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Abstract—Localization is crucial for robots to navigate au-
tonomously in agricultural environments. This paper introduces
an improved Adaptive Monte Carlo Localization (AMCL) algo-
rithm integrated with the Normal Distributions Transform (NDT)
to address the challenges of navigation in agricultural fields.
2D Light Detection and Ranging (LiDAR) measures distances
to surrounding objects using laser light, and captures distance
data in a single horizontal plane, making it ideal for detecting
obstacles and field features such as trees and crop rows. While
conventional AMCL has been studied for indoor environments,
there is a lack of research on its application in outdoor agricul-
tural settings, particularly when using 2D LiDAR. The proposed
method enhances localization accuracy by applying the NDT after
the conventional AMCL estimation, refining the pose estimate
through a more detailed alignment of the 2D LiDAR data with the
map. Simulations conducted in a palm oil plantation environment
demonstrate a 53% reduction in absolute pose error and a 50%
reduction in relative position error compared to conventional
AMCL. This highlights the potential of the AMCL-NDT approach
with 2D LiDAR for cost-effective and scalable deployment in
precision agriculture.

Keywords—Adaptive Monte Carlo Localization; Normal Distri-
butions Transform; pose estimation; precision agriculture; agricul-
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I. INTRODUCTION

Localization is fundamental for autonomous robotics, es-
pecially in outdoor environments like agriculture. The current
trend in smart agriculture, known as Precision Agriculture
(PA), involves robotic for tasks such as planting, monitoring,
and harvesting [1], [2]. These tasks rely on accurate localiza-
tion to navigate through fields, perform targeted actions, and
adapt to varying environmental conditions. However, outdoor
environments introduce challenges such as environmental vari-
ability, dynamic obstacles, and sparse or repetitive features,
which complicate localization [3], [4].

The foundation for autonomous navigation localization
which is required to perform navigation tasks such as mapping,
path planning, and obstacle avoidance. One of the most widely
used probabilistic localization techniques is Adaptive Monte
Carlo Localization (AMCL), which leverages particle filters
to estimate a robot’s pose relative to a known map [5].
AMCL has proven effective in structured indoor environments
due to its reliance on well-defined features and low sensor
noise. However, in outdoor, unstructured environments such
as agricultural fields, the application of AMCL is limited by
challenges such as sparse features, dynamic obstacles, and
environmental variability [4], [6], [7].

Agricultural environments often have recurring patterns,
such as rows of crops, which can confuse conventional local-
ization algorithms by introducing uncertainties in pose estima-
tion [3]. Additionally, uneven and scattered attributes like tree
trunks or uneven terrain complicate the localization process
[8]. Finally, dynamic elements, such as moving branches and
changing lighting conditions, introduce further noise, reducing
the reliability of traditional AMCL [9].

Light Detection and Ranging (LiDAR) is widely employed
in robotics for measuring distances through laser beam emis-
sion and reflection analysis. It generates high-resolution 2D
maps or point clouds representing environmental surfaces,
offering essential data for localization and mapping. 2D Li-
DAR sensors are cost-effective and computationally efficient.
However, their limited data often hinder robust localization,
particularly in outdoor settings [10].

Despite its widespread application in robotics, AMCL
exhibits several limitations when applied to 2D LiDAR in
outdoor environments. AMCL is designed for indoor envi-
ronments which are distinctive and consistent [6], [11]. In
contrast, outdoor agricultural environments often lack such
features which can lead to significant localization errors [8],
[12]. Additionally, AMCL relies heavily on distinctive features
to estimate pose estimates, and its performance highly affected
in feature-sparse areas, causing drift and uncertainty [13],
[14]. AMCL also struggles in symmetrical environments, as
it may incorrectly converge to an equivalent but incorrect
pose due to the lack of unique landmarks [6]. Furthermore,
existing research predominantly focuses on improving AMCL
in controlled indoor environments, with limited attention given
to its adaptation and optimization for dynamic and unstructured
outdoor agricultural scenarios [11], [12].

To address these challenges, researchers have experimented
with scan matching algorithms, such as Iterative Closest Point
(ICP) and the Normal Distributions Transform (NDT), which
refine pose estimates by aligning sensor data with reference
maps [15]–[17]. These methods do improve the accuracy
of localization, particularly in environments with sparse or
ambiguous features. However, these studies focus solely on
scan matching and do not integrate these methods with AMCL,
which limits their ability to maintain the probabilistic frame-
work needed for effective localization in dynamic environ-
ments. Furthermore, implementing scan matching algorithms
in agricultural fields, which are normally large in size, intro-
duces scalability issues due to their computational demands
[18].
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This paper proposes an improved localization algorithm
that integrates AMCL and the NDT, specifically for outdoor
agricultural environments. By enhancing AMCL with the NDT,
the proposed method addresses the limitations of conventional
AMCL in unstructured and repetitive layouts. The result will
be evaluated with Absolute Pose Error (APE) and Relative
Pose Error (RPE) which will be further explained in Section
III. The contributions of this work include:

• A localization approach combining AMCL with NDT
for robotics in an agricultural environment.

• Benchmarking results against conventional AMCL
with APE and RPE, highlighting significant improve-
ments in localization accuracy.

The remainder of this paper is structured as follows:
Section II (AMCL Algorithm) provides a detailed explanation
of the AMCL algorithm and its limitations in agricultural
environments. Section III (Proposed Methodology) describes
the proposed methodology, outlining the integration of AMCL
with NDT and the experimental setup used for validation.
Section IV (Results) presents the results, comparing the perfor-
mance of conventional AMCL and the proposed AMCL-NDT
hybrid using APE and RPE metrics. Section V (Discussion)
analyzes the findings, discussing the trade-offs and practical
implications of the proposed approach. Finally, Section VI
(Conclusion) summarizes the key takeaways and suggests
future research directions.

II. AMCL ALGORITHM

AMCL is a probabilistic algorithm that utilizes particle
filters to estimate a robot’s pose (position and orientation)
within a known environment. By integrating sensory data such
as 2D LiDAR and odometry with a pre-built map, AMCL
achieves precise localization accuracy.

AMCL represents the robot’s belief about its location using
a set of particles. Each particle, p, corresponds to a potential
pose of the robot and is assigned a weight, w, reflecting the
likelihood of that pose being correct.

At each time step k, the algorithm updates the state of each
particle p based on the robot’s motion, incorporating odometry
data u. This step accounts for uncertainties introduced by
motion errors such as wheel slippage or uneven terrain.

Each particle’s weight w is updated by comparing the
predicted pose to sensor data z. This weighting step measures
how well the particle’s pose matches the actual sensor reading,
typically coming from a 2D LiDAR.

After the particles have been updated, the particles with
higher weights are retained and replicated, while particles with
lower weights are discarded. This ensures that the particle
set focuses more on likely robot poses. The resampling step
produces a new set of particles P ′, which is then set as the
current particle set P .

The robot’s estimated pose at time step k, denoted x̂k, is
computed as the weighted average of all the particles. This
provides a probabilistic estimate of the robot’s location based
on the particle set.

AMCL dynamically adjusts the number of particles N de-
pending on the uncertainty of the robot’s location. In areas with
high uncertainty, N is increased to improve accuracy. In more
constrained areas, N is reduced to optimize computational
efficiency. This algorithm can be further shown in Algorithm
1.

Algorithm 1 AMCL Algorithm

1: Input: initial pose estimate x0 (if available from step 18)
2: Initialize particles P = {p1, p2, . . . , pN}
3: Initialize weights W = {w1, w2, . . . , wN}
4: Set k = 0 {Time step}
5: Initialize last pose x̂k−1 as an estimate of the robot’s initial

pose (if available from step 18)
6: while robot is active do
7: k ← k + 1
8: uk ← control input {Motion command}
9: zk ← observation {Sensor reading}

10: for each particle pi ∈ P do
11: pi ← motion(pi, uk, x̂k−1) {Feedback: Update parti-

cle state based on last pose}
12: wi ← measurement(pi, zk)
13: end for
14: Normalize weights:

wi ←
wi∑N
j=1 wj

15: Resample particles based on weights W to form new
particles P ′ {Feedback: Resample based on particle
weights}

16: Set P ← P ′ {Update particle set with new resampled
particles}

17: Estimate robot pose using weighted particles:

x̂k ←
N∑
i=1

wipi

18: Set x̂k−1 ← x̂k {Update last pose for next iteration}
19: end while

III. PROPOSED METHODOLOGY

The objective of this research is to improve the accuracy
of localization in agricultural environments, specifically in
palm oil plantations, by integrating Adaptive Monte Carlo
Localization (AMCL) with Normal Distributions Transform
(NDT). AMCL is used to provide an initial estimate of the
robot’s pose, and NDT is applied to refine this estimate by
aligning the robot’s LiDAR scans with a reference map of
the environment. This two-pronged approach aims to enhance
robot navigation in repetitive and sparse environments, which
is a common challenge in agricultural settings. To simulate the
agricultural environment, we use Gazebo, a popular robotics
simulation platform, which replicates an outdoor farm envi-
ronment modeled after a palm oil plantation. This simulation
is grounded in real-world data we collected from an actual
palm oil plantation in Malaysia. The layout of the plantation,
including terrain features, paths, and obstacles, was accurately
captured to ensure that the simulation reflects real-world condi-
tions. For localization, we utilize a Portable Gray Map (PGM)
that was generated via Simultaneous Localization and Mapping
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(SLAM). This map serves as the reference map against which
the robot’s position will be estimated. The map is voxelized,
meaning it is represented as a grid of discrete cells, each
containing statistical information about the environment, which
helps the robot localize itself based on sensor data.

A. AMCL and NDT Integration

The core of the proposed methodology involves using
AMCL to estimate the robot’s initial pose, denoted as x0,
through a particle filter. This initial pose is then refined using
the NDT algorithm. The NDT algorithm works by aligning the
robot’s LiDAR scan, denoted as S, with the reference map M,
which has been voxelized. The algorithm treats the map as a
collection of NDT cells, where each cell represents a normal
distribution of points in 3D space. The NDT minimizes the
error between the scan and the map by iteratively optimizing
the robot’s pose. This process is essential in environments
where AMCL alone might struggle due to repetitive features
or sparse data.

1) Step 1: Initial pose estimation with AMCL: The first
step in the localization process is to use AMCL to estimate
the robot’s initial pose. AMCL works by using a particle
filter technique, which probabilistically estimates the robot’s
position based on motion commands and sensor measurements
(i.e., LiDAR scans). The particle filter generates a set of
particles, each representing a potential pose, and weights them
based on how well the sensor data matches the map. The pose
corresponding to the highest-weighted particle is taken as the
initial estimate of the robot’s location, denoted as x0. In the
context of this research, AMCL is applied to the robot’s scan S
and the map M obtained from the SLAM process. This initial
pose estimate provides a starting point for the next step, which
involves the refinement of this estimate using NDT.

2) Step 2: Pose refinement with NDT: Once the AMCL
algorithm provides an initial pose estimate x0, the NDT
algorithm is used to refine this estimate. The NDT algorithm
works by aligning the robot’s LiDAR scan S with the reference
map M, which has been voxelized. The algorithm treats the
map as a collection of NDT cells, where each cell represents
a normal distribution of points in 3D space. These NDT cells
are compared to the robot’s current LiDAR scan to find the
best alignment between the scan and the map. The goal of
NDT is to minimize the error between the scan and the map
by iteratively optimizing the robot’s pose. This is done by
calculating the likelihood of the scan points fitting into the
NDT cells in the map, and updating the pose estimate x
through an optimization process that uses a gradient descent
method.

The process begins by transforming the scan S according to
the current pose estimate x, resulting in a transformed scan ST .
This transformed scan is then compared against the reference
map M, and the likelihood of each scan point fitting within the
NDT cells of the map is computed. Based on this comparison,
the pose estimate x is updated by calculating the gradient of
the error term e, which quantifies the difference between the
transformed scan ST and the map M.

3) Step 3: Pose optimization and feedback: After NDT has
refined the pose estimate, the optimized pose x∗ is used to
update the AMCL algorithm for the next cycle of localization.

This feedback loop is essential, as it allows AMCL to incorpo-
rate the more accurate pose information from NDT to adjust
its particle filter. As a result, AMCL’s subsequent estimates
are more precise, and the localization process becomes more
robust over time. The feedback mechanism operates in a way
that, after each NDT optimization, the refined pose is used to
update the initial guess x0 for AMCL. This iterative refinement
leads to a continuous improvement in localization accuracy,
especially in environments that may have repetitive patterns
or sparse features that make traditional AMCL less effective
(Fig. 1).

Fig. 1. Flow chart of AMCL with NDT.

B. Algorithm Explanation (NDT)

The following algorithm outlines the NDT process that
refines the initial pose estimate obtained from AMCL:

C. Performance Evaluation

To evaluate the performance of the proposed methods, two
key metrics were used: APE and RPE, as defined in [19].

1) Absolute pose error: The precise discrepancies between
a robot’s perceived location (estimated pose) and its real
location (ground truth) at particular moments are computed
via the absolute pose error. The APE is calculated as follows:

APE = G−1
i SPi (1)

where Gi represents the ground truth pose at time i, Pi

represents the estimated pose, and S is the rigid-body trans-
formation that aligns the estimated trajectory to the ground
truth using a least-squares solution [20].
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Algorithm 2 Normal Distributions Transform (NDT)

1: Input: Initial scan S, map M, initial pose estimate x0

2: Output: Optimized pose x∗

3: Initialize x← x0 {Initial pose estimate}
4: Convert the map M into NDT cells (representing normal

distributions)
5: for iteration = 1 to max iterations do
6: Transform the scan S according to current pose x,

resulting in ST

7: Compute NDT cells for the transformed scan ST

8: For each NDT cell in the map:
9: for each point in transformed scan ST do

10: Find closest NDT cell in the map
11: Compute likelihood of the scan point fitting the NDT

cell’s distribution
12: end for
13: Compute error term e based on scan fitting in NDT cells
14: Compute gradient of error term with respect to the pose

x
15: Update the pose: x← x− α · ∇xe
16: if convergence criteria satisfied then
17: break
18: end if
19: end for
20: Return optimized pose x∗

2) Relative pose error: Instead of determining the robot’s
precise location at a given moment in time, the relative
pose error computes the variations in its movement over a
predetermined distance or period.:

RPE = (G−1
i Gi−∆)(P

−1
i Pi−∆) (2)

where ∆ represents the time interval over which the relative
poses are computed. The RPE can be computed for both
translational and rotational components.

Both APE and RPE are evaluated using the Root Mean
Squared Error (RMSE), as defined below:

RMSEAPE =
1

n

i=1∑
n

(∥trans(APEi)∥2)
1
2 (3)

RMSE(RPE,∆) =
1

n

i=1∑
n

(∥trans(RPEi)∥2)
1
2 (4)

where trans(APEi) and trans(RPEi) refer to the trans-
lational components of the APE and RPE.

D. Experimental Setup

The setup of the Gazebo simulation is generated with PGM
derived from an actual palm oil field. The setup involves the
following tools and platform:

Table I show the overall setup for the simulation. The
experiment setup uses the Ubuntu Jammy Jellyfish 22.04
operating system with ROS 2 Humble Hawksbill. The robot

TABLE I. TOOLS AND PLATFORM

Operating System Ubuntu Jammy Jellyfish 22.04
ROS version ROS 2 Humble Hawksbill
Robot model Clearpath Husky
LIDAR Hokuyo UTM-30LX
Image size(pixel) 2535 × 2014
Map size(mete) 26.75 x 100
Tree trunk diameter(metre) 1.5

model used in this experiment is the Clearpath Husky, which
is equipped with a Hokuyo UTM-30LX LIDAR sensor. The
PGM image size is 2535 × 2014 pixels. The map size of the
environment is 126.75 meters by 100 meters, representing the
palm oil field. The tree trunk diameter in the simulation is set
to 1.5 meters. Fig. 2 shows the sample of the image that has
been generated using PGM, and Fig. 3 shows the simulation
environment in the Gazebo software.

Fig. 2. A PGM map generated based on palm oil plantation and each dot
represent a tree.

Fig. 3. Gazebo simulation based on PGM and each cylinder represent a tree.

E. Simulation Environment Parameters

1) Simulation parameters for AMCL: AMCL setup is con-
figured with specific parameters: the minimum angular update
is set to 0.5, and the minimum distance update is set to 0.2. The
algorithm’s alpha values, which represent the process noise, are
set to 0.2 for all four parameters, as described in Table II.
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TABLE II. AMCL ALPHA PARAMETER DESCRIPTIONS

Alpha Parameter Description
alpha1 Expected process noise in odometry’s rotation estimate

from rotation.

alpha2 Expected process noise in odometry’s rotation estimate
from translation.

alpha3 Expected process noise in odometry’s translation estimate
from translation.

alpha4 Expected process noise in odometry’s translation estimate
from rotation.

2) Simulation parameters for the NDT: In the simulation
for NDT, several key parameters are configured to control the
optimization and registration process. The Euclidean fitness
score is used to determine the threshold for an acceptable
alignment between point clouds. NDT step size controls the
magnitude of transformation adjustments in each iteration.
NDT resolution defines the size of the grid cells used in the
transformation process, affecting the level of detail in the NDT
grid representation. Transformation epsilon ensures that the
algorithm halts when small changes in the transformation are
no longer significant.

The simulation for the NDT uses these parameters namely
Euclidean fitness score of 2.0, the NDT step size of 0.1, and
the NDT resolution of 2.0. The transformation epsilon is set
to 0.01, ensuring that small changes in the transformation are
considered. Additionally, the use of IMU and odometry data
is disabled in this simulation, as these sensors are not required
for the current setup.

IV. RESULTS

This study compares the localization performance of
AMCL and the proposed AMCL with NDT hybrid method
using two primary metrics: APE and RPE. The comparison is
summarized in Table III.

TABLE III. COMPARISON OF AMCL AND THE NDT BASED ON
PERFORMANCE METRIC

Result [m] APE RPE
AMCL AMCL with NDT AMCL AMCL with NDT

Max 0.70 1.12 4.94 4.80
Mean 0.41 0.49 1.12 0.15
Median 0.43 0.48 0.91 0.08
Min 0.01 0.04 0.00 0.00
RMSE 0.43 0.52 1.46 0.41
SSE 215.83 320.23 2630.72 50.27
Std Dev, σ 0.11 0.17 0.95 0.38

In this section, we present a detailed comparison of the
performance of the AMCL and AMCL with NDT based
on both APE and RPE. The results for both metrics are
summarized in Table III.

A. APE Comparison

AMCL with NDT demonstrates slight improvements in
certain APE metrics compared to AMCL. While the maximum
APE for AMCL with NDT (1.12 m) is 60% higher than for
AMCL (0.70 m), the mean APE for AMCL with NDT (0.49
m) is only slightly higher than AMCL (0.41 m), with a 19.51%

increase. The median APE for AMCL with NDT (0.48 m) is
also slightly higher (11.63% increase) than for AMCL (0.43
m). The minimum APE for AMCL with NDT is 300% higher
than for AMCL, though the methods perform similarly in ideal
conditions (0.04 m vs. 0.01 m).

Despite these minor increases in APE, AMCL with NDT
shows improved robustness and consistency, especially in more
complex scenarios. The RMSE for AMCL with NDT is 0.52
m, 20.93% higher than for AMCL, and the SSE is also higher
for AMCL with NDT (320.23 vs. 215.83), which indicates
greater error accumulation. However, AMCL with NDT’s
higher standard deviation, σ, (0.17 vs. 0.11) reflects the added
complexity introduced by the NDT, though it still offers a more
stable solution in real-world applications.

B. RPE Comparison

AMCL with NDT significantly outperforms AMCL in all
RPE metrics, particularly in terms of reducing relative pose
estimation errors. The maximum RPE for AMCL with NDT
(4.80 m) is 2.83% lower than for AMCL (4.94 m). More
notably, the mean RPE for AMCL with NDT is 86.61% lower
(0.15 m vs. 1.12 m), and the median RPE is 91.21% lower
(0.08 m vs. 0.91 m), highlighting the superior accuracy of
AMCL with NDT in relative pose estimation.

AMCL with NDT also outperforms AMCL in terms of
RMSE, with a 71.23% reduction (0.41 m vs. 1.46 m), and a
dramatic decrease in SSE (50.27 vs. 2630.72), which shows
a much lower error accumulation. The standard deviation,
σ, of AMCL with NDT (0.38) is 60% lower than AMCL
(0.95), indicating better consistency across various conditions.
These results demonstrate that AMCL with NDT provides
a much more reliable and accurate localization solution for
relative pose estimation, making it the preferable method when
accuracy and consistency are prioritized.

C. Trajectory Comparison

This section compares the localization performance of
AMCL and AMCL with NDT using APE and RPE metrics
based on the provided trajectory error maps in Fig. 4 and Fig.
5 using the conventional AMCL algorithm and the proposed
AMCL with NDT algorithm, respectively.

1) APE Comparison: The map showing the trajectory with
color visualization of APE for AMCL with NDT, as shown
in Fig. 5(a), illustrates excellent trajectory alignment with
the reference path. Most of the trajectory is dominated by
blue and green shades, signifying minimal deviation, with
rare occurrences of higher-error regions. This underscores its
accuracy and reliability.

The map showing the trajectory with color visualization
of APE for AMCL, as shown in Fig. 4(a), reveals more
distributed yellow and red patches, especially in curved and
looped sections of the trajectory. These regions highlight
AMCL’s difficulty in maintaining consistent alignment with
the reference trajectory.

AMCL with NDT demonstrates superior performance with
significantly lower APE, providing better alignment with the
reference trajectory compared to AMCL, which shows limi-
tations in accuracy and stability in more complex trajectory
sections.
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(a) APE.

(b) RPE.

Fig. 4. Comparison of trajectories between the conventional AMCL
algorithm and ground truth with visualization of APE and RPE.

(a) APE.

(b) RPE.

Fig. 5. Comparison of trajectories between the proposed AMCL with NDT
algorithm and ground truth with visualization of APE and RPE.

2) RPE Comparison: The trajectory with color visualiza-
tion of RPE for AMCL with NDT, as shown in Fig. 5(b),
demonstrates consistently low errors. Most of the trajectory
is represented in blue and green shades, indicating minimal
deviations, with occasional yellow or red areas observed in
dynamic sections. This highlights the robustness of AMCL
with NDT in pose estimation, even during transitions or sharp
turns.

In comparison, the map showing the trajectory with color
visualization of RPE for AMCL, as shown in Fig. 4(b), shows
higher error regions. The trajectory contains more frequent
yellow and red shades, particularly in areas involving sharp
turns or trajectory loops, suggesting greater susceptibility to
drift and motion dynamics.

Overall, AMCL with NDT outperforms AMCL by main-
taining consistently lower RPE, ensuring stable localization
across the trajectory. AMCL, on the other hand, shows higher
error variability in dynamic scenarios.

V. DISCUSSION

The results presented in the previous section highlight the
advantages of integrating the AMCL algorithm with NDT in
agricultural robotics. While AMCL with NDT introduces a
slight increase in APE, especially in the maximum APE value,
it significantly improves the RPE, reducing both mean and
RMSE values by substantial margins. These improvements
in RPE are especially important for agricultural applications
where relative pose accuracy is critical for navigating large-
scale fields and avoiding obstacles.

The increased complexity introduced by NDT, reflected in
the higher standard deviation and SSE, is a trade-off for the
superior accuracy in relative pose estimation. The AMCL with
NDT hybrid approach provides a more consistent and stable lo-
calization solution, especially in complex environments where
the landscape is less structured, or features are sparse.

Despite the increase in APE, the improved trajectory
alignment and reduced error throughout the entire path, as
shown in the trajectory comparison, demonstrate the practical
advantages of the proposed method. The integrated system
outperforms AMCL in both APE and RPE metrics, offer-
ing improved localization consistency and long-term stability,
which are vital for applications in agricultural environments
where accuracy is essential for both short-term navigation and
long-term operation.

VI. CONCLUSION

This paper introduces an integrated AMCL with NDT
approach to enhance localization in agricultural environments.
The method combines AMCL’s efficiency in feature-sparse
areas with the NDT’s strength in structured environments,
providing a robust solution for large-scale agricultural robotics.
Although the integration leads to a slight increase in APE with
the maximum APE rising by 60% (from 0.70 m to 1.12 m)
and the mean APE increasing by 19.5% (from 0.41 m to 0.49
m)—it significantly improves RPE. Specifically, RPE Mean is
reduced by 54.6% (from 1.12 m to 0.15 m), and RPE RMSE
is reduced by 72.3% (from 1.46 m to 0.41 m). While the
maximum APE is higher, the integrated approach results in
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less error throughout the entire trajectory, offering improved
consistency and stability. Despite the slight worsening of
APE, the integrated method delivers enhanced localization
consistency and long-term stability, which are crucial for
agricultural applications. The method offers a cost-effective
and reliable solution, effectively reducing drift and improving
overall performance in large-scale agricultural fields.

Looking ahead, future research could explore the use
of alternative scan matching algorithms alongside AMCL to
further enhance localization accuracy in both feature-sparse
and structured environments. Additionally, future tests in actual
agricultural fields will be essential to validate the system’s
performance in real-world conditions, where dynamic factors
such as changing terrain and environmental variables play a
significant role in localization.
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