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Abstract—Monitoring athlete movement is important to 

improve performance, reduce fatigue, and decrease the likelihood 

of injury. Advanced technologies, including computer vision and 

inertial sensors, have been widely explored in classifying sport-

specific movements. Combining automated sports action labeling 

with athlete-monitoring data provides an effective approach to 

enhance workload analysis. Recent studies on categorizing sport-

specific movements show a trend toward training and evaluation 

methods based on individual athletes, allowing models to capture 

unique features peculiar to each athlete. This is particularly 

beneficial for movements that exhibit large variations in technique 

between athletes. The current study uses supervised machine 

learning models, including Neural Networks and Support Vector 

Machines (SVM), to distinguish between running surfaces, 

namely, athletics track, hard sand, and soft sand, using features 

extracted from an upper-back inertial measurement unit (IMU) 

sensor. Principal Component Analysis (PCA) is applied for feature 

selection and dimensionality reduction, enhancing model 

efficiency and interpretability. Our results show that athlete-

dependent training approaches considerably enhance the 

classification performance compared to athlete-independent 

approaches, achieving higher weighted average precision, recall, 

F1-score, and accuracy (p < 0.05). 
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I. INTRODUCTION 

Supervised machine learning algorithms have emerged as 
flexible statistical tools capable of modeling both classification 
and regression problems. These algorithms use mathematical 
frameworks for model optimization that map input features to 
output targets of a training dataset to make accurate predictions 
on unseen data. Sports science has of late embraced the power 
of data-driven methodologies to track and improve the 
performance of athletes [1]. Of these, supervised machine 
learning and artificial neural networks have been at the 
forefront of automating sport-specific movement classification, 
quantifying athlete workload, and predicting physiological 
states-for example, fatigue-to optimize training regimens and 
reduce injury risks [2]. 

The introduction of MEMS has subsequently miniaturized 
IMUs into wearable devices that have revolutionized 
performance monitoring in elite sports by providing real-time, 

high-resolution data on athlete movements [3]. These normally 
have IMUs positioned at key areas around the body for the 
extraction of critical features that are important in the study of 
athletic performance in various sports. These feed into input-
supervised machine learning models aimed at classifying 
specific sport movements or environmental contexts, such as 
the running surface [4]. However, these models are as good as 
their methodologies applied during the training and validation 
process. Data partitioning, whether athlete-dependent or 
athlete-independent, has a huge impact on model performance 
and generalizability [5]. 

Despite the progress made in applying machine learning to 
sports, recent systematic reviews have identified important 
shortcomings in the validation strategies. Studies tend to rely 
on non-independent data splits, such as cross-validation or 
simple train-test partitions, which often inflate classification 
performance. Conversely, leave-one-subject-out (LOSO) 
validation-a method that ensures athlete-independent 
evaluation-remains underutilized [6], [7]. This is a particularly 
important gap, as non-independent methods do not consider the 
inter-athlete variability that may result in models performing 
well on known data but poorly on new, unseen athletes. In 
sports applications, where the ability to adapt to new athletes is 
crucial, reliance on athlete-dependent validation methods risks 
compromising the broader applicability and reliability of 
machine learning solutions. 

The aim of this work is to classify the running surfaces into 
athletics track, hard sand, and soft sand using the features 
computed from upper-back IMUs. To compare different 
approaches, six supervised machine learning models were 
trained and then evaluated using both athlete-dependent and 
athlete-independent methodologies. Although the former is 
generally more accurate because the model may learn features 
specific to a given individual, they do not generalize well for 
other unknown athletes. This work is, to the best of the authors' 
knowledge, one of the first sport-specific case studies directly 
comparing these methodologies in running surface 
classification. Its results are particularly relevant to sports 
organizations seeking to implement robust machine learning 
models in monitoring athletes: it conveys actionable insight 
regarding their training, validation, and deployment strategy. 
The current study has attempted to guide the development of 
more reliable and scalable solutions for sport-specific 
movement classification by underlining some of the trade-offs 
between accuracy and generalizability. 
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The remainder of this paper is structured as follows: Section 
II presents a literature review, discussing relevant studies on 
athlete workload monitoring, running surface classification, 
and machine learning applications in sports analytics. Section 
III describes the methodology, detailing the data collection 
process, feature extraction from the inertial sensor, and the 
supervised machine learning models, including Neural 
Networks and Support Vector Machines (SVM), utilized for 
classification. Section IV presents the results, evaluating the 
classification performance of athlete-dependent and athlete-
independent models based on multiple metrics. Finally, Section 
V concludes the study, summarizing key findings and 
highlighting potential future directions for improving athlete 
workload monitoring using advanced machine learning 
techniques. 

II. LITERATURE REVIEW 

Recently, a significant boost of machine learning 
applications in sports analytics was seen; thus, researchers 
started reaping full benefits of this technique while solving a 
number of problems connected with monitoring performance of 
athletes and classification of movements. Wearables, together 
with IMUs, have become an essential tool for motion data 
acquisition and further analysis of several features of athletic 
performances. Unlike traditional observation-based methods, 
IMUs are accurate and scalable; they can capture 
multidimensional data about an athlete's movements in real 
time. Works such as that by Umer and Riaz [8] show the 
capability of IMUs within gait analysis to identify ground 
contact events with high accuracy on different surfaces. It goes 
without saying that this type of research places increasing 
dependence on the use of IMU sensors within sports and 
rehabilitation applications [9]. 

Subsequently, machine learning models based on IMU data 
had very good performance, especially in the classification of 
environmental and movement context, such as running 
surfaces. Buckley et al. [10] presented a road surface type 
classification approach using IMU data, incorporating 
traditional machine learning algorithms like SVM and KNN 
with deep learning approaches. The results showed that 
machine learning could identify surface types with a high 
degree of accuracy, thus opening the way for possible 
applications in sports [11]. This study concerned transportation, 
but its implications reach to athletic performance, where 
running surface classification can improve workload 
monitoring and injury prevention. 

One of the most critical issues when developing machine 
learning models to monitor athletes is the classification based 
on an athlete-dependent or independent approach. The athlete-
dependent model is specific for particular features of a certain 
athlete, and this results in a higher accuracy if the test on the 
same subject is done. Most of these models fail to generalize 
when applied on different athletes. On the other hand, the 
athlete-independent model is general and permits variations in 
individual features. Koul et al. [10] discussed surface 
recognition regarding electric scooters using deep neural 
networks based on smartphone IMU sensors. While not directly 

related to running, their findings emphasize the importance of 
designing models that balance specificity and 
generalizability—principles that are highly relevant to sports 
performance monitoring. 

The broader literature also underlines the increasing role of 
machine learning in sports injury prediction and prevention. 
Surveys such as Diss et al. [11] review various algorithms 
ranging from Random Forests to neural networks, using data 
derived from athletes in order to predict injury risks. Such 
studies indicate the potential of machine learning to analyze 
complex data sets and determine patterns associated with 
injury-prone conditions [12]. Though different from running 
surface classification, all these applications are unified in the 
aim of bettering athlete safety and optimizing performance 
using data-driven insights. The literature underscores the 
transformative potential of machine learning in sports analytics 
[13]. Although recent advancements in IMU-based models and 
validation methodologies have achieved higher classification 
performance, challenges still remain regarding how to balance 
accuracy and generalizability. The study contributes to the field 
by comparing the athlete-dependent and independent 
approaches to classify running surfaces, filling key gaps in 
existing research and informing future model development and 
deployment. 

III. METHODOLOGY 

A. Participants 

Seven healthy subjects, four males and three females, 
participated voluntarily in this study and gave their informed 
consent. The group's mean age was 32.4 years, with a standard 
deviation of 17.89 years, which shows the very high variability 
in age among the group members. Their mean height was 171.9 
cm, with a standard deviation of 8.91 cm, and their mean weight 
was 70.3 kg with a standard deviation of 16.87 kg. Ethical 
approval for this study was granted under protocol number GU 
2017/587. The population of the subjects was heterogeneous 
regarding their fitness level and running experiences; 
consequently, it constituted a rich sample for the study's 
objectives. Their training routines varied, with some 
individuals reportedly spending up to nine hours a week 
training. 

B. Experimental Design 

This experiment consisted of running 400 meters at a light 
to moderate pace on three different surfaces: first, on soft, dry 
sand; then, on hard, water-saturated sand; and finally, the same 
on a synthetic tartan running track. This completed the trials for 
all surface conditions. Each run was designed to maintain 
consistency in pace and effort across the surfaces. Data of the 
motion were captured with one IMU per participant. The IMU 
was positioned near the third thoracic vertebra, T3, and fixed 
with a specifically developed sports harness not allowing any 
displacement during the runs. This setup made the sensor 
stable, and there was no interference with the data collection 
process [14], [15]. Fig. 1 depicts the orientation of sensor axes, 
which is important for accurate motion analysis. The figure 
shows that data acquisition was uniform across all participants 
and conditions. 
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C. IMU Sensor Technology 

The device used was a custom-made, 9DOF IMU, designed 
at Chengdu Sport University. For this present research, it was 
based on the unit known as SABELSense (Sichuan, China) with 
a weight of 23 g and specified as +16 g accelerometer, +2000 
deg/s gyroscope, and +7 Gauss magnetometer; all data was 
captured at a sampling frequency of 250 Hz. Each IMU output 
was then comprehensively calibrated before the trial to capture 
proper data. The data were logged locally onto a 4GB microSD 
card that enabled continuous, reliable logging of the 
experiment. 3D orientation of the sensor is obtained using Euler 
angles: roll, pitch, and yaw through the Madgwick AHRS 
algorithm. This has an accuracy characterized with a root mean 
square error below 0.8° for static, and below 1.7° in dynamics. 
This setup ensured that the motion data was valid and reliable 
during the study. 

 

Fig. 1. The x-axis is the superior-inferior direction, the y-axis is the medial-

lateral direction, and the z-axis is the anterior-posterior direction. The rotation 
around the z, y, and x axes corresponds to the roll, pitch, and yaw, 

respectively. 

D. Designed Algorithm 

1) Feature extraction: When running on a 400-metre 

athletics track, due to the curviness of the path, the Euler angles 

recorded drift progressively. In order to overcome this problem, 

a feature extraction method had been developed and was very 

robust, being inspired by different previous methodologies in 

which [16] is highly remarkable. By using a sliding window 

technique, the whole process was executed with the assistance 

of MATLAB from MathWorks, Natick, MA, USA:. This 

window was set to a duration of 4 seconds, while the overlap 

between two successive windows was set to 0.5 seconds. This 

would give approximately 10 to 11 strides on each surface, 

providing a reliable dataset and at the same time, reduce the 

effects of directional drift [17]. Normalization of Euler angle 

data and transforming into absolute values was done to nullify 

the effect of heading drift within each window. Too much 

spurious data was removed, which would have had an adverse 

effect on the classification. The above window-sliding 

procedure was applied for 11 data channels recorded by the 

IMU: acceleration components, gyroscope outputs, and 

orientation angles in three dimensions. For every one of these 

data windows, various features were extracted in time and 

frequency domains. These included the mean values, standard 

deviation, skewness, kurtosis, and dominant frequency 

components. These features together gave a full representation 

of the pattern of movement-a basis on which effective 

classification and analysis could be done. 

2) Training-validation of feature data: The feature data 

was divided into training and validation sets using two different 

strategies. First, an athlete-independent LOSON was used: one 

participant was randomly selected for model evaluation, and the 

remaining six participants' data was used for training. In the 

second strategy, the data was divided in an athlete-dependent 

way, where 75% of the data was used for training and 25% for 

testing. These methods were applied to evaluate how individual 

participant features influenced the classification performance of 

the models. In the athlete-independent approach, Method 1, the 

number of training observations for soft sand, hard sand, and 

the athletics track were 1537, 1237, and 944, respectively. The 

respective test observations for the considered surfaces were 

183, 153, and 196. By contrary, the approach dependent on 

athletes-Method 2 resulted in 1720, 1390, and 1140 training 

observations for soft sand, hard sand, and athletics track 

surface, respectively, leaving 413, 341, and 309 observations 

for testing. These two partitioning strategies have allowed a 

more complete assessment of the model for its ability both to 

generalize across individuals and to perform when fit to specific 

athletes. 

3) Feature engineering: Feature engineering and model 

training were performed on Python, Python Software 

Foundation, https://www.python.org/ using popular libraries 

like scikit-learn and pandas [18, 19]. All the features were 

scaled into a uniform range from 0 to 1 using the mean and 

standard deviation of the training dataset before modeling. This 

way, the features were normalized, and no single feature biased 

the model due to its magnitude. The challenge in high 

dimensionality was approached by Principal Component 

Analysis (PCA) [20]. In this process, PCA transforms the 

original features into a new orthogonal set of variables known 

as principal components. Every principal component carries 

part of the dataset variance, and only those components needed 

to describe 95% of the total variance were retained for this 

study. This reduced the number of features from 132 to 45, thus 
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significantly reducing computational complexity and 

enhancing model efficiency. By removing noisy and redundant 

features, PCA also helped reduce overfitting and enhanced the 

generalization capability of the model. 

Among the unsupervised dimensionality reduction 
techniques, PCA was preferred over supervised ones such as 
LDA because of its advantages in cases with limited training 
samples. Unlike these supervised methods, PCA does not 
depend on class labels and hence avoids the bias toward a 
particular subset of data. Thus, PCA is particularly suitable for 
the comparisons among the athlete-independent and the 
dependent methods. Even though LDA is originally designed to 
maximize class separability, it could amplify overfitting in the 
case of limited training data, an important concern in this study. 
Moreover, previous studies have demonstrated that PCA 
performs better than LDA when sample sizes per class are 
small, which further supports the appropriateness of the choice 
for this study [21] [22]. By applying PCA, the research was able 
to balance the computational efficiency with feature relevance; 
hence, the model can process meaningful information without 
getting overwhelmed by noise or irrelevant data. This 
embedding had not only reduced the computational burden and 
reduced training time but also made it a just comparison 
between the athlete-independent and athlete-dependent 
methodologies during the conduct of the research, making PCA 
an essential part of the feature engineering pipeline. 

4) Model training and evaluation: Six different machine 

learning models were developed and tested to classify sport-

specific movements using data from inertial sensors. These 

include some of the most commonly used movement 

classification models: logistic regression (LR), support vector 

machines (SVM) with linear (LSVM) and Gaussian radial basis 

function (GSVM) kernels, multilayer perceptron neural 

networks (MLP-NN), random forests (RF), and gradient 

boosting machines (XGB) [23] [24]. Model configurations 

were selected without hyperparameter tuning in order to 

provide a baseline for comparisons. Logistic Regression models 

relied on an L2 penalty while using the lbfgs solver. Support 

vector machines consisted of a linear kernel, with C = 1 and a 

Gaussian kernel, with C = 1 and gamma = scale. The neural 

network, MLP, consisted of three layers of 8 nodes, ReLU 

activation, constant learning rate, and Adam optimizer. The 

random forest model was set with the Gini criterion for 

impurity, number of features as the maximum feature 

parameter, and included 20 estimators. The gradient boosting 

model used the Friedman mean squared error (mse) criterion, 

deviance loss, a maximum depth of 3, and 100 estimators. 

The models were then evaluated in their classification of 
running surfaces using both athlete-dependent and athlete-
independent training and validation segmentation methods. The 
performance metrics for each classification technique included 
weighted averages of precision, recall, and F1-score and the 
overall accuracy for classification. The statistical comparisons 
between models that have used two segmentation methods 
employed a paired t-test, α = 0.05 as shown in Fig. 2. 

 

Fig. 2. Estimation plot showing the significant difference in F1-scores 

across all models comparing the train/test split to the LOSO validation. 

IV. RESULTS 

The statistical results of the test on the train/test split 
provided significantly higher values for all model types with 
respect to the predictive performance measure. More 
concretely, these are huge increases in the weighted averages 
for precision, recall, F1-score, and accuracy, with p-values 
0.0002, 0.0004, 0.0004, and 0.0004, respectively. This result 
points once more to the importance of letting the models see all 
participant features during training and hence letting them 
capture the variabilities in individual movement patterns. 
Results indicate large differences between F1-scores from the 
two validation methods; Fig. 2 provides further visualization, 
whereas a detailed comparison of various evaluation metrics for 
models considering both two validation methods can be seen in 
Fig. 3(a) – Fig. 3(d). 

 

Fig. 3. Comparison of evaluation metrics of all models, considering both 

the train / test split and LOSO validation methods: (a) weighted precision, (b) 

weighted recall, (c) weighted F1-score, and (d) overall classification accuracy. 

As observed by the method of train/test split, using training 
based on participant-specific features pays off significantly in 
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the case of all the models. Such exposure enables them to learn 
complex patterns that are unique in different running styles and 
surface interactions, thus giving enhanced accuracy of 
classification. However, to generalize this application into 
generalized surface classification-for instance, across diverse 
populations or settings-the participants in the dataset would 
have to be increased in number for broader applicability. 
Among the models tested, the best performances were from the 
MLP-NN under the LOSO and the GSVM under the train/test 
split. Their classification capabilities are described by 
confusion matrices shown in Fig. 4 and Fig. 5. The MLP-NN 
model was in a fairly medium range when segmenting soft sand 
from the remaining two surface classes using the LOSO 
method. The precision by classification is 0.71, recall 0.89, and 
F1-score 0.79 for the soft sand class; hence, one can say it 
identified the features of running on the soft sand rather 
successfully. This agrees with highly observable changes in gait 
mechanics when walking on soft sand compared to harder 
surfaces. This is expected since the closer physical properties 
result in more misclassifications between these two surface 
types of hard sand and athletics track surfaces. On the other 
hand, the GSVM model, when tested by the method of train/test 
split, it gave a general accuracy of 0.99. Actually, the model's 
performance was really good on all surfaces, misclassifying 
only once between the athletics track and hard sand surface. 
This, therefore, ascertains how the GSVM model can handle 
such subtlety in running pattern variations across surface types. 
With a full presentation of all information during training that 
prepares this model to generalize best on all test datasets, even 
then, an optimum quotient from GSVM with a train/test split 
may be expected. 

 

Fig. 4. Confusion matrix illustrating the classification performance of the 

MLP-NN model using the LOSO validation method. 

 

Fig. 5. Confusion matrix showcasing the classification performance of the 

GSVM model using the train / test split validation method. 

These results have confirmed the intuition that a specific 
relationship exists between certain forms of validations pursued 
on classifications' various results. This was especially evident 
from the train/test split, representing strengths in model 
accuracy improvements using participant-specific features. In 
tasks where such information is available, this might prove very 
effective. However, the LOSO approach could be more fitting 
when, at application time, generalization to unseen individuals 
with one universal model is required. The findings from this 
study underpin some critical trade-offs between accuracy and 
generalizability for the classification of athlete movement and 
provide valuable insights into the development and 
implementation of machine learning models in sports analytics. 

V. CONCLUSION 

This study underlines, with greater significance, the 
improved classification performance that is attained with 
athlete-dependent train/test split methods (p < 0.05). Individual 
differences in the execution of movements are key to 
monitoring athletes, and allowing models to learn such specific 
features significantly enhances the accuracy of classification. A 
generalized sport-action classification model should have high 
performance on completely independent athletes; hence, it 
requires training data from a diverse group of individuals. This 
would include the type, body of the cyclists (height and weight), 
standard, physical fitness of the cyclists. However, due to issues 
of privacy, hardly any athlete performance data can be 
provided, making the creation of a fully athlete-independent 
model very challenging. An issue that gets very crucial when 
there is high individual variation in the styles of movement is, 
for instance, while running on different surfaces. Given these 
limitations, any sporting organization looking to utilize 
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automated tagging of sport-specific actions as a way of 
supplementing current approaches to athlete-load monitoring 
would have to, at the very least, retrain the classification models 
on data from all participating athletes. This can also include a 
calibration session when new athletes join in, allowing the 
model to learn features from the new person. This proposed 
approach using an upper-back IMU sensor for running surface 
classification may, therefore, inherently be an athlete-
dependent one. The proposal would still be very useful. 
Besides, it also holds prospect for adequate adjustment of an 
athlete's session work rate estimate, particularly on occasions 
when some direct physiological monitoring implements, like 
heart rate monitors, cannot be used. 

In future work, the authors aim to develop privacy-
preserving methodologies, such as federated learning, to 
facilitate athlete-independent classification models while 
ensuring data security. Additionally, they intend to integrate 
multi-modal sensor fusion techniques to enhance the robustness 
and generalizability of movement classification across various 
sports activities. 
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