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Abstract—In recent years, personalized federated learning 

(PFL) has garnered significant attention due to its potential for 

safeguarding data privacy while addressing data heterogeneity 

across clients. However, existing PFL approaches remain 

vulnerable to privacy breaches, particularly under adversarial 

inference and client-side data reconstruction attacks. To address 

these concerns, we propose DP-FedSim, a novel PFL framework 

incorporating adaptive differential privacy mechanisms. First, to 

mitigate the limitations posed by fixed-layer personalization 

strategies, we evaluate parameter significance using the Fisher 

information matrix. By selectively retaining parameters with 

higher Fisher values, DP-FedSim reduces the noise impact, 

enabling more efficient dynamic personalization. Second, we 

introduce a layered adaptive gradient clipping method. By 

leveraging the mean and standard deviation of the gradients 

within each layer, this method allows DP-FedSim to 

automatically adjust clipping thresholds in response to real-time 

privacy demands and model states, enhancing the adaptability to 

various model structures. This ensures a more accurate balance 

between privacy preservation and model performance. 

Furthermore, we present a model similarity-based aggregation 

method utilizing cosine similarity. This technique dynamically 

adjusts each client's contribution to the global model update, 

prioritizing clients with models more similar to the global model. 

This improves the global model's performance and 

generalization by allowing DP-FedSim to better handle a variety 

of data distributions and client model attributes. Experimental 

results on multiple SVHN cifar-10 datasets show that DP-FedSim 

outperforms the state-of-the-art PFL algorithm by an average of 

5% when data heterogeneity is at its strongest. The efficiency of 

the suggested modules is validated by ablation tests, and the 

visualization results shed light on the reasoning behind important 

hyperparameter settings. 

Keywords—Federated learning; differential privacy; gradient 

clipping; model aggregation 

I. INTRODUCTION 

A distributed machine learning approach called federated 
learning (FL) [1] allows several separate devices to work 
together to train a single model without explicitly sharing local 
data, protecting privacy and avoiding data leaks. Only model 
updates are sent to a central server within the FL framework; 
each participant trains a model separately using their own local 
data. This decentralized method lowers network 
communication cost while also protecting data privacy. The 
performance of traditional federated learning models can be 

severely harmed by participant data that frequently exhibits 
non-independent and identically distributed (non-IID) features 
in real-world applications [2][3][4][5], which can significantly 
degrade the performance of conventional federated learning 
models [6][7][8][9]. To address this challenge, Personalized 
Federated Learning (PFL) algorithms [10][11][12][13] have 
been developed, incorporating personalization techniques to 
better accommodate the unique data distributions of individual 
participants. Despite the notable advances in PFL, privacy 
concerns remain unresolved. Specifically, model updates 
exchanged between clients and the central server remain 
vulnerable to inference and reconstruction attacks that can 
compromise the privacy of client data [14][15][16][17]. 
Therefore, integrating robust privacy-preserving techniques, 
particularly user-level differential privacy [18][19][20][21], is 
essential to ensure the security and reliability of PFL systems 
while protecting the privacy of sensitive data. 

Despite significant progress, PFL still faces numerous 
challenges related to the implementation of differential privacy 
mechanisms. The current PFL techniques [10][22][23] 
frequently make strong assumptions about parameter 
partitioning, where clients share a set percentage of the model 
parameters while the rest are customized. This static approach 
lacks flexibility in parameter division and fails to fully account 
for the diversity in client data, which can hinder the 
performance of personalized models. 

Within the context of differential privacy, gradient clipping 
is a key mechanism used to limit the size of gradients, thereby 
preventing sensitive information leakage and mitigating the 
issue of gradient explosion. Gradient clipping also reduces 
sensitivity, allowing for more efficient privacy budget usage 
without substantially degrading model performance [25]. 
However, traditional methods typically employ a fixed clipping 
threshold c, which can result in either over-clipping or under-
clipping under different conditions, potentially impairing the 
performance of the model. 
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In most federated learning (FL) frameworks, after a client's 
local training round is completed, the client sends the model 
updates, typically in the form of gradients, to a central server 
responsible for aggregation. The standard aggregation method 
often relies on a simple averaging of the received gradients. 
However, in practice, not all clients participate equally in the 
model training process [26]. Some clients may contribute less 
due to factors such as limited data, weak computational 
resources, or unstable network connections. This imbalance 
can result in the global model becoming overly dependent on 
clients with larger data volumes or stronger computational 
capabilities [27], which can hinder the model's ability to 
capture broader data trends, thus compromising the 
generalization and convergence of the global model. 

However, existing studies still have obvious shortcomings 
in addressing the above problems. On the one hand, although 
some studies try to protect privacy through differential privacy 
techniques, they fail to adequately address the problems of 
inflexible parameter partitioning and overly fixed gradient 
trimming strategies in personalized federated learning. On the 
other hand, the improvement of the aggregation method also 
fails to effectively take into account the heterogeneity of client 
data and the difference in model quality, resulting in limited 
global model performance. Therefore, how to achieve more 
flexible parameter personalization, more accurate gradient 
tailoring, and more effective aggregation strategies under the 
premise of privacy protection has become a key problem to be 
solved in the field of personalized federated learning. 

To address these challenges, we draw inspiration from the 
work "FedFisher: Leveraging Fisher Information for One-Shot 
Federated Learning" [28], which employs the Fisher 
information matrix to facilitate dynamic personalization of 
model parameters. The square of the first-order derivative of 
the log-likelihood function is calculated in the core mechanism 
to assess the contribution of parameters to the curvature of the 
loss function. In essence, this process captures the information 
content carried by each parameter. Leveraging this principle, 
we assess the significance of each client's model parameters 
through the Fisher information matrix before training begins. 
By retaining parameters that carry the most information, we 
mitigate the adverse effects of noise addition in differential 
privacy settings and avoid potential optimization issues 
stemming from inappropriate global model parameters. 

Building on this, we propose an adaptive gradient pruning 
strategy, which introduces a hierarchical adaptive gradient 
clipping method. This approach automatically adjusts the 
clipping threshold according to the current privacy preservation 
requirements and the real-time state of the model. In contrast to 
traditional differential privacy methods that use fixed clipping 
bounds, this adaptive approach offers greater flexibility and 
can better accommodate diverse network structures and 
training environments. It also provides a more accurate 
response to privacy leakage risks. Furthermore, by allowing the 
use of larger learning rates, adaptive gradient clipping 
accelerates convergence and enhances model training 
performance. 

Additionally, we introduce a model similarity-based 
aggregation method, which utilizes cosine similarity to 

dynamically adjust each client's contribution to the global 
model based on the similarity of its parameters to those of the 
global model. This technique is designed to better align with 
the data distributions and model quality of different clients, 
rather than simply assigning equal weight to all updates. By 
prioritizing updates from clients with models more similar to 
the global model, this method improves the overall 
performance and generalization of the global model, as these 
more similar models are likely to better capture the broader 
patterns and trends in the data. The following are this paper's 
main contributions: 

 We introduce DP-FedSim, a personalized federated 
learning framework with adaptive differential privacy. 
DP-FedSim effectively integrates personalized learning 
with adaptive gradient tailoring, making it ideal for 
situations involving a high degree of client data variety 
and diversity. 

 To address the limitations of fixed-layer approaches in 
traditional personalized federated learning, we leverage 
the Fisher information matrix to enable a dynamic 
approach to customization. The Fisher information 
matrix quantifies the importance of parameters, and 
under the same additive noise, parameters with higher 
Fisher values are more sensitive to noise, resulting in 
greater performance degradation. In order to lessen the 
effect of noise and improve model performance, we 
maintain parameters with higher Fisher values. 

 We propose a novel adaptive gradient clipping method 
based on the mean and standard deviation of gradients 
within each layer. This method accelerates the training 
process and improves model performance while 
ensuring privacy protection. In addition, we introduce a 
model similarity-based aggregation strategy that 
effectively combines model updates from diverse 
clients. This method addresses the challenge of 
heterogeneous client data, where updates may differ 
significantly, by dynamically adjusting the 
contributions of client models based on their similarity 
to the global model. 

This paper's remaining sections are organized as follows: 
We evaluate relevant work in Section Ⅱ. Section Ⅲ outlines 
the foundational concepts relevant to this study. Section Ⅳ 
describes the proposed methods in detail, including the 
implementation of the three key approaches. Section Ⅴ 
presents a performance comparison of DP-FedSim with state-
of-the-art methods, and Section Ⅵ concludes the paper. 

II. RELATED WORK 

A. Personalized Federal Learning 

A machine learning paradigm called Personalized 
Federated Learning (PFL) allows a central server to plan model 
training for dispersed clients without having direct access to 
their data. The primary objective of PFL is to address data 
heterogeneity by learning customized models for each client. 
Mainstream PFL approaches include LG-FedAvg [23], 
FedBABU [30], PPSGD [29], and FedBN [31]. Both 
FedBABU [30] and LG-FedAvg [23] adopt fixed local 
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parameters to exploit local data performance for 
personalization. However, their static partitioning approaches 
limit the flexibility required for handling diverse data 
distributions. The FedPer algorithm [10] introduces 
personalization layers, which are appended to the base model. 
During training, the base model's parameters are globally 
aggregated, while the parameters of the personalization layers 
remain local and are not aggregated. Similarly, FedBN [31] 
incorporates one or more batch normalization (BN) layers, 
which remain fixed during training and do not participate in 
global aggregation. By keeping certain layers locally, these 
methods improve customization while better accommodating 
local data peculiarities, however they might not be as flexible 
in terms of model adaption. 

Additionally, algorithms such as GPFL [32], pFedMe [24], 
and FedAMP [33] aim to learn both global and personalized 
feature representations. These methods strike a balance 
between global model consistency and local personalization, 
allowing models to capture common features across clients 
while preserving unique, client-specific information. Despite 
their effectiveness, these approaches are still constrained by the 
inflexibility of their personalization mechanisms and may see a 
decrease in performance as a result of using noisy global 
parameters directly under the differential privacy (DP) 
technique. 

B. Differential Privacy 

Differential privacy (DP) is a crucial technique for 
protecting data privacy, designed to minimize the risk of 
identifying individual records when statistical information is 
shared. In the context of federated learning, user-level 
differential privacy has been widely adopted [18][19][20][34]. 
This technique quantifies privacy preservation through two key 
parameters, (ε, δ), where smaller values of ε and δgenerally 
imply stronger privacy guarantees but add extra noise, which 
might impair model performance, to the federated learning 
process. In federated learning, user-level DP is usually 
accomplished in two steps: first, local updates are clipped and 
noise is added before being sent to the server. Clipping reduces 
the effect of local updates, further improving privacy, and the 
noise is adjusted based on the sensitivity of the function being 
assessed. Although these steps greatly improve privacy, the 
required noise addition and gradient clipping may cause 
performance issues and delayed convergence. 

Recent studies have explored ways to mitigate the negative 
impact of noise and clipping on performance. Sparsification 
and uniform regularization approaches, for example, are used 
by LUS and BLUR [19] to mitigate the impacts of noise and 
accelerate model convergence. The DP-FedSAM [20] 
algorithm enhances robustness to noise by employing the 
Sharpness-Aware Minimization (SAM) optimizer, which 
identifies more reliable places of convergence. Furthermore, 
PPSGD [29] uses customisation to enhance performance 
without compromising privacy. In spite of the progress in these 
methods, research on gradient pruning and clipping within 
personalized federated learning remains limited. In this paper, 
we aim to optimize personalized federated learning algorithms 
through adaptive gradient tailoring, contributing to the ongoing 
development of personalized federated learning approaches. 

C. Federated Learning Aggregation Algorithm 

Model aggregation is a core component of federated 
learning, where the local models from clients are aggregated in 
each communication round to generate an updated global 
model. There are two main types of aggregation: parameter-
based aggregation and output-based aggregation, with the 
distinction based on the aggregation target. One of the first and 
most popular federated learning algorithms is FedAvg [1], 
which aggregates models by average parameters from all 
clients, weighted by the size of each client's dataset. The 
FedProx algorithm [35] modifies the aggregation process by 
introducing a proximal term in the objective function to control 
the impact of local models and ensure convergence. 
Meanwhile, FedNova [36] improves upon FedAvg by 
normalizing and scaling local updates based on each client’s 
local iteration count, which helps achieve fairer aggregation. A 
data agnostic distributional fusion model, which depicts the 
client's heterogeneous data distribution as a global collection 
comprised of multiple virtual fusion components with varying 
parameters and weights, is used by the FedFusion algorithm 
[37] to characterize the global data distribution. 

Although these methods contribute to the development of 
model aggregation in federated learning, challenges remain. 
For instance, the FedNova algorithm introduces additional 
computational complexity due to the need to track and adjust 
local iteration counts, which increases the computational 
burden on both the clients and the server, ultimately affecting 
model convergence speed. 

III. PRELIMINARY 

A. Personalized Federal Learning 

In personalized federated learning (PFL), the primary 
objective is to train a model that can adapt to the unique data 
distribution of each client while preserving a degree of global 
consistency across all clients. This is typically achieved by 
decomposing the model parameters into two distinct 
components: one set of globally shared parameters and another 
set of client-specific personalized parameters, as illustrated in 
Fig. 1. 

 

Fig. 1. The key processes of traditional personalized federated learning are 

depicted. First, a central server publishes global model parameters for use by 

clients. The model is then repeatedly updated by the client using local data to 
calculate parameter variances, which are then uploaded to the server. Finally, 

the server creates global model updates by integrating the variances using an 

average aggregation approach. 
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Suppose we have k clients, each possessing a unique 

dataset, denoted as 𝐷𝑘 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁𝑘 , where Nk  is the size of 

the dataset for client k, and i indexes the data samples. In 
common personalization methods, the model parameter vector 
wi is typically decomposed into two components: a local part 
and a global part, represented as w = (u, v). The objective of 
personalized federated learning is to update the model 
parameters according to a specific optimization process, as 
outlined in Eq. (1). 

1:

k

1:
, i

1
min ( , ) : ( , )i i

u
f u f u

m
 

 
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 k

k

 (1) 

Let u1:k denote (u1, . . . ,uk), and let fi(v, ui) represent the 
average loss of parameters v and ui over the entire dataset Di 
for client i, where i = 1, . . . , Nk. The personalized differential 
privacy mechanism involves two iterative steps: 

Local Iteration: During the local iteration, each client i 
receives the global model parameters vt-1 from the server while 
retaining the local parameters u

t-

1 i from the previous round. The 
model is initialized as w

t-

1 i= (vt-1,u
t-

1 i). The client then performs 
local updates, iteratively optimizing the parameters to obtain 

the updated model  w
t 

i  = (v
t 

i ,u
t 

i ) . The global update △vt is 

computed as the difference between v
t 

i  and vt-1. 

Global Update: In the global update phase, all clients 

transmit their local updates △vt to the server. The server then 

aggregates these updates by averaging them across all clients, 
updating the global parameter as follows: 

1

1

1
v v Δv

tm
t t t

i
ik





      (2) 

The new global parameter vt is then sent back to all clients 
to initiate the next round of updates. 

B. User-Level Differential Privacy 

In personalized federated learning, differential privacy 
offers a robust protection mechanism that effectively addresses 
the issue of privacy leakage. As a comprehensive privacy 
protection framework, differential privacy aims to facilitate the 
analysis of overall dataset properties while safeguarding 
individual information. This is achieved at the cost of a certain 
degree of data accuracy, thereby ensuring stringent privacy 
protection for user data. The ultimate goal is to prevent 
adversaries from determining whether a specific individual is 
represented in the dataset.The concept of differential privacy 
[38] is defined mathematically to delineate this probability gap, 
as articulated in Definition 1: 

Definition 1 (ε, δ). Differential Privacy A randomization 
mechanism M satisfies (ε, δ)-Differential Privacy (ε > 0, δ > 0) 
if and only if, for any adjacent input datasets S and S', and for 
any possible set of output values R, the following holds: 

[ ( ) ] [ ( ) ]Pr M S R e Pr M S R    „
 (3) 

Here, δ denotes the probability of a failure in privacy 
protection. A randomized algorithm M satisfies (ε, δ)-DP if, for 

any pair of neighboring datasets D and D' differing by a single 
record, and for any output subset S in the range of M. 

Definition 2 L2 Sensitivity Given a function M and two 
neighboring datasets D and D', the L2 sensitivity is defined as 
follows: 

2Δ max ( ) ( )f M D M D 
  (4) 

User-level differential privacy is a specific classification 
within the broader framework of differential privacy. Noise 
must be added to the model updates that are locally calculated 
by each user in order to apply user-level differential privacy to 
customized federated learning. This approach ensures 
compliance with user-level differential privacy requirements. 
Specifically, users must incorporate noise into the gradient or 
model parameter updates derived from their local datasets after 
training. 

Based on this theoretical foundation, user-level differential 
privacy is effectively achieved through gradient cropping and 
noise addition. Gradient cropping is primarily employed to 
regulate the model's sensitivity to individual data points. By 
mitigating the influence of outlier samples during a given 
training round, it helps protect data privacy. 

However, much of the existing research focuses on fixed 
gradient cropping methods. If the cropping threshold is set too 
high, most gradients may fail to exceed this threshold, 
rendering the cropping process ineffective. Conversely, setting 
the threshold too low may excessively constrain gradient 

updates, hindering the model’ s ability to glean valuable 

information from the data. This can diminish the training 
efficiency and, ultimately, the predictive performance of the 
model. 

Therefore, this paper investigates adaptive gradient 
cropping within the context of personalized federated learning. 
A detailed exploration of this topic is presented in Section IV. 

IV. METHODOLOGY 

In this study, we offer a differential privacy federated 
learning system that combines model similarity-based 
aggregation, adaptive gradient cropping, and customization 
based on Fisher information matrices. The proposed approach 
consists of three key components: Fisher personalized 
federated learning, adaptive gradient cropping for differential 
privacy, and aggregation based on model similarity. 

When the client gets the global model from the server, the 
procedure starts. Each local client then computes the Fisher 
information vector Fi using the Fisher information matrix. 
Subsequently, the client generates computational binary masks 
M1i and M2i based on the Fi vector and a set of parameters λ. 
These parameters are crucial in determining which model 
parameters should be deemed informative and retained 
throughout the personalization process. 

Once the binary masks M1i and M2i are established, they are 
utilized to update the local model parameters w

t-

1 i. The updated 
model parameters w

t 

i  are then obtained through further training 
using these masks. 
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Next, the cropping thresholds Ts are computed by 
leveraging the mean and standard deviation of the gradients 
corresponding to each layer. The gradient parameter || gi || is 
subsequently calculated, followed by the computation of the 
cropping factors cs based on the defined cropping thresholds Ts. 
These cropping factors are employed to control the scaling of 
the gradient, yielding the adjusted gradient g

' 

i . The complete 
gradient is computed by summing the cropped gradients across 
all layers l . 

Finally, model similarity-based aggregation is achieved by 
calculating the cosine similarity between the global model 
parameters and the parameters of the i-th client model. 
Specifically, we first compute the similarity Si for each client 
model, followed by summing and weighting all computed 
similarities. This cumulative similarity is then utilized to 
update the global model accordingly. 

The detailed algorithmic procedure is illustrated in 
Algorithm 1 and Fig. 2. 

 

Fig. 2. An overview of DP-FedSim. The client first receives the global 

model and computes the F vector, then updates the local model parameters. 
Next, the gradient is adjusted by set thresholds and factors, and noise is added 

to maintain differential privacy. Finally, the server synthesizes the parameter 

similarities across clients and updates the global model. 

A. Based on Fisher Personalized Federal Learning 

Motivation: The motivation for personalization in federated 
learning is underscored by the use of the Fisher information 
matrix. The Fisher information matrix serves as an effective 
tool for quantifying the importance of model parameters; 
specifically, a larger Fisher value indicates a greater 
significance of the parameter in the model's predictive 
performance. This observation leads to the conclusion that 
parameters with elevated Fisher values contribute to a more 
substantial degradation of model performance when subjected 
to the same additive noise. 

In conventional personalization approaches, after receiving 
the global model from the server, clients typically designate 
specific fixed layers within the network as personalization 
layers. However, this method is inherently limited, as it fails to 

account for the differential impact of noise on various 
parameters. To address this limitation, we propose the 
introduction of Fisher values as a metric for assessing the 
importance of model parameter information across each layer. 

Fisher Personalization: To alleviate the current inflexibility 
issues associated with personalized federated learning, we 
implement a dynamic personalization strategy based on the 
Fisher information matrix. This approach enhances the model's 
adaptability to the non-independent and identically distributed 
(non-IID) data characteristic of individual clients. The 
procedure is as follows: each client i receives the distributed 
global model wt-1 from the server and subsequently computes 
the Fisher value  Fi based on its local private dataset Di. The 
retention of the previous round's local parameters is denoted as 
w

t-

1 i = (vt-1, u
t-

1 i ). In w
t-

1 i, the diagonal approximation of the true 
Fisher value for each parameter indexed by  j is calculated as: 

2

log ( , )
( ) i i

ij

ij

L w D
F w

w





 
   
    (5) 

This formula illustrates how sensitive the model's 
predictions are to changes in parameter wj and serves as a 
foundational element in enhancing the personalization process. 

where L(wi, Di) denotes the log-likelihood function of  wi . 
Then by normalizing each parameter j in layer s layer by layer, 
the value of fisher's Fs is achieved as 

,

,

,

ˆ s j

s j

s j
j

F
F

F



   (6) 

After we generate the layer-by-layer Fisher values fs by the 
above operation, we generate two binary masks M1 and M2 for 
dynamic selection of parameters. In the event that a parameter's 
Fisher value is larger than or equal to λ, it is set to 1, otherwise 
the value is set to 0. For each parameter j in layer s, the mask is 
defined as follows: 

1 2 1[ ] sgn( ) and [ ] 1 [ ]ˆ
ijM j F M j M j   

 (7) 

To choose the right parameters for customization, we next 
carry out an elemental multiplication between these masks and 
parameters. In other words that is, the parameters that had a 
greater Fisher value locally in the previous round are kept 
through the masking operation. The remaining parameters are 
replaced with global parameters. 

1 1

1 2

t t t

i iw M w M w  
  (8) 

where M1  and w
t-

1 i, M2  and wt-1 serve as the Hadamard 
product, i.e., the point-by-point product between the elements. 
The global parameter supplied by the receiving server is wt-1, 
whereas the local personalization parameter kept from the 
previous round is w

t-

1 i. Updating with this method effectively 
retains the more informative parameters as personalized 
parameters, and the less informative parameters are updated by 
the corresponding informative global parameters. 
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B. Adaptive Gradient Tailoring Differential Privacy 

Motivation: In the realm of differential privacy, traditional 
fixed gradient cropping methods exhibit inherent limitations, 
particularly when applied to diverse datasets and model 
architectures. These methods often lack the flexibility to adapt 
to varying circumstances, leading to issues of over-cropping or 
under-cropping. Such discrepancies can adversely affect both 
the training efficacy and the final performance of the model. 

The primary motivation behind the adaptive gradient 
cropping (AGC) technique is its capacity to dynamically adjust 
cropping thresholds in response to the statistical characteristics 
of the weights at each layer. This dynamic adjustment 
mechanism enhances the stability of model training and offers 
the flexibility to accommodate different network architectures 
and training configurations, thereby allowing for more precise 
control over the risk of privacy leakage. A further significant 
advantage of the AGC technique is its facilitation of larger 
learning rates, which is critical for accelerating model 
convergence. This capability can substantially enhance the 
efficiency and performance of model training, resulting in a 
more expedient training process and improved model outcomes 
while maintaining robust privacy protection. 

Algorithm 1: Heading 

Initialize Global epochs Eg local epochs El participants number in t 
he tth epoch mt, private data of the tth client Di = (Xi, Yi), global model 

parameters w and client local parameters wi, hyper-parameters λ, 
learning rate η, 
Local Update: 

For i = 1,2,…,mt Server 

 Receive wt−1 from Serve 

 
1 2and ( , )ˆ i i iM M F   

  For 1,2,..., do le E  

   1 1 1 1 1
1 2( , )t t t t t

i i i i iw v u M w M w        

  End 
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End  
Server Execute: 
For t = 1,2,…, El  do 
 For each client model weight wi do 

  
 
 
 
 

End 

,i g

i
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S
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
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sum sum iS S S   

 

  
 For 1,2,..., do ti m  

  
 
 
 
 
End 

i
i
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S
w

S
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 1t t t

iw w w   

 For 1,2,..., do ti m  

  
 
End 

Send 
tw  to client 

thi  
 

End  

In the context of Federated Learning (FL), the 
heterogeneity of data across different clients often results in 
substantial discrepancies in the model updates submitted by 
each client. Such variations may lead to excessively large or 
small gradient updates for some clients, consequently 
impacting the training stability of the global model and 
increasing the risk of privacy breaches. This paper presents the 
AGC approach, which dynamically modifies the cropping 
threshold according on the statistical characteristics of the 
gradient at each layer in order to address these issues. This 
method effectively addresses the complications arising from 
heterogeneous data, enhancing both training stability and 
privacy assurance. 

1) Calculation of gradient trimming threshold: The 

fundamental principle of adaptive gradient trimming lies in 

performing gradient trimming on each layer's parameters of 

the global model while dynamically adjusting the trimming 

threshold to accommodate gradient variations across different 

data distributions. Specifically, for each layer parameter θi of 

the model, we first compute the mean μs and standard 

deviation σs of the corresponding gradient gs in that layer. 

These statistical measures provide insight into the 

concentration and distribution characteristics of the gradients 

within that layer. The cropping threshold Ts is then calculated 

as follows: 

1 s
s

s

T b




 
   

 ∣ ∣ ò
   (9) 

where b represents a predetermined base cropping 
threshold, which governs the overall intensity of cropping, and 
ϵ is a small positive constant introduced to prevent division by 
zero errors. In this formulation, a larger standard deviation of 
the gradient for a given layer suggests a more dispersed 
gradient distribution, indicating the potential presence of 
outliers or noise. In such cases, the cropping threshold will be 
correspondingly elevated to mitigate excessive cropping. 
Conversely, when the standard deviation is small, the cropping 
threshold will be relatively low, thereby enforcing a stricter 
control over the size of the gradient. 

2) Gradient trimming process: Following the 

determination of the cropping threshold for each layer, we 

proceed to trim the gradient gs for each respective layer. 

Specifically, we first calculate the norm || gi || of the gradient, 

after which the cropping factor  cs is computed based on the 

previously established cropping threshold Ts. 

min 1, s
s

s

T
c

g 

 
  

    (10) 
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The cropping factor cs governs the scaling of the gradient, 
ensuring that the cropped gradient does not exceed the 
predefined threshold. Ultimately, the cropped gradient g

' 

i  for 
this layer can be expressed as follows: 

'

s s sg g c 
    (11) 

The complete client-side gradient is expressed as the 
aggregation of the cropped gradients from all layers. Assuming 
there are L layers, each with a corresponding cropped gradient 
g

' 

i , the complete gradient for the client can be formulated as 
follows: 

i
1

L

s
l

G g



 
   (12) 

where G' represents the complete client-side gradient, and g
' 

l denotes the cropped gradient for layer l. 

This method preserves much of the information found in 
normal gradients while successfully reducing the negative 
impacts of anomalous gradients on the global model. As a 
result, it improves model training stability and reduces 
information loss. 

Gradient update and noise addition after cropping: To 
further enhance privacy protection, noise is introduced to the 
cropped gradient g

' 

i . This addition adheres to the principles of 
differential privacy, with the standard deviation σnoise 
calculated based on the base cropping threshold b and the noise 
multiplier noise_multiplier: 

2 2

m
noise

b enois ultiplier

N





  (13) 

where N denotes the number of clients participating in 
federated learning. The noise addition process involves 
incorporating Gaussian noise into the gradient update at each 
layer, represented by the following formula: 

update 2

noise(0, )i ig G   N
    (14) 

This process ensures that the model's privacy is further 
reinforced while maintaining the integrity of the gradient 
through cropping. By appropriately calibrating the noise 
intensity, we can maximize the privacy of user data without 
compromising the accuracy of the model. 

C. Aggregation Based on Model Similarity 

Motivation: In the realm of federated learning, the selection 
of an appropriate aggregation strategy is pivotal to the ultimate 
performance of the model. The classical Federated Averaging 
(FedAvg) algorithm simply averages the model weights of all 
participating clients, with the averaging weighted by the 
volume of data each client holds. However, in personalized 
federated learning scenarios, the model updates from clients 
may exhibit substantial variability due to the inherent 
heterogeneity of their respective datasets. Consequently, 
straightforward weighted averaging may result in diminished 
global model performance or inadequate personalization. 

To alleviate this problem, we propose a model similarity-
based aggregation method, the core of which is to dynamically 
adjust the client's contribution weight in federated learning by 
measuring the consistency of update directions between the 
client's local model and the global model. The method adopts 
cosine similarity as the similarity metric: firstly, the parameter 
update vectors of the client model are cosine similar to the 
global update direction. The advantage of cosine similarity is 
that it focuses on the vector direction rather than the magnitude, 
which can effectively capture the synergy of the model updates, 
e.g., clients with high similarity in the update direction are 
consistent with the global trend, which can be given a higher 
aggregation weight to inhibit the bias caused by non 
independent identically distributed data leads to biased updates. 
Compared with Euclidean distance or Pearson correlation 
coefficient, cosine similarity is more robust to amplitude 
changes in high-dimensional sparse model parameter space, 
and the computational efficiency is more suitable for 
distributed scenarios. Through this mechanism, local model 
updates compatible with the global objective can be filtered out 
to improve the convergence speed, while retaining the client's 
personalized features, ultimately achieving a balanced 
optimization of global model performance and personalization. 

3) Calculation of model similarity: In model similarity-

based aggregation methods, it is essential to first quantify the 

similarity between each client model and the global model. In 

this paper, we employ cosine similarity as a measure of the 

degree of similarity between the client model and the global 

model. Cosine similarity is a widely utilized metric that 

computes and normalizes the inner product of two vectors, 

thereby deriving the angular similarity between them. In this 

approach, we treat the parameter vectors of the global model 

and each client model as high-dimensional vectors. We then 

compute the cosine similarity between these vectors layer by 

layer, ultimately taking the average similarity across all layers. 

Specifically, let wg denote the parameters of the global 
model and wi represent the parameters of the i-th client model. 
The similarity between these two can be defined as 

,
( , )

i g

i g

i g

S
 


w w

w w
w w

  (15) 

where <wi, wg> denotes the inner product of the parameter 
vectors wi and wg, while ||wi|| and ||wg|| represent their 
Euclidean norms, respectively. This similarity metric assesses 
the directional consistency of the model updates from clients 
relative to the global model. In our implementation, we 
establish a similarity metric mechanism by calculating the 
cosine similarity between the parameters of the client model 
and the global model layer by layer. 

4) Aggregation methods for similarity weighting: In the 

traditional Federated Averaging (FedAvg) approach, the 

contribution of each client to the global model update is 

typically determined by the proportion of its data volume. 

Nevertheless, the degree of similarity between the client 

models and the global model over several training rounds is 
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not taken into consideration by this strategy. To address this 

limitation, we propose an adjustment to the aggregation 

process by incorporating the cosine similarity between the 

client models and the global model as a weighting factor. 

This process ensures that the model's privacy is further 
reinforced while maintaining the integrity of the gradient 
through cropping. By appropriately calibrating the noise 
intensity, we can maximize the privacy of user data without 
compromising the accuracy of the model. 

During each training round, we first calculate the cosine 
similarity between each client model and the global model. To 
ensure the resulting weights are reasonable, we normalize these 
similarity values so that the sum of the weights of all clients 
equals 1. This normalization process effectively adjusts the 
contributions of the clients, allowing updates from clients that 
exhibit higher similarity to the global model to carry greater 
weight in the aggregation process, while minimizing the impact 
of clients with lower similarity on the global model updates. 

Let Si denote the similarity of the i-th client model. The 
corresponding weighting factor wi is then computed using the 
following equation: 

1

i
i N

j
j

S
w

S





   (16) 

where N represents the total number of clients participating 
in the training, and Sj is the similarity of the j-th client model. 
This weighting method facilitates a dynamic weighted 
aggregation strategy based on similarity, enhancing the 
efficiency and effectiveness of the model training process. 

5) Polymerization update: Building upon the weights 

calculated from model similarity, this paper employs a 

weighted aggregation strategy to update the global model 

parameters. Each client model's updated value is weighted and 

superimposed according to its corresponding weights, 

resulting in the final updated value of the global model. The 

aggregation process is outlined as follows: 

First, for each client model's update result, the update is 
multiplied by its corresponding weighting factor. Subsequently, 
the weighted update values of all clients are accumulated layer 
by layer. Specifically, let the update value of the i-th client be 
denoted as ∆wi. The update value of the global model, ∆wg, is 
then computed using the following formula: 

1

Δ Δ
N

g i i
i

w w w


  
   (17) 

Where wi is the weight of the i-th client, and ∆wi represents 
its corresponding model update value. The aggregated update 
value ∆wg is subsequently applied to the global model to 
complete each round of model updates. 

By utilizing this similarity-weighted aggregation strategy, 
the global model not only synthesizes data features from 
diverse clients but also dynamically adjusts the influence of 
each client based on model similarity. In the presence of 

diverse data distributions, this method improves the model's 
generalization performance. 

V. EXPERIMENTS 

A. Experimental Setup 

1) Dataset and models: We assessed DP-FedSim's 

performance against cutting-edge algorithms in a federated 

learning environment on a variety of image recognition tasks. 

Fashion-MNIST [39], SVHN [40], and CIFAR-10 [41] were 

among the datasets used in this assessment.A test set of 10,000 

samples and a training set of 60,000 samples make up the 

Fashion-MNIST dataset. A 28 × 28 grayscale picture linked 

to a label from a total of 10 classes represents each sample. 

The 60,000 color, 32 × 32 pixel pictures that make up the 

CIFAR-10 dataset are divided into 10 different classes, with 

6,000 images in each class. The digit classification-focused 

SVHN dataset, which consists of 26,032 test samples and 

73,257 training samples, is taken from Street View photos. 

Every sample is a 32 x 32 color picture that shows the 

numbers 0 through 9. 

For the model architectures, FEMNIST employs a simple 
convolutional neural network (CNN) comprising 2 
convolutional layers and 2 fully connected layers. CIFAR-10, 
on the other hand, has a more intricate architecture that consists 
of three convolutional layers and three fully linked layers. The 
SVHN dataset is processed using a straightforward model 
featuring 2 convolutional layers, 1 pooling layer, and 2 fully 
connected layers. 

2) Benchmarks: We evaluate DP-FedSim's performance 

against a number of cutting-edge federated learning 

techniques, including FedAvg [1], DP-FedAvg[42], DP-

FedSAM [20], and DP-FedSAM-top [20]. The FedAvg 

algorithm serves as a baseline federated learning method that 

operates without noise. In contrast, DP-FedAvg guarantees 

client-level differential privacy (DP) by applying a Gaussian 

mechanism directly to the local updates. The DP-FedSAM 

algorithm addresses the adverse effects of differential privacy 

through the utilization of gradient perturbations, specifically 

incorporating a Sharpness Aware Minimization (SAM) 

optimizer to produce locally flat models that exhibit improved 

stability and robustness against weight perturbations. 

Additionally, DP-FedSAMtopk is a variant of DP-FedSAM 

that employs a top-k update thinning technique, further 

minimizing the magnitude of random noise by updating only 

the most significant portions of the model updates, thereby 

enhancing model performance while preserving privacy. 

3) Implementation details: For our experiments involving 

the Fashion-MNIST, SVHN, and CIFAR-10 datasets, we 

model data heterogeneity across client datasets by partitioning 

local data from the original dataset using a Dirichlet sampling 

process. The sampling parameter α controls the degree of 

imbalance in data distribution among clients; larger values of 

α correspond to weaker data heterogeneity, while smaller 

values imply stronger heterogeneity. Our primary evaluation 

metric is global accuracy. In comparisons with other 
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algorithms, we assess accuracy under varying degrees of non-

independent and identically distributed (non-IID) data 

partitioning, proving that our customized federated learning 

approach is successful in handling non-IID data. 

For the Fashion-MNIST, SVHN, and CIFAR-10 datasets, 
we set the learning rate to 1×10-3 and λ to 0.4. The parameters 
for differential privacy are set to ε = 2 and δ = 1×10-5. We 
establish the number of global rounds at 100, local update 
rounds at 4, and batch size at 64, with the number of clients set 
to 100 and a sampling rate of 0.1. 

The following sections of this paper are organized into 
three main parts: first, we conduct a comparative analysis of 
our algorithm against existing differential privacy federated 
learning methods. Second, we perform two ablation studies 
focusing on adaptive gradient cropping and model similarity-
based aggregation to validate their effectiveness. Finally, we 
present a hyperparameter analysis to further elucidate the 
model's performance. 

B. Performance Evaluation 

1) Comparative analysis: In Table I, we evaluate the 

global accuracy of four baseline algorithms across three 

datasets: Fashion-MNIST, SVHN, and CIFAR-10. To assess 

the impact of data heterogeneity on the performance of these 

algorithms, we compare all baselines while varying α within 

the range of {0.05, 0.1, 0.2}. The results summarized in Table 

1 indicate that our proposed algorithm demonstrates superior 

accuracy and generalization ability under standard noise 

conditions. This finding underscores the enhanced 

performance of personalized federated learning with 

differential privacy. 

TABLE I.  OPTIMAL TEST ACCURACY OF DP-FEDSIM AND CENTRALIZED 

BASELINES AT DIFFERENT NON-IID SETTINGS 

Data α FedAvg 
DP-

FedAvg 
DP-

FedSAM 

DP-

FedSAM-

top-k 

DP-
FedSim 

Fminst 

0.05 85.12 54.48 58.37 58.64 69.36 

0.1 93.25 62.10 65.95 66.51 71.68 

0.2 93.41 64.99 71.60 72.13 72.93 

SVHN 

0.05 85.47 77.12 50.21 53.01 84.27 

0.1 86.27 85.28 65.89 66.78 85.83 

0.2 88.64 86.16 72.69 74.53 86.79 

Cifar10 

0.05 54.62 51.69 45.28 45.78 60.63 

0.1 58.86 55.76 56.78 57.02 63.01 

0.2 64.98 61.44 58.41 59.77 64.07 

For instance, in the non-independent identically distributed 
(non-IID) setting with α= 0.2, the accuracy achieved by our 
algorithm on the FEMNIST dataset is 78.93%, 86.79% on the 
SVHN dataset, and 64.07% on CIFAR-10. It is evident that the 
optimal accuracies of DP-FedSim consistently surpass those of 

the other baseline algorithms in most cases, highlighting the 
effectiveness of our approach in improving computational 
accuracy. 

Furthermore, Table I illustrates the robustness and 
generalization capabilities of our algorithms under varying 
levels of non-IID distribution, specifically with α set at 0.05, 
0.1, and 0.2. The heterogeneous distribution settings among 
local clients complicate the training and convergence of the 
global model. Notably, among the four baseline algorithms, the 
adverse effects of heterogeneous distribution become more 
pronounced as α decreases. 

On the SVHN dataset, our proposed algorithm (Algorithm 
1) exhibits superior convergence and generalization compared 
to DP-FedAvg as the non-IID level diminishes. When α = 0.05, 
the accuracy of Algorithm 1 exceeds that of DP-FedAvg by 
7.15%, indicating a greater adaptability of Algorithm 1 in 
handling non-independent homogeneous distributions. 
Additionally, on the CIFAR-10 dataset, Algorithm 1 
demonstrates differences in non-independent homogeneous 
distribution of 2.38% and 1.06% at varying levels of α, which 
are notably lower than the 4.07% and 5.68% observed for DP-
FedAvg, and significantly less than the 11.24% and 2.75% 
exhibited by DP-FedSAMtopk. These results confirm that, 
despite the challenges posed by heterogeneous data, Algorithm 
1 remains resilient and exhibits enhanced robustness and 
stability. 

C. Ablation Experiment 

We carried out a number of ablation tests to clarify the role 
that each element of our strategy had in the overall 
performance. Our proposed method encompasses two key 
components: adaptive gradient cropping (AGC) and model 
similarity-based aggregation (MSA). To assess their individual 
impacts, we explored several variant configurations, including 
the removal of both adaptive gradient cropping and model 
similarity-based aggregation, the removal of adaptive gradient 
cropping while retaining model similarity-based aggregation, 
and the removal of model similarity-based aggregation while 
utilizing only adaptive gradient cropping. 

 In the first variant, we eliminated both adaptive gradient 
cropping and model similarity-based aggregation, 
opting for the commonly employed differential privacy 
and simple average weighted aggregation methods 
based on fixed gradient cropping. This configuration 
serves as the baseline model for our comparative 
analysis. 

 In the second variant, adaptive gradient cropping was 
removed, and we employed the conventional 
differential privacy method utilizing fixed gradient 
cropping for training, while maintaining model 
similarity-based aggregation for server-side 
aggregation. This setup allows us to evaluate the 
effectiveness of the model similarity-based aggregation 
method. 

 The third variant involved the removal of the model 
similarity-based aggregation component, utilizing a 
simple average weighted aggregation method to assess 
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the effectiveness of the adaptive gradient cropping 
technique. 

In this context, for the first variant, the differential privacy 
aspect implemented fixed gradient cropping with a cropping 
threshold c set to 0.4. All other parameter settings remained 
consistent with those outlined in Section Ⅴ. The specific 
experimental results are presented in Table II. 

TABLE II.  ABLATION STUDY WITH DIFFERENT PRIVACY BUDGETS 

Data ACG MSA ε=2 ε=4 ε=8 

Fminst 

  57.74 60.21 62.40 

 ✔ 58.34 61.14 62.67 

✔  70.21 72.82 74.01 

✔ ✔ 72.31 73.62 74.78 

SVHN 
  72.19 73.17 74.51 

 ✔ 73.59 75.24 77.51 

Data ACG MSA ε=2 ε=4 ε=8 

✔  82.24 84.80 85.92 

✔ ✔ 84.88 86.34 87.43 

Cifar10 

  45.77 48.31 49.46 

 ✔ 47.44 49.09 49.74 

✔  61.12 63.84 65.73 

✔ ✔ 64.62 65.88 67.26 

The experimental data reveal that the removal of both 
modules resulted in a notable decrease in model accuracy, 
thereby underscoring the importance of each component in the 
modeling framework. Adaptive Gradient Cropping. The 
implementation of adaptive gradient cropping significantly 
enhances accuracy across various privacy budgets. Adaptive 
gradient cropping significantly improves accuracy across all 
privacy budgets when used in customized federated learning 
(as seen in the third row of each dataset in Table 2 as opposed 
to the baseline model (first row of each dataset). This finding 
validates the effectiveness of adaptive gradient cropping in 
bolstering the model's performance. 

 

Fig. 3. Fixed gradient cropping and adaptive gradient cropping accuracy plots. 

 

Fig. 4. Weighted average aggregation and model similarity based model accuracy plots. 

Model Similarity-Based Aggregation. Similarly, when 
personalized federated learning relies solely on model 
similarity-based aggregation (as illustrated in the second row of 
each dataset in Table 2, there is a marked improvement in 
accuracy across the privacy budgets relative to the baseline 
model. This result further corroborates the effectiveness of 
model similarity-based aggregation within this framework. 

Moreover, when both adaptive gradient cropping and 
model similarity-based aggregation are utilized in tandem (as 
shown in the fourth row of each dataset in Table 2), the 
accuracy demonstrates improvement across different privacy 
budgets compared to the baseline model, the model utilizing 
adaptive gradient cropping alone, and the model employing 
model similarity-based aggregation alone. The results clearly 

indicate that both adaptive gradient cropping and model 
similarity-based aggregation significantly contribute to the 
overall performance of the model under varying privacy 
budgets. The synergistic combination of these two components 
yields optimal results, thereby enhancing the effectiveness of 
our proposed algorithm. 

D. Hyperparametric Analysis 

In experiments concerning personalized federated learning 
with differential privacy, the selection of hyperparameters 
significantly influences both the performance and training 
efficiency of the model. This paper specifically examines the 
impact of the hyperparameter related to the number of clients 
on model performance, conducting tests across two distinct 
datasets. 
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As illustrated in Figures 5, when the number of clients is 
set to 5, 10, and 20 for both the Fashion-MNIST and CIFAR-
10 datasets, the experimental results indicate a positive 
correlation between the number of clients and the overall 
accuracy of the model. The participation of a larger number of 
clients enables the system to leverage a broader range of local 
data, thereby enhancing the global model's generalization 
capability. Furthermore, an increased client count results in a 
data distribution that more closely reflects real-world scenarios, 
which helps mitigate the adverse effects of individual client 
data biases on the model's performance. 

However, this increase in client numbers is accompanied 
by a significant rise in training time. This phenomenon is 
primarily attributed to the augmented participation of clients in 
local computations and model aggregation during each training 
round, leading to increased communication overhead and 
computational demands. Notably, with the implementation of 
differential privacy mechanisms, as the number of clients rises 
and the volume of data per client decreases, the number of 
communication rounds necessary to achieve a comparable level 
of convergence may increase, thereby exacerbating the overall 
training time. 

 

Fig. 5. Accuracy curve for different number of clients. 

Consequently, selecting the optimal number of clients 
necessitates a careful balance between model performance and 
training efficiency. In scenarios where accuracy is paramount, 
increasing the number of clients can substantially enhance the 
model's generalization ability. Conversely, in time-sensitive 
training contexts, it is imperative to regulate the number of 
clients to mitigate computation and communication overhead. 
In practical applications, the number of clients can be adjusted 

according to specific requirements to achieve an optimal trade-
off between performance and efficiency. 

 

Fig. 6. Accuracy curve for different values of δ. 

In Figures 6, we investigate the impact of varying δ-values 
(0.1, 0.0001, and 0.00001) on the performance of our model 
using the Fashion-MNIST and CIFAR-10 datasets. The 
experimental results demonstrate that model accuracy 
improves as the δ-value increases. This observation can be 
attributed to the fact that a larger δ-value signifies weaker 
privacy protection, resulting in reduced noise interference 
during the training process. Consequently, the model is able to 
extract useful information from the data more effectively, 
thereby enhancing its overall accuracy. 

However, while a higher δ-value may yield performance 
benefits, it is crucial to acknowledge that it cannot be set 
excessively high within the framework of differential privacy. 
According to the principles of differential privacy, the δ-value 
represents the probability that the algorithm may violate the 
privacy budget. A large δ-value consequently diminishes the 
security of the differential privacy mechanism. If δ is set too 
high, the efficacy of privacy protection becomes questionable, 
potentially exposing sensitive data to the risk of leakage. 

Therefore, in practical applications, the choice of parameter 
δ needs to be based on the differential privacy framework, 
which is a trade-off between model accuracy and privacy 
protection strength. Differential privacy achieves privacy 
protection by adding noise or data perturbation, and its privacy 
budget parameter ε and relaxation parameter δ together 
determine an upper bound on the risk of privacy leakage. 
Specifically, δ denotes the probability threshold that the 
algorithm cannot satisfy strict ε-differential privacy; a smaller 
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value of δ enhances the privacy guarantee but may lead to a 
decrease in the model's utility; conversely, increasing δ may 
enhance the model's performance but increase the likelihood of 
sensitive information exposure. For example, a decrease in the 
noise scale will reduce the perturbation to the training data 
distribution, but will weaken the strictness of the privacy 
boundaries. Therefore, it is recommended to experimentally 
quantify the effects of different (ε,δ) combinations on the 
model metrics according to the sensitivity requirements of the 
application scenarios, and ultimately choose the optimal 
parameter configurations that can satisfy the privacy 
authentication criteria while maintaining the model usability. 

 

Fig. 7. Accuracy curve for different values of λ. 

The value λ is a crucial hyperparameter in customized 
federated learning, affecting the weight balance between the 
global and local models in the experiment shown in Figure 7. 
By adjusting λ, the system can regulate the extent of fusion 
between the global model and the personalized model during 
the aggregation process. In our experiments, we set λ to values 
of 0.1, 0.4, and 0.6 and evaluated the model's performance 
across different datasets. 

The results indicate that setting λ to 0.4 yields the best 
performance, achieving high accuracy on both the Fashion-
MNIST and CIFAR-10 datasets. Specifically, when λ is 0.4, 
the model strikes an optimal balance between global 
generalization and local personalization, effectively 
maintaining a degree of personalization while retaining the 
shared knowledge encapsulated in the global model. This 
finding suggests that a moderate fusion of global and local 
models can enhance the overall performance of personalized 
federated learning, highlighting the importance of carefully 
selecting λ to achieve the desired model efficacy. 

VI. CONCLUSION 

DP-FedSim is a customized federated learning system with 
adaptive differential privacy that we present in this paper. This 
framework effectively addresses the limitations of traditional 
personalized federated learning, particularly its inflexibility in 
handling data heterogeneity, while also mitigating the adverse 
effects of additive noise associated with differential privacy on 
model performance. DP-FedSim leverages the properties of 
Fisher's information entropy matrix to accurately quantify the 
significance of model parameters, allowing for the retention of 
parameters with larger Fisher values. This strategy reduces the 
detrimental impact of noise addition on model efficacy. From 
the perspective of differential privacy, we introduce a 
hierarchical adaptive gradient cropping method that enables the 
system to automatically adjust the cropping threshold based on 
current privacy protection requirements and the real-time state 
of the model. During the model aggregation phase, the server 
evaluates the similarity between model parameters by 
computing metrics such as cosine similarity and dynamically 
modifies the contribution of each client model to the global 
model update. This adaptive approach enhances the 
framework's ability to accommodate the diverse data 
distributions and model qualities present among different 
clients. We apply the proposed algorithm to the Fashion-
MNIST, SVHN, and CIFAR-10 datasets, demonstrating that 
our model achieves superior accuracy compared to other 
differential privacy algorithms, as evidenced by comparative 
experiments against state-of-the-art models. Furthermore, we 
conduct ablation experiments to analyze the contribution of 
each component to the overall performance of the model, while 
also discussing the rationale behind our hyperparameter 
settings through detailed hyperparameter analysis. 
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