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Abstract—Floods are among the most frequent and devas-
tating natural disasters, significantly impacting infrastructure,
ecosystems, and human communities. Accurate satellite-based
flood image classification is crucial for assessing flood-affected
regions and supporting emergency response efforts. This study
uses Convolutional Neural Networks (CNNs) and transformer-
based architectures to enhance flood classification, integrating
the Convolutional Block Attention Module (CBAM) to improve
feature extraction. Using the xView2 xBD dataset, we clas-
sify houses as completely or partially surrounded by flood-
water. Experimental evaluations demonstrate that ResNet101v2
achieved an accuracy of 86.87%, while a hybrid CNN model
(MobileNetV2- DenseNet201) attained 85.83%, further improving
to 89.54CBAM. The Vision Transformer (ViT) with CBAM
achieved the highest accuracy of 90.75%, showcasing the ef-
fectiveness of attention-based hybrid models for flood image
classification. These results highlight the potential of integrating
CBAM with deep learning architectures to enhance classification
accuracy and improve flood impact assessment.

Keywords—CNN; DenseNet; ResNet101v2; VGG16; hybrid
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I. INTRODUCTION

Floods significantly impact society every year, i.e. causing
considerable losses to humans and livestock due to urbaniza-
tion and global climate changes. Many Asian countries such as
India, China and Bangladesh have been prone to the significant
effects of flooding recently, as per the reports from the United
Nations Office of Disaster Risk Reduction (UNDRR) [1].
Reports from the National Disaster Management Authority
(NDMA) indicate that a significant portion of India’s geo-
graphical area is prone to flooding, highlighting the need for
effective flood management strategies [2]. Floods increase in
frequency and intensity due to climate change and unplanned
urbanization. There are two flood assessment methods, namely,
pre-flood and post-flood assessment techniques. The pre-flood
assessment techniques refer to determining flood mitigation
strategies and evaluating the risk of flooding from all potential
sources. The pre-flood evaluation has several issues, such as
building roads, reservoirs, and dams, which would be expen-
sive and time-consuming. Conventional methods for manag-
ing floods include allowing the flood peak to pass without
overflowing and reducing intensity by holding or diverting a
portion of inflows or increasing the capacity of the stream.
Therefore, post-flood assessment is given more emphasis due
to the drawbacks of pre-flood assessment techniques.

Fig. 1(a) shows the completely surrounded house by flood
water, and Fig. 1(b) shows the partially surrounded house by
floodwater. The regions completely covered by flood water

(a)

(b)

Fig. 1. (a) Completely covered house by flood water, and (b) Partially
surrounded house by flood water.

indicate the possibility of trapped humans and livestock; hence,
it helps the rescue teams focus on areas surrounded by flood
water.

Deep learning-based satellite flood image classification has
a wide range of critical applications, particularly in disaster
response and relief operations. By leveraging advanced deep
learning models, this work enables rescue teams to accurately
identify and prioritize areas where resources are most needed,
such as houses completely surrounded by floodwater, ensur-
ing efficient and timely interventions. Post-flood assessment
techniques refer to estimating the conditions of different areas
after the flood has occurred. The significant advantages of post-
flood assessment include flood monitoring ([3],[7],[6] ), flood
zone mapping ([8], [9], [10]), flood forecasting ([11], [12]),
and flood rescue operations ([13], [14]). For specific visible
ranges, it is possible to identify whether regions are completely
surrounded or partially surrounded by flood water.
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The major contribution of this work includes:

• Creating an image dataset by segregating the satellite
images into two classes: houses completely and par-
tially surrounded by floodwater.

• Experimentally fine-tuning hyper-parameters for pre-
trained CNN, hybridizing top-performing architectures
and various transformer models.

• Integrating Convolutional Block attention Mod-
ule(CBAM) on various CNN models and transformers
for performance improvement.

Section II discusses related works on satellite flood im-
age classification; Section III discusses dataset description,
augmentation techniques, and various architectures used for
image classification. Section IV discusses the results of the
experiments carried out. Section V discusses inferences from
the results of experiments carried out. Section VI discusses the
conclusion and future scope.

II. RELATED WORKS

This section focuses on the most recent satellite-based post-
flood assessment research. Most of the researchers use satellite
images to map flood areas. Only limited work is related to
classifying houses as damaged or not damaged. The existing
works on satellite flood images are discussed here in this
section. Chamatidis et al. (2024) utilized a Vision Transformer
combined with transfer learning to detect flooding in satellite
imagery [16]. This work uses two distinct datasets to train
two separate datasets. Sentinel-1 comprises Synthetic Aperture
Radar (SAR) images capturing flood and non-flood events
across various regions. The second dataset, Sentinel-2, consists
of multispectral imagery acquired from multiple flood and non-
flood scenarios in different locations.In their work, Saleh et
al. (2024) proposed a semantic token as SemT-Former, which
operates by prioritizing changes of interest rather than fully
comprehending the entire image scene [15].

Kaur et al. (2023) used a novel transformer-based network
for assessing building damage [31]. The transformer-based net-
work used hierarchical spatial features of multiple resolutions
and captured temporal differences in the feature domain by
applying a transformer encoder to the spatial features.

Gupta et al. (2019) has created a vast satellite image
dataset on many natural disasters in different regions of the
world. They have classified the houses as damaged or not
damaged post-disaster scenarios [30]. xBD dataset is a large
dataset developed for building damage assessment to provide
humanitarian aid and help in rescue operations. Jiang et al.
(2021) proposed a segmentation algorithm for automatic flood
mapping in near real-time, spanning vast areas and in all
weather conditions by integrating Sentinal-1 SAR imagery
with an unsupervised machine learning approach named Felz-
CNN [25]. Munoz et al. developed a deep learning and
fusion framework for large-scale compound flood mapping
[33]. Pham et al. (2021) proposed a novel approach for flood
risk assessment, which is a combination of a deep learning
algorithm and Multi-Criteria Decision Analysis (MCDA) and
also a flood risk assessment framework for integration of
hazard, exposure, and vulnerability mask [34]. Hafizi Mohd Ali
et al. proposed a time series model with layer normalization

and leaky ReLU activation function [41]. Rahnemoonfar et
al. proposed the FloodNet dataset to demonstrate the post-
flood damages of the affected areas [32]. They compared
and contrasted the performance of baseline methods for im-
age classification, semantic segmentation, and visualization of
flood data. Wu et al. dual-polarization SAR data and multi-
scale features of SAR images, an effective flood detection
method for SAR images [35]. Table I lists some satellite
image classification works related to flood areas. The literature
review shows a minimal number of works on satellite image
classification for floods due to the low resolution of the images.
There is no work on classifications of buildings completely or
partially surrounded by floodwater.

III. METHODOLOGY

A. Dataset Description

The challenges, such as the scarcity of high-resolution
images and the limited availability of datasets, often con-
strain the classification of satellite flood images, reducing
classification accuracy. There are various other problems,
such as imbalanced class distribution. The Satellite flood
image classification datasets encounter limitations such as
class imbalances, geographic biases, and challenges posed by
occlusions from clouds or vegetation. The xBD satellite flood
image dataset is sourced from Maxar/DigitalGlobe open data,
featuring high-resolution imagery [30]. The geographical area
covered is approximately 18000 km2, with high-resolution
images providing a detailed analysis of regions affected by
flooding. The xBD dataset includes images from various areas,
including those capturing the Midwest US Floods between
January 3 and May 31, 2019. These floods primarily impacted
the midwestern United States, particularly along the Missouri
River.

The xBD dataset used in this work is categorized into
two classes: completely surrounded houses by floodwater and
partially surrounded houses by floodwater. In the completely
surrounded house category, the house is fully submerged, with
no visible escape routes such as roads or pathways, indicating
a critical need for immediate rescue. Conversely, partially
surrounded houses may have accessible pathways or roads that
could serve as potential escape routes for trapped individuals,
requiring less urgent attention but still necessitating interven-
tion.

In the xBD dataset for our model training, 5382 images
are segregated into two classes, namely houses completely or
partially surrounded by flood water. Each class contains 2691
images, which is equally balanced. Table II shows the number
of images used for classification. Images are split into two
folders with train (70%) and Validation (30%), respectively.

B. Dataset Augmentation

Data augmentation techniques were applied to the xBD
satellite flood image dataset to address the limited availability
of images and enhance the training dataset’s diversity. The
augmentation process includes image rotation, flipping, and
saturation adjustment. These transformations, as summarized
in Table III, simulate variations in lighting conditions, color in-
tensities, and the time of image capture, thereby improving the
robustness and generalization of the classification techniques.
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TABLE I. RELATED WORKS ON POST-FLOOD ASSESSMENT FROM SATELLITE IMAGES

Method Dataset Used Features Application

Wu Zet al.
(2024) [5]

GID dataset and
GIH-Water
dataset

Multi-scale transformer-based
algorithm for floodwater
contour extraction

Flood water body delination
Roboust solution on disaster
stuck areas

Wu Let al. (2024) [4] The dataset comprising of 2945 flood
house images with four damage level

Proposed dual-view CNN for
post-flood damage levels in
houses

Identify damage flood house
level

Montelloet al. (2022) [21] Dataset contains 1,748 Sentinel-1 ac-
quisitions comprising 95 flood events

flood delineation task using
deep learning models
to evaluate the performance
gains of entropy-based
sampling and multi encoder
architecture.

Assessment of flood areas
accurately

Jackson et al. (2023) [19] FloodNet Dataset
ResNet18, VGG16,
MobileNetv2 for building
damage assessment

Identification of flood risk
areas

Pech et al. (2023) [20] SAR images from
Campeche,Chiapas and
Tabasco,Mexico

U-Net for flood mapping Detection of flooded areas

Islam et al. (2022) [18] The dataset comprises
three classes

Inceptionv3, DenseNet CNN
approach for flood severity
assessment

Identify flood areas and
help in rescue operations

J. Ha and J.E Kang (2022) [22] Flood data from Busan city Flood risk level using random forest model Identify flood risk areas

Bouchard et al. (2022) [23] xBD dataset CNN in building damage
assessment from post-disaster

Flood building damage
assessment

Franceschini et al.
(2021) [17] Spatial aerial flood image Detect and localize flood buildings Building damage assessment

Shen et al. (2021) [24] xBD dataset Two stage CNN for building damage assessment Building damage assessment

Xin et al. (2021) [25] Sentinel-1a and Sentinel-1b for map-
ping flood inundation area

Unsupervised machine learning approach Felz-CNN for
flood mapping

Effective monitoring of flood
conditions to aid disaster
governance

Opella et al. (2019) [26] Used data from GIS Fused ConvNet, along with
SVM

Effective and robust flood
map for image classification

Moya et al. (2019) [28] TerraSAR-X intensity
images

3DGLCM for
building damage classification

Flood building damage
assessment

Chandrama Sarker et al. (2019) [27] Landsat and WOfS
images

Fully convolutional neural
networks (F-CNNs)

Flood extent mapping from
Landsat satellite images

TABLE II. DATASET DESCRIPTION OF IMAGES USED FOR
CLASSIFICATION

Dataset
Completely
Surrounded

Partially
Surrounded

Total
Images

Train (70%) 1883 1883 3766
Validation (30%) 808 808 1616

The model is better equipped to handle real-world scenarios
with diverse environmental conditions and perspectives by
augmenting the dataset.

TABLE III. DATA AUGMENTATION FOR FLOOD IMAGE CLASSIFICATION

Transformation Applied Value of Transformation
Image Rotation 00, 900, 1800,2700

Image Flipping 50%
Saturation ±30%
Exposure ±15%

C. Convolutional Block Attention Module (CBAM)

The Convolutional Block Attention Module (CBAM) is
an attention module for feed-forward convolutional neural
networks. Given an intermediate feature map, this module
would sequentially infer attention maps along two separate
dimensions, channel and spatial. Then, the attention maps
are multiplied by the input feature map for adaptive feature
refinement [42] as shown in Fig. 2. CBAM is a lightweight

and general module that can easily integrate into CNN archi-
tectures, seemingly with integrated weights.

CBAM, added with CNN, extracts hierarchical features
from input images through multiple convolutional layers fol-
lowed by pooling and activation functions. During image
classification, traditional CNN models consist of relevant and
irrelevant features. Here, adding CBAM enhances the model’s
attention to essential features.

Fig. 2. Convolutional Block Attention Module (CBAM).

The key characteristics of using CBAM are that it is
computationally efficient and easily integrates with existing
models to improve computational complexity. CBAM for
image classification includes enhanced feature representation,
which improves the model’s ability to capture essential features
by focusing on the most informative channels and spatial
regions. The CBAM provides flexibility since it can be easily
integrated into existing CNN architectures without significant
changes for classification tasks.
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D. Individual Pre-trained CNN Models with CBAM

There are ten pretrained individual architectures such
as VGG16, VGG19, ResNet50, XceptionNet, MobileNetv2,
ResNet101v2, DesnseNet201, Inceptionv3, XceptionNet, and
Inception-ResNet ResNet are fine-tuned with our dataset to
classify the houses in satellite images as partially or completely
surrounded by flood water. Fig. 3 shows the various stages of
image classification using individual pre-trained architecture.
These pre-trained CNN models are selected since they are top-
performing models in terms of image classification.

Individual pre-trained CNN models for flood image clas-
sification are vital because they can extract robust and hier-
archical features from images. These models, pre-trained on
large datasets like ImageNet, can be fine-tuned for flood-
specific tasks, such as distinguishing between partially and
fully flooded areas. Their convolutional layers effectively cap-
ture spatial patterns, such as water boundaries and submerged
structures, which are critical for accurate flood assessment.
Moreover, these models’ adaptability to various datasets and
computational efficiency make them suitable for real-time ap-
plications in disaster response, flood monitoring, and resource
allocation.

Fig. 3. Stages involved in the individual pre-trained CNN architecture.

In order to include the CBAM in the design of individual
pre-trained models, attention modules that apply spatial and
channel-wise attention mechanisms successively are incorpo-
rated. These attention modules enable the model to focus on
the most relevant regions of the flood images, such as water-
logged areas around houses, while suppressing less informative
background details. The combined model is fine-tuned on
the flood image dataset to adapt the pre-trained features and
CBAM-enhanced attention to the specific classification task.

E. Hybrid CNN Architecture Convolutional Block Attention
Module

Based on the performance of individual pre-trained CNN
models, a hybrid architecture was designed by combining two
best individual pre-trained CNN models for feature extraction.
This architecture capitalizes on the complementary strengths
of both models, leveraging their distinct feature extraction
capabilities, as depicted in Fig. 4. The inclusion of CBAM
is further refined the attention mechanism, improving model
accuracy. This architecture was selected through iterative ex-
perimentation, ensuring an optimal balance between computa-
tional efficiency and classification performance.

The feature maps of both pre-trained network layers are
concatenated. The concatenation layer merges the features

extracted by both pre-trained networks, allowing the hybrid
model to utilize features from both architectures for enhanced
classification. In the initial stage, the flood image dataset
is provided as input to the two pre-trained CNN models,
namely, pre-trained model 1 and pre-trained model 2. In pre-
trained model 1, the model processes the input images through
its layers and generates feature maps. An averaging layer
computes the average value across each feature map to reduce
dimensionality. Similarly, the pre-trained model 2 extracts
feature representations from the input images. Further, it is
given as input to the averaging layer, ensuring that the feature
maps are reduced to a manageable size. Then, further, each pre-
trained model is followed by a dense Prediction layer, which
generates a set of output predictions based on the features
extracted by the respective models. These dense prediction
layers classify the flood images using the information obtained
by each pre-trained model.

The outputs from feature maps of the dense prediction
layers from the two models are merged through a concatena-
tion layer, subsequently serving as input to a dense prediction
layer. This layer is responsible for classifying the images into
two classes: completely surrounded houses by floodwater or
partially surrounded houses by floodwater. The Convolutional
Block Attention Module (CBAM) is a lightweight and effective
attention mechanism that can enhance the performance of deep
learning models in satellite image classification tasks, such
as flood detection and assessment. By sequentially applying
channel and spatial attention, CBAM enables the model to
focus on the most relevant features in satellite imagery, such
as water bodies, flood extents, and damaged areas, while
suppressing irrelevant background information.

Fig. 4. Stages involved in the design of hybrid CNN architecture.

Fig. 4 shows the architecture of modification made to
the pre-trained CNN architectures after applying CBAM. The
CBAM is added before the final descent prediction layer, which
classifies the houses as completely or partially surrounded
houses by flood water.CBAM processes the extracted feature
maps to refine them by emphasizing relevant spatial and
channel-specific features. After applying CBAM processes, the
extracted feature maps are refined by emphasizing relevant
spatial and channel-specific features.

F. Architecture for Data Efficient Image Transformer (DeiT)
with CBAM

The Data-Efficient Image Transformer (DeiT) is employed
for satellite flood image classification, leveraging its efficiency
in learning from datasets with high accuracy [36].

The DeiT incorporates a teacher-student learning distilla-
tion mechanism that enhances transferring from the convolu-
tional neural network (CNN) teacher model to the transformer.
For satellite flood classification, the input images are pre-
processed into fixed-size patches, embedded, and processed

www.ijacsa.thesai.org 1053 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

Fig. 5. Architecture of data efficient image transformer.

through multiple transformer layers, allowing both flood-
specific patterns and global spatial dependencies to be captured
during this process.

The advantages of DeiT are that it effectively trains on all
datasets, it is compact with variants, and The distillation pro-
cess enhances DeiT accuracy, making it competitive with state-
of-the-art convolutional neural networks (CNN). The DeiT
model achieves higher accuracy when compared to pre-trained
CNN models. The hierarchical self-attention mechanism makes
it salable for small and large-scale image classification. The
DeiT leverages global self-attention, no inductive bias, and
parallelization to obtain global and local features. Fig. 5
shows the architecture diagram for flood image classification.
The DeiT for satellite flood image classification ensures that
the model focuses on critical flood-related features, such as
identifying houses completely or partially surrounded by flood
water.

DeiT uses a self-attention mechanism to capture global de-
pendencies and identify subtle patterns and features indicative

of the flood effect. The feature extraction process is enhanced
by integrating the CBAM to focus on critical regions of
images. DeiT with CBAM enhances the accurate classification
of houses completely or partially surrounded by flood water.

To further enhance performance, specific challenges in
flood house image classification, such as variations in lighting,
viewing angles, and physical obstructions, are addressed by
fine-tuning the DeiT model’s architecture. The DeiT-integrated
CBAM emphasizes flood-relevant features while suppressing
irrelevant or noisy information in the images. This combination
allows the model to capture critical spatial and contextual
patterns effectively, improving its robustness and accuracy in
classifying flood-affected houses in diverse scenarios.

G. Architecture for Multiscale Vision Transformer (MviT) for
Satellite Flood Image Classification with CBAM

The Multiscale Vision Transformer (MViT) model effi-
ciently captures global and local spatial features across multi-
ple scales. By incorporating multiscale attention mechanisms,
the MViT adaptively focuses on fine-grained features, such as
flooded areas, to enhance classification accuracy. The model is
configured with a patch-based tokenization strategy, ensuring
the preservation of critical spatial features throughout the
processing pipeline.

Fig. 6. Architecture of Multiscale Vision Transformer (MViT).

Fig. 6 shows the architecture for a Multiscale vision
transformer (MviT). The CBAM is integrated into the architec-
ture to enhance feature refinement by selectively emphasizing
flood-relevant spatial and channel-wise information.

H. Architecture for Swin Transformer for Satellite Flood Im-
age Classification with CBAM

The Swin Transformer is considered well-suited for flood
image classification due to its hierarchical architecture and
shifted window mechanism. It effectively captures global and
local features, accurately identifying flood-affected regions in
satellite images [37]. By leveraging its multiscale representa-
tion, the Swin Transformer can differentiate between partially
and fully inundated areas, contributing to accurate flood zone
mapping and rescue prioritization. Its efficiency and scalability
make it ideal for processing high-resolution flood imagery in
real-world disaster scenarios.

The CBAM, which includes channel and spatial attention
modules, is integrated into the Swin Transformer to enhance
its feature extraction capabilities. The integration of CBAM
with the Swin Transformer occurs at key stages of the model
architecture.CBAM is integrated into the model by inserting it
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after the attention layers of the transformer blocks, allowing
the network to refine its attention maps and focus on more
relevant features.

Fig. 7. Swin transformer with CBAM.

Fig. 7 presents the Swin Transformer with CBAM, where
the input undergoes sequential processing through multiple
transformer blocks. After each transformer block, CBAM is
incorporated before the output is passed to the next block or the
final classification layer. This setup allows for the refinement
of spatial and channel features after each block’s multi-head
self-attention and MLP operations, ensuring the extraction of
distinct features at each stage.

I. Architecture for Sparse Swin Transformer for Flood Image
Classification with CBAM

Sparse Swin Transformer is a variation of the Swin Trans-
former architecture where the attention mechanism is designed
to focus on only the most critical parts of an image, effectively
sparsifying the attention leading to faster computation leading
to faster computation and potentially improved accuracy with
few parameters compared to standard Swin transformer [38].

Fig. 8. Sparse Swin transformer with CBAM.

Fig. 8 shows the architecture diagram for Sparse Swin
Transformer with CBAM selectively focusing on critical flood-
relevant regions, such as water boundaries and inundated ar-
eas, reducing computational complexity without compromising
feature extraction. The hierarchical architecture of the Sparse
Swin Transformer facilitates multi-scale feature learning, en-
abling the model to capture both local details and global
context from the images. For this study, the satellite datasets
were pre-processed into patches and fed into the transformer,
preserving spatial information. The model integrates CBAM
(Convolutional Block Attention Module) to enhance attention
to flood-relevant features in spatial and channel dimensions.

J. Architecture for Hierarchical Vision Transformer(HVT) for
Flood Image Classification with CBAM

The Hierarchical Vision Transformer (HVT) is utilized
for flood image classification to effectively analyze satellite
imagery by leveraging its hierarchical structure and multiscale
feature extraction capabilities [39].

The Hierarchical Vision Transformer (HVT) model, inte-
grated with CBAM, is utilized for flood image classification
to capture local and global contextual information as shown
in Fig. 9. The hierarchical structure of HVT enables efficient

Fig. 9. Hierarchical vision transformer with CBAM.

processing of high-resolution flood images by focusing on
multiscale features. CBAM further enhances this by selectively
emphasizing flood-relevant features and suppressing irrelevant
ones, improving the model’s ability to accurately classify
flood-related patterns. This combination leads to a more pre-
cise and robust flood image classification.

The hierarchical vision transformer divides input satellite
images into progressively finer patches, allowing the model to
capture global contextual information. The hierarchical vision
transformer architecture was augmented with a Convolutional
Block Attention Module (CBAM) to enhance spatial and
channel-level attention, ensuring a more targeted focus on
flood-relevant features. Initially, the experiments are carried
out without adding the CBAM layer, where the focus is
distributed across all parts of the image rather than directed
toward specific, critical regions. This approach provides a
baseline performance, allowing for a comparison to evaluate
the impact of CBAM in enhancing feature selection and
improving classification accuracy.

K. Architecture for Vision Transformer for Satellite Flood
Image Classification with CBAM

The Vision Transformers with CBAM enhance the features
to identify the flooded houses [40]. ViT effectively captures
long-range dependencies. ViT processes the image as a patch
sequence, allowing it to learn from a global context for satellite
image classification. Using a pre-trained ViT model, typically
fine-tuned on large image datasets, allows leveraging learned
representations to improve satellite image performance.

Fig. 10. Vision transformer with CBAM.
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The satellite images are passed through the transformer
layers to learn the spatial and semantic features. A classi-
fication head processes the output tokens, typically a fully
connected layer, to predict the class of the satellite image. Fig.
10 shows the architecture for flood image classification with
CBAM layer, which is added after satellite flood image patches
to focus on relevant features such as identification of flooded
houses. The Vision Transformer (ViT) architecture combines
the strengths of attention-based mechanisms in both spatial
and channel dimensions, enhancing its performance for image
classification tasks.

IV. RESULTS

This section mainly focuses on the experiments conducted
with varying learning rates. The various experiments carried
out include:

• Flood image classification using individual pre-trained
CNN models.

• Flood image classification using hybrid CNN model.

• Flood image classification using Sparse Swin Trans-
former .

• Flood image classification using Data efficient Image
Transformer (DeIT)

• Flood image classification using Multiscale Vision
transformer (MviT).

• Flood image classification using Swin transformer.

• Flood image classification using Hierarchical Vision
transformer(HVT).

• Flood image classification using Vision transformer
(ViT).

Various experiments were performed using optimizers such
as Adam, SGD, and Adadelta, with learning rates of 0.1, 0.01,
0.001, and 0.0001. They perform the experiments for both
50 and 100 epochs, consistently observing that the models
achieve peak accuracy within 50 epochs. Additionally, the
impact of adding attention mechanisms like CBAM is analyzed
to determine their variation in accuracy improvements by fine-
tuning the hyperparameters. Experiments comprises of low
learning rates such as 0.0001,0.001,0.01 since the pre-trained
models have already been trained on numerous images, hence
the flood image classification is performed with lower learning
rates to classify houses as completely or partially surrounded
by flood water.

A. Results of Individual Pre-trained CNN Models

The experiments performed for flood image classification
on satellite images to classify houses completely or partially
surrounded by floodwater for these individual pre-trained CNN
models. Table IV lists only the best hyperparameters that
perform well for individual pre-trained CNN models for flood
image classification.

However, we have experimented with all the possible com-
binations of the hyperparameters. The ResNet101V2 model
yields the best accuracy, with a learning rate of 0.0001 and
an Adam optimizer of 86.87%. ResNet101v2 benefits from

TABLE IV. RESULTS OF EXPERIMENTS CONDUCTED ON INDIVIDUAL
PRE-TRAINED CNN MODELS

Model Optimizer Learning
Rate

Training
Accuracy (%)

Validation
Accuracy (%)

Without
CBAM

VGG16 Adadelta 0.01 84.88 83.28
VGG19 Adam 0.01 84.41 82.66
ResNet50 Adam 0.01 67.90 71.72
XceptionNet SGD 0.01 84.49 83.44
MobileNetv2 Adadelta 0.01 89.45 85.83
ResNet101v2 Adam 0.0001 87.20 86.87
DenseNet201 Adam 0.01 87.48 85.00
Inceptionv3 SGD 0.01 85.84 80.16

With
CBAM

VGG16 Adadelta 0.01 86.35 85.10
VGG19 Adam 0.001 85.00 84.35
ResNet50 Adam 0.1 69.75 68.35
XceptionNet SGD 0.001 85.30 84.05
MobileNetv2 Adadelta 0.1 89.50 86.15
ResNet101v2 Adam 0.01 89.35 88.60
DenseNet201 Adam 0.001 88.50 86.35
Inceptionv3 SGD 0.1 86.24 81.75
Inception-ResNet Adam 0.001 87.10 81.35

residual connections, which helps in effective training. Also,
the ability to learn from fine-grained details helped improved
accuracy when compared to other models. Initially, the ex-
periments are carried out without CBAM for individual pre-
trained CNN model ResNet101v2 with Adam optimizer and
learning rate of 0.00001 obtained an accuracy of 86.87%.
After applying the CBAM layer there was an improvement
in performance wherein ResNet101v2 with Adam optimizer,
learning rate of 0.01 obtained an accuracy of 88.60%.

Here the low learning rates such as 0.0001, were used to
ensure stable convergence and avoiding for optimization. The
lower learning rates require more iterations but they contribute
to improved generalization. However, experiments were con-
ducted with other learning rates too such as 0.01,0.1, etc. for
classification without CBAM pre-trained model ResNet101v2
with Adam optimizer, learning rate of 0.00001 obtained
slightly better accuracy of 86.87%.

B. Results of Hybrid CNN Models for Flood Image Classifi-
cation

Out of the ten pre-trained models, the top five were selected
based on their superior performance in previous experiments.
Various combinations of these pre-trained and hybridized
networks are followed by experiments utilizing different hy-
perparameter configurations. The top five results are shown
in Table IV, with the hybrid model of MobileNetv2 and
DenseNet201 achieving the highest accuracy of 85.83% with
SGD optimizer and learning rate of 0.1. Followed by a hybrid
model comprising VGG19 and ResNet101v2, it obtained an
accuracy of 85.78% for 50 epochs with SGD optimizer and a
learning rate of 0.1.

Table V shows the results of experiments performed for
hybrid CNN models with CBAM. The best-performing indi-
vidual models are hybridized. CBAM is added to pre-trained
CNN models, allowing fine-tuning to benefit from the attention
mechanism of spatial attention, which helps to identify flooded
critical regions. The channel attention highlights features like
water texture or patterns aiding better classification accuracy.

Among these hybrid models, the performance of Mo-
bileNetv2 and DenseNet201 with SGD optimizer learning rate
of 0.01 obtained an accuracy of 90.54% after applying CBAM.
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TABLE V. RESULTS OF HYBRID CNN MODEL FOR SATELLITE FLOOD
IMAGE CLASSIFICATION

Model Optimizer Learning
Rate

Training
Accuracy (%)

Validation
Accuracy (%)

Without CBAM

Mobilenetv2 and
DenseNet201 SGD 0.1 87.76 85.83

ResNet50 and
DenseNet201 Adam 0.1 89.19 83.91

VGG19 and
DenseNet201 Adam 0.1 89.13 83.44

VGG19 and
ResNet101v2 SGD 0.1 88.62 85.78

ResNet101v2 and
DenseNet201 SGD 0.001 86.56 84.84

With CBAM

Mobilenetv2 and
DenseNet201 SGD 0.01 95.36 90.54

ResNet50 and
DenseNet201 Adam 0.001 89.85 86.53

VGG19 and
DenseNet201 Adam 0.1 89.31 85.50

VGG19 and
ResNet101v2 Adadelta 0.01 89.45 86.30

ResNet101v2 and
DenseNet201 Adam 0.1 89.31 85.50

C. Results of Sparse Swin Transformer

Table VI shows the experiments that are carried out with
varying learning rates of 0.001, 0.01, 0.1 and different op-
timizers such as Adam. SGD and Adadelta optimizer. Only
the best-performing results for image classification are listed.
Initially, the experiments were performed without CBAM for
the Adadelta optimizer with a learning rate of 0.001, batch size
of 32, and number of epochs as 100, obtaining an accuracy of
71.35%.

TABLE VI. RESULTS OF SPARSE SWIN TRANSFORMER FOR IMAGE
CLASSIFICATION

Model Optimizer Learning
Rate

Training
Accuracy (%)

Validation
Accuracy (%)

Without CBAM

Sparse Swin
Transformer Adam 0.001 53.28 50.48

Sparse Swin
Transformer Adam 0.01 60.15 59.45

Sparse Swin
Transformer SGD 0.01 68.22 64.44

Sparse Swin
Transformer SGD 0.1 73.55 69.75

Sparse Swin
Transformer Adadelta 0.001 72.15 71.35

Sparse Swin
Transformer Adadelta 0.01 66.57 64.39

With CBAM

Sparse Swin
Transformer Adam 0.01 70.26 68.89

Sparse Swin
Transformer SGD 0.001 93.40 89.10

Sparse Swin
Transformer SGD 0.01 91.30 86.70

Sparse Swin
Transformer SGD 0.1 90.20 82.35

Sparse Swin
Transformer Adadelta 0.001 85.35 81.65

Sparse Swin
Transformer Adadelta 0.01 84.94 80.00

After applying CBAM to the Sparse Swin transformer
the improved results were obtained for the Adam optimizer
with a learning rate of 0.001, obtaining an overall accuracy
of 89.10%. The improved satellite flood image classification
performance by leveraging its sparse attention mechanism sig-
nificantly reduces computational overhead while maintaining
accuracy. The hierarchical architecture of the Sparse Swin
Transformer allowed for multiscale feature extraction, enhanc-
ing its ability to analyze local and global satellite imagery

patterns.

D. Results of Data Efficient Image Transformer (DeiT) for
Flood Image Classification

Table VII shows the experiments that are carried out
with varying learning rates of 0.001,0.01,0.1 and different
optimizers such as Adam. SGD and Adadelta optimizer. Only
the best-performing results for image classification are listed.
Among the experiments performed, improved results were
obtained for the SGD optimizer with a learning rate of 0.1,
obtaining an overall accuracy of 84.63%.

TABLE VII. RESULTS OF DEIT TRANSFORMER FOR IMAGE
CLASSIFICATION

Model Optimizer Learning
Rate

Training
Accuracy (%)

Validation
Accuracy (%)

Without CBAM

DeiT Adam 0.001 72.04 67.14
DeiT Adam 0.01 68.22 64.44
DeiT Adam 0.1 58.43 56.48
DeiT SGD 0.001 60.50 58.30
DeiT SGD 0.01 62.05 60.38
DeiT SGD 0.1 65.75 63.58
DeiT Adadelta 0.001 67.05 65.35
DeiT Adadelta 0.01 69.05 70.43
DeiT Adadelta 0.1 75.05 72.35

With CBAM

DeiT Adam 0.001 97.11 80.19
DeiT Adam 0.01 66.55 63.70
DeiT Adam 0.1 53.52 54.81
DeiT SGD 0.001 91.30 88.70
DeiT SGD 0.01 93.40 89.10
DeiT SGD 0.1 85.35 80.65
DeiT Adadelta 0.001 93.25 78.75
DeiT Adadelta 0.01 84.94 80.00
DeiT Adadelta 0.1 72.44 71.65

DeiT provides better image classification results by effec-
tively leveraging its data-efficient training strategy and atten-
tion mechanism. DeiT’s incorporation of distillation tokens
further enhanced learning by providing additional supervision,
leading to a better generalization of houses completely or
partially surrounded by flood water.

E. Results of Multiscale Vision Transformer (MViT) using
CBAM for Flood Image Classification

The Multiscale Vision Transformer (MViT) demonstrated
its effectiveness in flood image classification by efficiently
capturing both global and local features across varying scales.
With its multiscale attention mechanisms and patch-based
tokenization, the model achieved high accuracy, particularly in
scenarios involving complex spatial patterns such as flooded
regions. Initially the experiments are carried out without
CBAM where the performance was slightly less and then fur-
ther the CBAM is added to MviT to improve the performance
of model.

Table VIIIshows the experiments performed for image
classification on satellite images with varying learning rates
of 0.001, 0.01, 0.1 etc., with different optimizers such as
Adam, SGD, Adadelta optimizer with 100 epoch. Among the
experiments performed without CBAM the accuracy obtained
was better with Adadelta optimizer learning rate of 0.01,
with accuracy of 71.10% whereas on applying the CBAM the
performance was improved with a learning rate of 0.001, Adam
optimizer, accuracy obtained was 85.65%.
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TABLE VIII. RESULTS OF MULTISCALE VISION TRANSFORMER (MVIT)
FOR FLOOD IMAGE CLASSIFICATION

Model Optimizer Learning
Rate

Training
Accuracy (%)

Validation
Accuracy (%)

Without CBAM

Multiscale Vision Transformer
(MViT) Adam 0.001 66.25 61.25

Multiscale Vision Transformer
(MViT) Adam 0.01 71.06 69.35

Multiscale Vision Transformer
(MViT) Adam 0.1 79.25 65.60

Multiscale Vision Transformer
(MViT) SGD 0.001 69.35 54.05

Multiscale Vision Transformer
(MViT) SGD 0.01 70.50 68.52

Multiscale Vision Transformer
(MViT) SGD 0.1 59.30 57.35

Multiscale Vision Transformer
(MViT) Adadelta 0.001 62.60 55.20

Multiscale Vision transformer
(MviT) Adadelta 0.01 75.54 71.10

Multiscale Vision Transformer
(MViT) Adadelta 0.1 73.51 67.35

With CBAM

Multiscale Vision Transformer
(MViT) Adam 0.001 88.32 85.65

Multiscale Vision Transformer
(MViT) Adam 0.01 87.65 83.50

Multiscale Vision Transformer
(MViT) Adam 0.1 85.45 81.15

Multiscale Vision Transformer
(MViT) SGD 0.001 77.31 75.89

Multiscale Vision Transformer
(MViT) SGD 0.01 85.42 79.32

Multiscale Vision Transformer
(MViT) SGD 0.1 83.19 80.15

Multiscale Vision Transformer
(MViT) Adadelta 0.001 89.22 76.24

Multiscale Vision Transformer
(MViT) Adadelta 0.01 92.77 75.25

Multiscale Vision Transformer
(MViT) Adadelta 0.1 97.51 88.35

F. Results of Vision Transformer for Flood Image Classifica-
tion

Table IX shows the experiments performed for image
classification on satellite images with varying learning rates
of 0.001, 0.01, 0.1 etc., with different optimizers such as
Adam, SGD, Adadelta optimizer. For the initial experiments
for Vision transformer without CBAM it was found using
SGD optimizer, learning rate of 0.01, obtained an accuracy
of 73.08%. The improved performance for Vision transformer,
which performed well for a learning rate of 0.01 with the
Adadelta optimizer, obtained an accuracy of 90.75% for 100
epochs with CBAM.

TABLE IX. RESULTS OF VISION TRANSFORMER FOR IMAGE
CLASSIFICATION

Model Optimizer Learning
Rate

Training
Accuracy (%)

Validation
Accuracy (%)

Without CBAM

Vision Transformer Adam 0.001 65.07 62.41
Vision Transformer Adam 0.01 67.29 66.67
Vision Transformer Adam 0.1 63.42 61.30
Vision Transformer SGD 0.001 67.40 58.97
Vision Transformer SGD 0.01 75.38 73.08
Vision Transformer SGD 0.1 77.08 71.21
Vision Transformer Adadelta 0.001 79.87 70.43
Vision Transformer Adadelta 0.01 68.75 65.69
Vision Transformer Adadelta 0.1 73.21 66.63

With CBAM

Vision Transformer Adam 0.001 92.61 84.58
Vision Transformer Adam 0.01 91.06 79.87
Vision Transformer Adam 0.1 89.73 81.21
Vision Transformer SGD 0.001 92.89 82.56
Vision Transformer SGD 0.01 93.97 80.94
Vision Transformer SGD 0.1 94.28 79.83
Vision Transformer Adadelta 0.001 93.97 80.94
Vision Transformer Adadelta 0.01 93.94 91.75
Vision Transformer Adadelta 0.1 87.62 83.00

The CBAM added to the Vision transformer (ViT) signifi-
cantly improved performance enabling the model to focus on
the most relevant features in terms of spatial and channel-wise
attention.

G. Results of Hierarchical Vision Transformer

There are a number of experiments used for flood house im-
age classification with Hierarchical Vision Transformer (HviT)
wherein Table X shows the experiments that are performed
with varying learning rates of 0.001, 0.001, 0.1 with different
optimizers such as Adam, SGD, and Adadelta optimizers;

TABLE X. RESULTS OF HIERARCHICAL VISION TRANSFORMER FOR
FLOOD IMAGE CLASSIFICATION

Model Optimizer Learning
Rate

Training
Accuracy (%)

Validation
Accuracy (%)

Without CBAM

Hiererchical Vision
Transfomer Adam 0.001 68.89 67.75

Hierarchical Vision
Transformer Adam 0.01 50.00 49.62

Hierarchical Vision
Transformer Adam 0.1 54.16 51.26

Hierarchical Vision
Transformer SGD 0.001 68.35 64.15

Hierarchical Vision
Transformer SGD 0.01 61.73 59.45

Hierarchical Vision
Transformer SGD 0.1 63.25 60.75

Hierarchical Vision
Transformer Adadelta 0.001 78.30 75.00

Hierarchical Vision
Transformer Adadelta 0.01 80.10 76.80

Hierarchical Vision
Transformer Adadelta 0.1 74.20 71.00

With CBAM

Hierarchical Vision
Transformer Adam 0.001 87.25 70.85

Hierarchical Vision
Transformer Adam 0.01 89.56 78.50

Hierarchical Vision
Transformer Adam 0.1 95.62 83.00

Hierarchical Vision
Transformer SGD 0.001 89.31 87.50

Hierarchical Vision
Transformer SGD 0.01 92.56 81.50

Hierarchical Vision
Transformer SGD 0.1 95.62 83.00

Hierarchical Vision
Transformer Adadelta 0.001 84.94 80.00

Hierarchical Vision
Transformer Adadelta 0.01 87.62 85.15

Hierarchical Vision
Transformer Adadelta 0.1 94.12 82.25

Only the best-performing results are listed. The best per-
formance for classification using HviT. Among these the
performance of image classification was found to be better
with SGD optimizer, learning rate of 0.001 obtained an ac-
curacy of 87.50%. Adding CBAM to the Hierarchical Vision
Transformer enhances the model’s ability to focus on relevant
features by refining both spatial and channel-level attention.
This results in improved feature representation, allowing the
model to better capture important flood-related patterns and
improve classification accuracy.

H. Results of SWIN Transformer using CBAM for Flood Image
Classification

Table XI shows the experiments which are carried out
with varying learning rates of 0.001, 0.01, 0.1 and different
optimizers such as Adam. SGD and Adadelta optimizer. Only
the best-performing results for image classification are listed.
Among the experiments performed, the improved results were
obtained for the Adam optimizer with a learning rate of 0.001,
obtained an overall accuracy of 85.35%.
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TABLE XI. RESULTS OF SWIN TRANSFORMER FOR FLOOD IMAGE
CLASSIFICATION

Model Optimizer Learning
Rate

Training
Accuracy (%)

Validation
Accuracy (%)

Without CBAM

Swin Transformer Adam 0.003 70.32 65.20
Swin Transformer Adam 0.02 73.84 72.04
Swin Transformer Adam 0.01 64.36 60.56
Swin Transformer SGD 0.3 70.32 65.20
Swin Transformer SGD 0.2 64.36 60.56
Swin Transformer SGD 0.001 55.36 53.39
Swin Transformer Adadelta 0.03 65.35 62.10
Swin Transformer Adadelta 0.002 67.40 58.97
Swin Transformer Adadelta 0.001 65.30 60.75

With CBAM

Swin Transformer Adam 0.3 78.60 68.35
Swin Transformer Adam 0.002 76.53 72.52
Swin Transformer Adam 0.01 74.30 70.35
Swin Transformer SGD 0.3 77.50 71.00
Swin Transformer SGD 0.2 86.12 79.30
Swin Transformer SGD 0.01 85.46 81.69
Swin Transformer Adadelta 0.003 74.08 72.05
Swin Transformer Adadelta 0.02 75.42 61.35
Swin Transformer Adadelta 0.1 78.35 71.05

The improved performance of the Swin transformer with
the CBAM layer is due to the ability of the SWIN transformer
to capture long-range dependencies with spatial regions of
image such as flooded houses i.e. completely surrounded
houses or partially surrounded houses by flood water.

I. Performance Comparison of Models for Flood Image Clas-
sification

Table XII Shows the overall comparison of various exper-
iments performed with varying learning rates of 0.001,0.01,
and 0.1, with different optimizers such as Adam, SGD, and
Adadelta optimizers, respectively it was found that the per-
formance of Vision transformer with a learning rate of 0.01,
Adadelta optimizer obtained a better accuracy of 90.75%. This
improved performance of Vision transformer with CBAM is
as a result of the ability of the Vision transformer to capture
intricate regions.

TABLE XII. SUMMARY OF PERFORMANCE COMPARISON FOR VARIOUS
MODELS

Model Optimizer Learning rate Training
Accuracy (%)

Validation
Accuracy (%)

ResNet101v2 Adam 0.0001 87.20 86.87
MobileNetv2 [29] Adam 0.1 94.23 75.00
MobileNetv2 and
DenseNet201 SGD 0.01 95.36 89.54

Sparse Swin
Transformer SGD 0.001 93.40 89.10

DeiT SGD 0.1 86.35 84.63
MViT Adam 0.0001 88.32 85.65
Hierarchical
Vision Transformer SGD 0.001 89.31 87.50

Vision transformer Adadelta 0.01 93.94 90.75
Swin transformer Adam 0.01 75.60 72.52

Sparse Swin Transformer is highly efficient for flood image
classification due to its sparse attention mechanism and hier-
archical design, enabling effective analysis of high-resolution
images with localized and global patterns. Hierarchical Vision
Transformer (HVT) captures multi-scale features, making it
suitable for identifying fine details, such as partially submerged
areas, and broader flood zones. DeiT is ideal for scenarios with
limited labeled flood image datasets, leveraging data-efficient
training and compact architecture to achieve high accuracy.
Multiscale Vision Transformer (MViT) balances computational
cost and performance with its multi-scale attention mechanism,

effectively classifying diverse flood scenarios. Hybrid CNN
models combine the strengths of multiple architectures and
integrate CBAM for refined spatial and channel-wise feature
extraction, offering robust generalization on complex flood
datasets. In contrast, individual pre-trained models, such as
ResNet and MobileNet, provide strong baseline performance
and quick adaptability, making them suitable for resource-
constrained environments or binary flood/non-flood classifi-
cation tasks. Each model brings unique strengths, enabling
tailored solutions for diverse flood image classification chal-
lenges.

V. DISCUSSION

ResNet101v2 outperformed other models due to its skip
connections, which effectively help deep networks learn resid-
ual functions, enabling better training and generalization. Hy-
brid CNN models like MobileNetV2-DenseNet201 also per-
formed well, leveraging MobileNetV2’s efficient architecture
and DenseNet201’s feature reuse capability. Transformer-based
models such as DeiT, MViT, Swin Transformer, and Hier-
archical Vision Transformer (HVT) excelled in flood image
classification by capturing long-range dependencies and multi-
scale features, making them particularly effective for satellite
imagery. Incorporating CBAM in ViT and Swin Transformer
further improved accuracy by enhancing important spatial
and channel-wise features, helping distinguish flood-specific
patterns like water levels and house surroundings. Overall,
transformer-based models, especially ViT with CBAM, outper-
formed CNNs by focusing on global features and improving
flood classification accuracy.

The effectiveness of CBAM lies in its ability to adaptively
refine feature maps, emphasizing critical flood-specific details
while suppressing irrelevant information. Traditional CNNs
process all features uniformly, which may lead to misclassi-
fication in complex flood scenarios. In contrast, models with
CBAM enhance feature discrimination by focusing on water
texture, surrounding structures, and flood extent, resulting
in better classification of houses as completely or partially
submerged. Advanced transformer-based models like Sparse
Swin Transformer and Hierarchical Vision Transformer with
CBAM further refine this process, making them superior to
conventional CNNs and hybrid models in flood image classi-
fication.

VI. CONCLUSION AND FUTURE SCOPE

This article systematically evaluates various pre-trained
CNN architectures and transformer models for satellite flood
image classification, specifically identifying houses as com-
pletely or partially surrounded by floodwater. The fine-tuning
of hyperparameters and hybridizing top-performing architec-
tures with vision transformer modules, we achieved signif-
icant improvements in classification accuracy. Among CNN
models, ResNet101V2 demonstrated the highest accuracy of
86.87%, while a hybrid CNN combining MobileNetV2 and
DenseNet201 reached 85.83%, further improving to 90.54%
with CBAM integration. Transformer-based models also per-
formed well, with Vision Transformer achieving 91.75% ac-
curacy, Sparse Swin Transformer reaching 89.10%, and DeiT
obtaining 84.63%. The key takeaway from this work is the
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integrating CBAM with hybrid CNN architectures and lever-
aging transformer-based models significantly enhances flood
classification accuracy in satellite imagery. These findings
can aid disaster response teams in prioritizing affected areas
and improving flood impact assessment through flood image
classification. Future work can focus on expanding the dataset
to improve model generalization and adapting these models
for different types of satellite flood imagery to enhance their
applicability across diverse disaster scenarios.

REFERENCES

[1] United Nations Office for Disaster Risk Reduction,
Heavy Floods Widespread Across Asia, UNDRR News,
https://www.undrr.org/news/heavy-floods-widespread-across-asia.

[2] National Disaster Management Authority (NDMA), Floods: Natural
Hazards, ndma floods, https://ndma.gov.in/Natural-Hazards/Floods.

[3] R. Colacicco, A. Refice, R. Nutricato, F. Bovenga, G. Caporusso, A.
D’Addabbo, M. La Salandra, F. P. Lovergine, D. O. Nitti, and D.
Capolongo, “High-Resolution Flood Monitoring Based on Advanced Sta-
tistical Modeling of Sentinel-1 Multi-Temporal Stacks,” Remote Sensing,
vol. 16, no. 2, p. 294, 2024. doi:https://doi.org/10.3390/rs16020294.

[4] Wu, Luyuan, Jingbo Tong, Zifa Wang, Jianhui Li, Meng Li, Hui
Li, and Yi Feng. ”Post-flood disaster damaged houses classification
based on dual-view image fusion and Concentration-Based Attention
Module.” Sustainable Cities and Society 103 (2024): 105234. doi:
https://doi.org/10.1016/j.scs.2024.105234

[5] Z. Wu, Z. Dong, K. Yang, Q. Liu, and W. Wang, “Floodwater Extraction
from UAV Orthoimagery Based on a Transformer Model,” Remote Sens.,
vol. 16, no. 21, p. 4052, 2024, doi: https://doi.org/10.3390/rs16214052

[6] H. Farhadi, A. Esmaeily, and M. Najafzadeh, “Flood monitoring by in-
tegration of remote sensing technique and multi-criteria decision making
method,” Computers & Geosciences, vol. 160, p. 105045, 2022.

[7] D. Amitrano, G. Di Martino, A. Di Simone, and P. Imperatore, “Flood
detection with SAR: A review of techniques and datasets,” Remote Sens-
ing, vol. 16, no. 4, p. 656, 2024. doi: https://doi.org/10.3390/rs16040656.

[8] K. Vashist and K. K. Singh, “Flood hazard mapping using GIS-based
AHP approach for Krishna River basin,” Hydrological Processes, vol.
38, no. 6, p. e15212, 2024. doi:https://doi.org/10.1002/hyp.15212

[9] D. Tadesse, K. V. Suryabhagavan, D. Nedaw, and B. T. Hailu, “A model-
based flood hazard mapping in Itang district of the Gambella region,
Ethiopia,” Geology, Ecology, and Landscapes, vol. 8, no. 1, pp. 8–25,
2024.doi:https://doi.org/10.1080/24749508.2021.2022833.

[10] S. S. Rana, S. A. Habib, M. N. H. Sharifee, N. Sultana, and S.
H. Rahman, “Flood risk mapping of the flood-prone Rangpur Di-
vision of Bangladesh using remote sensing and multi-criteria anal-
ysis,” Natural Hazards Research, vol. 4, no. 1, pp. 20–31, 2024,
doi:https://doi.org/10.1016/j.nhres.2023.09.012.

[11] F. Y. Dtissibe, A. A. A. Ari, H. Abboubakar, A. N. Njoya, A.
Mohamadou, and O. Thiare, “A comparative study of machine learning
and deep learning methods for flood forecasting in the Far North
Region, Cameroon,” Scientific African, vol. 23, p. e02053, 2024, doi:
https://doi.org/10.1016/j.sciaf.2023.e02053.

[12] Y. D. Jhong, C. S. Chen, B. C. Jhong, C. H. Tsai, and S. Y. Yang,
“Optimization of LSTM parameters for flash flood forecasting using
genetic algorithm,” Water Resources Management, vol. 38, no. 3, pp.
1141–1164, 2024, doi:https://doi.org/10.1007/s11269-023-03713-8.

[13] A. Matsuki and M. Hatayama, “Risk analysis of mutual influence
relationships among residents under rescue operations in long-term
flooded areas,” International Journal of Disaster Risk Reduction, vol.
100, p. 104216, 2024, doi: https://doi.org/10.1016/j.ijdrr.2023.104216.

[14] P. U. Nehete, D. S. Dharrao, P. Pise, and A. Bongale, “Object detection
and classification in human rescue operations: Deep learning strategies
for flooded environments,” International Journal of Safety & Security En-
gineering, vol. 14, no. 2, 2024, doi: https://doi.org/10.18280/ijsse.140226.

[15] T. Saleh, S. Holail, X. Xiao, and G. S. Xia, “High-precision flood
detection and mapping via multi-temporal SAR change analysis with
semantic token-based transformer,” International Journal of Applied

Earth Observation and Geoinformation, vol. 131, p. 103991, 2024, doi:
https://doi.org/10.1016/j.jag.2024.103991.

[16] I. Chamatidis, D. Istrati, and N. D. Lagaros, “Vision trans-
former for flood detection using satellite images from Sentinel-
1 and Sentinel-2,” Water, vol. 16, no. 12, p. 1670, 2024, doi:
https://doi.org/10.3390/w16121670.

[17] R. G. Franceschini, J. Liu, and S. Amin, “Damage
estimation and localization from sparse aerial imagery,”
in 2021 20th IEEE International Conference on Machine
Learning and Applications (ICMLA), pp. 128–134, IEEE, 2021,
doi:https://doi.org/10.1109/ICMLA52953.2021.00028.

[18] M. A. Islam, S. I. Rashid, N. U. I. Hossain, R. Fleming, and
A. Sokolov, “An integrated convolutional neural network and sorting
algorithm for image classification for efficient flood disaster man-
agement,” Decision Analytics Journal, vol. 7, p. 100225, 2023, doi:
https://doi.org/10.1016/j.dajour.2023.100225.

[19] J. Jackson, S. B. Yussif, R. A. Patamia, K. Sarpong, and Z. Qin,
“Flood or non-flooded: A comparative study of state-of-the-art models
for flood image classification using the FloodNet dataset with un-
certainty offset analysis,” Water, vol. 15, no. 5, p. 875, 2023, doi:
https://doi.org/10.3390/w15050875

[20] F. Pech-May, J. V. Sanchez-Hernández, L. A. López-Gómez, J. Magaña-
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