoS attributes. 

The convergence performance of the algorithms was 

analyzed based on their fitness values over iterations, as 

depicted in Fig. 8 – Fig. 10. EWOA consistently converged 

faster and to better solutions than WOA, DALOA, and GA. 

Notable findings include: 

 At smaller scales (e.g., 10×50), EWOA achieved 

convergence within fewer iterations than other 

algorithms. 

 At larger scales (e.g., 30×100), EWOA showed a 

significant fitness advantage and faster convergence 

speed. 

The nonlinear crossover weights ensured efficient 

exploration in the early iterations, preventing premature 

convergence to local optima. The Fibonacci search strategy 

refined the best solutions in the exploitation phase, accelerating 

convergence toward the global optimum. 

  
(a)       (b) 

Fig. 8. Convergence performance comparison: (a) 10 service tasks and 50 candidate services, (b) 10 service tasks and 100 candidate services. 

  
(a)       (b) 

Fig. 9. Convergence performance comparison: (a) 20 service tasks and 50 candidate services, (b) 20 service tasks and 100 candidate services  
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(a)       (b) 

Fig. 10. Convergence performance comparison: (a) 30 Service tasks and 50 candidate services, (b) 30 Service tasks and 100 candidate services. 

TABLE IV.  STANDARD DEVIATION FOR VARIOUS SERVICE COMPOSITION SCALES 

No. of abstract service 

tasks 

No. of candidate 

services 

Standard deviation 

GA DALOA WOA EWOA 

10 100 0.0831 0.0526 0.0415 0.0089 

20 100 0.1173 0.1085 0.1019 0.0269 

30 100 0.1569 0.1503 0.1494 0.0612 
 

The stability of the algorithms was measured in terms of 

standard deviation of optimal fitness values across 100 

experiments, as shown in Table IV and Fig. 11. Lower standard 

deviation values indicate higher stability. Key findings include: 

 EWOA exhibited significantly lower standard deviation 

values compared to WOA, DALOA, and GA, 

particularly at larger scales (e.g., 30×100). 

 As scales increased, the standard deviation of all 

algorithms rose. However, EWOA maintained superior 

stability, consistently delivering reliable results with 

minimal variation. 

 
Fig. 11. Standard deviation comparison. 

The nonlinear crossover weights provided adaptive 

adjustments, ensuring robustness against variations in initial 

population diversity. The Fibonacci search strategy reinforced 

solution refinement, minimizing the impact of random 

fluctuations in search trajectories. 

V. DISCUSSION 

The results demonstrate that the proposed EWOA 

significantly improves the optimization of QoS-based IoT 

service composition compared to standard WOA, DALOA, and 

GA. One of the key advantages of EWOA is its superior 

performance across various dataset scales, particularly for 

larger problem instances, where it consistently achieved higher-

quality solutions. The nonlinear crossover weights effectively 

balanced exploration and exploitation, preventing premature 

convergence and ensuring sustained search diversity. 

Additionally, the integration of the Fibonacci search strategy 

enabled precise solution refinement by efficiently narrowing 

the search space, ultimately leading to better fitness values and 

improved QoS attribute optimization. These results validate the 

effectiveness of the proposed modifications, particularly in 

handling complex IoT service composition scenarios where 

scalability and solution accuracy are critical. 

Furthermore, the convergence analysis confirms that 

EWOA consistently outperforms its counterparts in both speed 

and solution quality. The rapid convergence observed in 

smaller-scale datasets indicates that EWOA is highly effective 

even for less complex problems. However, its performance 

advantage becomes more pronounced as the problem scale 

increases, demonstrating its robust scalability. Additionally, 

stability analysis reveals that EWOA maintains lower standard 

deviation values, signifying its ability to deliver consistent and 

reliable results across multiple runs. This is primarily due to the 

adaptive adjustments of nonlinear weights, which dynamically 

regulate search behavior, and the Fibonacci search refinement, 

which enhances exploitation precision. The findings underscore 

the suitability of EWOA for large-scale IoT service 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 2, 2025 

938 | P a g e  

www.ijacsa.thesai.org 

composition problems, offering a highly efficient, stable, and 

scalable optimization framework. 

VI. CONCLUSION 

This study proposed EWOA to resolve the QoS-based IoT 

service composition optimization problem. EWOA mitigated 

some disadvantages of conventional optimization algorithms, 

particularly slow convergence, the tendency toward local 

optima, and inability to balance exploration and exploitation. 

With nonlinear crossover weights combined with the Fibonacci 

search strategy, the EWOA optimized global exploration and 

local exploitation, providing outstanding performance in 

achieving optimization. The experimental test validated the 

efficiency of EWOA under different composition scenarios, 

from small-scale to large-scale problems. EWOA had better 

fitness, higher convergence speed, and more substantial 

stability than WOA, DALOA, and GA in all cases. Dynamic 

adjustment of the nonlinear crossover weights regulated 

solution diversity and refinement during optimization, whereas 

the Fibonacci search strategy improved efficiency in local 

search and prevented falling into suboptimal solutions. 

EWOA proved to be especially helpful in large-scale 

composition, while its ability to handle increased problem 

complexity led to significant gains over existing algorithms. 

Moreover, its computational efficiency and stability over 

multiple runs indicated the appropriateness of real-world IoT 

scenarios. Future work will focus on integrating the EWOA 

with dynamic composition models to handle real-time and 

evolving QoS requirements. This could be further enhanced by 

hybridizing the EWOA with other metaheuristics for 

optimization problems that are highly complex and 

multidimensional. Given its capability, the EWOA represents a 

promising trend toward development in the field of 

optimization solutions within an IoT context. 
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