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Abstract—Agile Requirements Change Management (ARCM)
in Global Software Development (GSD) posed significant chal-
lenges due to the dynamic nature of project requirements and the
complexities of distributed team coordination. One approach used
to mitigate these challenges and ensure efficient collaboration is
the identification and prioritization of success factors. Traditional
Multi-Criteria Decision-Making methods, such as the Best-Worst
Method (BWM), had been employed successfully to prioritize
success factors. However, these methods often failed to capture
the inherent uncertainties of decision-making in a GSD. To
address this limitation, this study integrated Large Language
Models (LLMs) with the Fuzzy Best-Worst Method (FBWM)
to enhance prioritization accuracy and decision support. We
propose a model for comparing the prioritization outcomes
of human expert assessments and LLM-generated decisions to
evaluate the consistency and effectiveness of machine-generated
decisions relative to those made by human experts. The findings
indicate that the LLM-driven FBWM exhibit high reliability
in mirroring expert judgments, demonstrating the potential of
LLMs to support strategic decision-making in ARCM. This
study contributed to the evolving landscape of AI-driven project
management by providing empirical evidence of LLMs’ utility in
improving ARCM for GSD.
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I. INTRODUCTION

In the context of Global Software Development (GSD),
Agile Requirements Change Management (ARCM) depends
on strong collaboration, yet prioritizing success factors poses
notable challenges. The complexity of managing distributed
teams, different time zones, and cultural differences further
complicates the process [1], [2]. Moreover, the dynamic na-
ture of requirements in GSD projects demands continuous
reassessment of priorities and the ability to adapt quickly
to changing conditions. Frequent changes in requirements
require teams to constantly adjust their priorities in a fast-
paced environment. The geographically dispersed nature of
teams adds to the complexity, making communication and
coordination crucial but often difficult to manage effectively
[3]. Additionally, resource constraints, including limitations in
both human and technological resources, further hinder the
effective identification and prioritization of success criteria
in such a dynamic environment [4]. As a result, effective
decision-making in ARCM becomes critical to ensuring project
success, requiring sophisticated tools and techniques to manage
and prioritize requirements changes efficiently.

Furthermore, the inherent uncertainties associated with
project requirements and changing environments demand ro-
bust decision-making frameworks. Traditional methods often
fall short in addressing these complexities [5]. Thus, re-
searchers have explored the effectiveness of Multi-Criteria
Decision-Making (MCDM) approaches, such as the Analytic
Hierarchy Process (AHP) [6], the Best-Worst Method (BWM)
[7], and ELECTRE [8], to provide practical solutions for
prioritizing success factors under these challenging conditions
[9]. A prominent MCDM technique is the BWM [7], which
involves identifying the most and least critical factors and
comparing other factors relative to these extremes.

The emergence of Large Language Models (LLMs) has
opened new avenues for enhancing ARCM in GSD. LLMs,
such as OpenAI’s GPT-4 [10], have demonstrated capabilities
in understanding and generating human-like text, making them
valuable as virtual experts across various domains. Incorpo-
rating LLMs into ARCM processes can assist in automating
documentation, facilitating communication among distributed
teams, and providing insights for decision-making, thereby
addressing some of the inherent challenges in GSD.

Despite significant progress in ARCM and MCDM meth-
ods, such as BWM, challenges remained. Traditional methods
relied on expert evaluations, which were time-consuming and
prone to bias. Additionally, they struggled with uncertainty in
dynamic environments. The integration of artificial intelligence
(AI) and LLMs into ARCM was still in its early stages, with
limited empirical validation of their effectiveness in decision
support and prioritization.

To address the limitations, this study aims to enhance
prioritization accuracy and decision support by integrating
LLMs with the FBWM. Specifically, we aim to answer the
following research questions:

• How can LLMs replicate human expert decision-
making in prioritizing ARCM success factors?

• Does the integration of LLMs with FBWM improve
the consistency and reliability of prioritization out-
comes compared to traditional human-driven assess-
ments?

Thus, in this paper, we extend the application of LLMs
to ARCM within GSD by integrating LLMs with FBWM
to enhance prioritization accuracy and decision support. We
compared and validated the prioritization outcomes derived
from human expert assessments with those generated by
LLMs. The findings showed that the LLM-driven FBWM
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demonstrated high reliability in mirroring expert judgments.
The outcome of this research will offer practitioners a compre-
hensive taxonomy of success factors, prioritized effectively to
improve decision-making processes and operational efficiency,
ultimately enhancing software quality, accelerating delivery,
and fostering better collaboration in GSD.

This paper is organized as follows: Section II presents
existing studies on ARCM in GSD, the application of MCDM
techniques and LLMs, and identifies the gaps that this research
aims to address. Section III details the research methodology,
including the design and implementation of the FBWM and
LLM framework for ARCM. Section IV discusses the findings
and their implications. Finally, Section VI summarizes the key
contributions and concludes the paper.

II. RELATED WORK

Several studies have addressed the adoption of MCDM
techniques to enhance decision-making in software engineer-
ing and RCM practices [11], [12], [13], [14].

Akbar et al. [14] prioritized factors influencing RCM in
GSD by using a questionnaire survey to gather feedback from
practitioners. The authors applied the Fuzzy Analytical Hi-
erarchy Process (FAHP) to address complex decision-making
challenges. They offered a taxonomy-based prioritization of
RCM success factors and introduced the FAHP method to
help practitioners make informed decisions and enhance RCM
processes in GSD environments.

In addition, Aljuhani [9] investigated the use of MCDM
techniques, specifically BWM, within the context of ARCM.
The author proposed a model for prioritizing ARCM success
factors in the context of GSD using BWM. The BWM was
used to rank success factors based on criteria such as in-
tegration, communication, and human resources. The model
aimed to address complex decision-making problems involving
multiple criteria and alternatives. The results demonstrated
that BWM could be applied effectively to optimize decisions
and outcomes in ARCM processes, providing a structured
and efficient approach to managing competing factors in GSD
projects.

Kamal et al. [15] identified and prioritized the success fac-
tors for ARCM in the context of GSD by applying AHP to the
identified factors. The authors listed 21 success factors through
a systematic mapping study and survey. The results of the
AHP analysis revealed that the highest priority success factors
were the allocation of resources at overseas sites (including
communication, coordination, and control), a geographically
distributed change control board (CCB), RCM process im-
provement expertise, and continuous top management support.

Additionally, Batool and Inayat [16] conducted an empir-
ical investigation into RCM practices within Pakistani agile-
based software development. The authors identified 30 RCM
practices through a survey of 140 agile practitioners, employ-
ing PROMETHEE [17] as an MCDM method to rank these
practices based on perceived importance. The findings high-
lighted that proper training for employees, maintaining version
control, conducting review meetings, and using traceability
tools (e.g., Jira) were the most critical practices. The study
provided insights into the role of RCM in agile environments,

emphasizing its dependence on project characteristics such as
methodology, domain, and application type.

Several researchers have investigated the factors that affect
Requirements Engineering (RE) or RCM in GSD or proposed
frameworks to address problems in GSD [15], [18], [19],
[20], [21], [22], [3]. For example, Koulecar and Ghimire [3]
proposed the ARCM-GSD model, an extension of existing
RCM frameworks, designed to better address requirements
changes in GSD environments. The model introduced new
phases such as traceability, categorization, prioritization, and
effort estimation while also integrating agile methodologies
into the RCM process. The results demonstrated that the
model could be considered an effective framework for globally
distributed agile teams dealing with requirements changes.

Furthermore, Khan et al. [23] investigated how commu-
nication during RCM in GSD is negatively affected by three
types of distance: geographical, sociocultural, and temporal.
The authors proposed a framework to explain these effects
and validated it through a quantitative pilot study conducted in
three GSD organizations. The findings revealed that increased
physical distance, cultural differences, and time zone variations
significantly hinder communication, highlighting the need for
strategies to overcome these challenges.

Despite the promising contributions of these studies, sev-
eral limitations can be identified. Aljuhani [9] applied the
BWM to provide a systematic model for ARCM; however,
the application of BWM relies on precise and deterministic
values, which may not always capture the uncertainty inherent
in real-world decision-making. As a result, this paper aims
to address this limitation by integrating LLMs with FBWM
to improve the accuracy and reliability of the prioritization
process. Kamal et al. [15], while successfully identifying a
broad set of success factors through the AHP model, faced
challenges related to the consistency of pairwise comparisons
and the subjectivity involved in weight assignments, which
can undermine the robustness of their model in complex and
evolving GSD environments. Additionally, Batool and Inayat’s
empirical investigation using PROMETHEE to rank RCM
practices in agile contexts is insightful; however, its findings
may be constrained by the localized context of Pakistani agile
development and a static ranking framework that may not adapt
well to the dynamic nature of agile projects.

To the best of our knowledge, this is the first study to
integrate FBWM and LLMs in the context of ARCM for
GSD. This addresses a critical gap in the existing literature,
as the combination of these techniques has the potential
to significantly enhance decision-making processes in GSD
environments. While FBWM provides a structured approach
to prioritizing requirements, LLMs are capable of handling
complex, context-dependent issues. Their integration could
offer a more robust and dynamic decision-support mechanism.
Therefore, this research represents the first attempt to explore
the integration of LLMs with FBWM, offering a novel ap-
proach to improving decision-making in GSD.

III. METHODOLOGY

To address the uncertainties inherent in decision-making,
the Fuzzy Best-Worst Method (FBWM) [24] was introduced
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as an extension of the traditional BWM [7]. By incorporat-
ing fuzzy logic, FBWM enhances the flexibility and relia-
bility of the original method, making it particularly useful
in scenarios where qualitative judgments dominate. Unlike
techniques such as AHP, FBWM uses a simplified comparison
structure with fewer pairwise comparisons, enabling steadier
and more consistent judgments. FBWM leverages triangular
fuzzy numbers (TFNs) to express the relative importance of
criteria, thereby capturing the ambiguity of decision-makers’
preferences. As described in Table I, this method introduces
linguistic terms (e.g. ”Equally Important,” ”Very Important”),
which are transformed into TFNs for mathematical model-
ing. Two vectors—fuzzy Best-to-Others and fuzzy Others-to-
Worst—are critical components of the method. These vectors
reflect the decision-makers’ assessments of the best criterion’s
dominance over others and the relative inferiority of other
criteria compared to the worst criterion.

TABLE I. MEMBERSHIP FUNCTION [24]

Linguistic Terms Membership Function
Equally Important (EI) (1, 1, 1)
Weakly Important (WI) (2/3, 1, 3/2)
Fairly Important (FI) (3/2, 2, 5/2)
Very Important (VI) (5/2, 3, 7/2)
Absolutely Important (AI) (7/2, 4, 9/2)

The FBWM framework assumes that decision-makers can
reliably identify the best and worst criteria, but it also ac-
commodates the uncertainty and imprecision inherent in their
judgments. To determine the criteria weights, a constrained
nonlinear optimization problem is solved, minimizing the
maximum deviation between fuzzy pairwise comparisons and
the calculated weights. This approach ensures the consistency
and reliability of the derived fuzzy weights.

FBWM retains the core strengths of the traditional BWM
while addressing its limitations in handling subjective un-
certainty. The use of fuzzy logic makes FBWM a robust
and attractive approach across various disciplines, providing
decision-makers with a structured and trustworthy method for
identifying the most critical criteria in MCDM problems. As
a result, FBWM has gained recognition as an advanced and
practical tool for tackling complex decision-making scenarios.

This section outlines the research methodology, as depicted
in Fig. 1, which consists of seven main phases: data collec-
tion, model selection, expert input, applying FBWM, weight
calculation, and consistency check.

A. Data Collection

One important step to start with is data collection regarding
criteria and success factors that need to be identified in order
to apply FBWM. These factors have been categorized based
on a literature review, expert opinions, and empirical studies.

Building upon the foundational work of Aljuhani [9], this
research utilizes an identified hierarchy of critical success
factors (CSFs), as illustrated in Fig. 2. These factors, originally
proposed in [25], [26], and [15], categorize the CSFs under six
main criteria:

• Integration (C1)

• Communication (C2)

• Project administration (C3)

• Human resources (C4)

• Technology factors (C5)

• Time (C6)

Similarly, for alternatives, nine success factors have been
utilized, as shown in Fig. 2, which are:

• Allocation resources at GSD sites (SF1)

• Requirements traceability (SF2)

• Communication, coordination, and control (SF3)

• Geographical distributed change control block (SF4)

• Effective share of information (SF5)

• Skilled human resources (SF6)

• RCM process awareness (SF7)

• Roles and responsibilities (SF8)

• Guarantee a quick response between geographically
dispersed GSD teams (SF9)

B. Model Selection

In this research we utilize the openAI model, which is
ChatGPT-4 due to its reasoning ability and cost effectiveness.

• LLM Model: The GPT-4 was set to the following
settings:

◦ Model: gpt-4
◦ Temperature: 0.8
◦ Verbose: False

• LLM Interaction: LangChain library was used to man-
age the conversation and enable role based prompt-
ing.1

• Computational Environment: The experiments were
carried out on Google Colab, a cloud-based platform
that offers access to high-performance computing re-
sources and a Python-based environment.

C. Expert Input

In this phase, we obtained opinions from both human and
virtual experts, where human experts were provided with a
structured questionnaire to evaluate the CSFs. On the other
hand, the virtual expert (e.g. LLM) was utilized based on the
role-based prompting technique to ensure guided and context-
aware responses.

We utilized a prompt engineering technique to allow the
LLM to mimic a domain expert role, guiding its responses and
ensuring high-quality outputs. The task has been decomposed
into four main tasks, which are: label=•

• Level 1 label=–
◦ Best and Worst Criteria Selection.

1ConversationBufferMemory
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Fig. 1. Overview of the research methodology.

◦ Best-to-other and Worst-to-others criteria pair-
wise comparison.

• Level 2 label=–
◦ Success factors Best and Worst Selection.
◦ Success factors Best-to-other and Worst-to-

others pairwise comparison.

Below, a prompt template example of task 1 which is best and
worst criteria selection:

response = conversation.predict(input="""
You are a Software Engineer with deep knowledge of

development processes and the technical
challenges associated with Agile transformations
in global teams.

Your focus is on code quality, maintainability, and
team efficiency.

Your task is to analyze the given six criteria and
select one as the best and one as the worst
based on your role

The six criteria are:
1. Integration
2. Communication
3. Project Administration
4. Human Resources
5. Technology Factors
6. Time

Provide a structured response with:
1. The **best** criterion and why it is the most

important.
2. The **worst** criterion and why it is the least

important.
""")

print(response)

Listing 1: LLM prompt for selecting Best and Worst Criteria

Based on my perspective as a Software Engineer with
extensive experience in development processes
and the technicalities involved in Agile
transformations for global teams, I would rank
the given criteria as follows:

1. **Best Criterion: Technology Factors**

Technology Factors are the most significant for the
following reasons:

- Essential Tools: Technology acts as the
backbone for any software development process
. The appropriate use of technology can
simplify complex processes, increase
efficiency, and reduce the risk of errors.

- Facilitates Other Factors: A robust
technological infrastructure facilitates
better communication, integration, and even
project administration as it allows for more
efficient tracking and management of tasks.

- Code Quality and Maintainability: Technology
influences code quality and maintainability.
The right technology can make the process of
writing, testing, and maintaining code much
easier and efficient.

2. **Worst Criterion: Human Resources**

While all aspects are crucial for the success of a
project, as per my role and emphasis on
technical aspects of software development, Human
Resources is relatively less important for the
following reasons:

- Indirect Influence: Human resources have an
indirect influence on code quality,
maintainability, and team efficiency. While
crucial, this factor does not directly
address these technical aspects.

- Dependency: The effectiveness of human
resources largely depends on other factors
like communication, technology, and project
administration. Without these in place, even
the most skilled human resource may not be
able to guarantee success.

Please note, however, that this evaluation does not
downplay the significance of human resources. It
merely emphasizes the relative importance of
technology factors from a software engineer’s
perspective. The importance of these criteria
can shift based on the specific context and
requirements of a project.

Listing 2: LLM response of selecting Best and Worst Criteria

We then repeated the same process with other virtual
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experts. It is worth noting that GPT-4 excels in managing
diverse expert roles and in its ability to justify its answers by
providing a clear rationale behind its selections. This capability
ensures that GPT-4 not only meets the task requirements
accurately but also explains the basis of its choices, making it
an invaluable asset for scenarios where detailed explanations
are essential for validating the decision-making process.

D. Steps of FBWM in the Context of Agile Requirements
Change Management

In this research, we employ FBWM to prioritize CSFs for
effective ARCM in GSD. As stated by Guo et al. [24], the
adapted FBWM procedure involves the following steps:

1) Establish Decision Criteria: The first step involves
identifying a set of CSFs that influence the effec-
tiveness of ARCM in GSD which are essential for
evaluating alternatives.
C = {c1, c2, ..., cn}
This step has already been done in the data collection
phase.

2) Determine Best and Worst Criteria:
Domain experts such as project managers or team
leads are consulted to select the most crucial (Best)
criterion cB and least crucial (Worst) criterion cW
from the identified set without pairwise compar-
isons. based on their experience and understanding
of ARCM in GSD. For instance, Human Resources
(C4) might be identified as the best criterion, while
Integration (C1) might be the worst.

3) Fuzzy Pairwise Comparisons with the Best Criterion:
In this step ,each CSF is compared with the best
criterion cB using linguistic terms (e.g. ”Equally
Important,” ”Fairly Important,” ”Very Important”).
These linguistic assessments are then transformed
into triangular fuzzy numbers (TFNs) using mem-
bership function I. This step aims to capture the
inherent uncertainty and subjectivity associated with
expert judgments. The fuzzy Best-to-Others vector is
formulated as in Eq. (1):

ÃB = (ãB1, ãB2, . . . , ãBn) (1)

In the context of ARCM in GSD, (e.g. ”Communica-
tion C2”) compared to the best criterion (e.g. ”Human
Resources C4”).

• Linguistic assessment: ”Very Important”
• Transformed to TFN: (5/2, 3, 7/2)

4) Fuzzy Pairwise Comparisons with the Worst Cri-
terion: Similarly, compare all criteria to the worst
criterion cW using linguistic terms and transformed
into TFNs. The fuzzy Others-to-Worst vector is for-
mulated as in Eq. (2):

ÃW = (ã1W , ã2W , ..., ãnW ) (2)

For instance, (e.g. ”Communication C2”) compared
to Worst criterion (e.g. ” Integration C1”)

• Linguistic assessment: ”Fairly Important”
• Transformed to TFN: (3/2, 2, 5/2)

5) Determine Fuzzy Weights: This step ensures that
the weights assigned to each criterion reflect their

relative importance in the context of ARCM in
GSD. Where weights of each CSF are determined
(w̃∗

1 , w̃
∗
2 , . . . , w̃

∗
n) by solving an optimization prob-

lem, as shown in Eq. (3),(4):

min ξ̃

s.t.


∣∣∣∣ w̃B

w̃j
− ãBj

∣∣∣∣ ≤ ξ̃,∣∣∣∣ w̃j

w̃W
− ãjW

∣∣∣∣ ≤ ξ̃,

n∑
j=1

R(w̃j) = 1,

lwj ≤ mw
j ≤ uw

j ,

lwj ≥ 0,

j = 1, 2, . . . , n.

(3)

where ξ̃ = (lξ,mξ, uξ). (4)

This step has been carried out by utilizing pyDecision
library2.

6) Defuzzification (Converting to Crisp Values): The
final step, fuzzy weights w̃i can be converted to
crisp values which help in prioritizing success factors,
guiding project managers on which aspects to focus
on for improving change management in GSD. This
is done using the Graded Mean Integration Represen-
tation (GMIR) method, as formulated in Eq. (5):

R(ã) =
l + 4m+ u

6
(5)

where l,m, u are the lower, middle, and upper values
of the TFN.

E. Evaluation

This section covers the metrics used to evaluate the model
which are consistency ratio evaluation and correlation check.

1) Consistency Check: The Consistency Ratio (CR) en-
sures the reliability of fuzzy pairwise comparisons in FBWM,
crucial for ranking ARCM success factors in GSD. A compar-
ison is fully consistent if (6):

ãBj · ãjW ≈ ãBW (6)

where ãBW is the fuzzy preference relative to the best and
worst criteria.The CR is then calculated as shown in equation
(7):

CR =
ξ̃∗

Consistency Index
(7)

where low CR values indicate better consistency. If CR is high,
pairwise comparisons need to be revised to ensure the reliable
prioritization of success factors in GSD.

In this study, we set a strict threshold of 0.01 for weight
evaluations, ensuring high decision consistency, reduced sub-
jective bias, and enhanced model precision. This threshold,
implemented using the pyDecision library, required weights to
deviate no more than 0.01 from a fully consistent pairwise
comparison, ensuring optimal consistency.

2pyDecision
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Fig. 2. A list of criteria and success factors adopted

2) Correlation Check: To evaluate the similarity between
rankings generated by LLMs and human experts, we employed
four key ranking similarity measures: Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), Spearman’s Rank
Correlation (ρ), and Kendall’s Tau Correlation (τ ).

These metrics are crucial for evaluating model performance
by measuring ranking differences and correlations [27], [28],
[29]. They have been widely used in studies to analyze ranking
consistency across different evaluation models, especially in
machine learning and software effort estimation. Using these
metrics, we can effectively assess how well LLM-generated
rankings match those assigned by human experts [30], [31].

1) MAE (8): Quantifies the average absolute difference
between the rankings assigned by human experts and
the LLM-generated rankings. A lower MAE indicates
a closer alignment between the two ranking sets, as
shown in Eq. (8).

MAE =
1

N

N∑
i=1

|Human Ranki − LLM Ranki| (8)

Where:
• N is the total number of items (e.g. criteria

or CFSs) being ranked.
• i represents the index that identifies each item

in N .
• Human Ranki is the rank assigned to the i-th

item by the human experts.
• LLM Ranki is the rank assigned to the i-th

item by the LLM.
2) RMSE (9): Penalizes larger ranking discrepancies

more heavily, providing a measure of deviation be-
tween LLM and human rankings, as shown in Eq.
(9):

RMSE =

√√√√ 1

N

N∑
i=1

(Human Ranki − LLM Ranki)2 (9)

Where:

• N is the total number of items (e.g. criteria or
CSFs) being ranked.

• i represents the index that identifies each item in
N .

• Human Ranki is the rank assigned to the i-th item
by the human experts.

• LLM Ranki is the rank assigned to the i-th item
by the Large Language Model (LLM).

3) Spearman’s Rank Correlation Coefficient (ρ): Evaluates the
monotonic relationship between LLM and human rankings.
A value close to 1 indicates high correlation, as shown in
Eq. (10):

ρ = 1−
6
∑

d2i
N(N2 − 1)

(10)

where N is the total number of ranked items and di is the
difference between the ranks of the same element in the
two lists.

4) Kendall’s Tau (τ ): Measures the ordinal association be-
tween the two ranking sets, assessing the strength of
agreement, as shown in Eq. (11).

τ =
(C −D)

1
2
N(N − 1)

(11)

where N is the total number of ranked items, C represents
the number of concordant pairs and D represents the
number of discordant pairs.

IV. RESULTS

This section presents the findings derived from the eval-
uation of both human experts and LLMs to enhance pri-
oritization accuracy and decision support in ARCM. First,
we present the ranking analysis and comparison of the SF
rankings between human experts and virtual experts, followed
by the results of the consistency ratio. Then, we present the
similarity assessment results of the metrics used to understand
the differences between the results of humans and LLMs.
The results provide insights into whether LLMs can serve as
viable decision-support tools for software development teams
managing requirement changes in global projects.
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TABLE II. HUMAN VS. LLM RANKED CRITERIA

Human Results LLM Results
Rank Criteria Weight % Rank Criteria Weight %

1 C4 human resources 18.85 1 C2 communication 18.74
2 C2 communication 18.01 2 C1 integration 17.69
3 C1 integration 16.79 3 C5 technology factors 17.39
4 C3 project administration 16.01 4 C3 project administration 15.67
5 C5 technology factors 15.95 5 C6 time 15.30
6 C6 time 14.39 6 C4 human resources 15.21

TABLE III. HUMAN VS. LLM RANKED SUCCESS FACTORS

Human Results LLM Results
Rank Success Factors Weight % Rank Success Factors Weight %

1 SF2 requirements traceability 14.93 1 SF9 quick response in GSD teams 12.25
2 SF4 geographically distributed change 13.71 2 SF5 effective share of information 12.04
3 SF1 allocation of resources 13.54 3 SF2 requirements traceability 11.97
4 SF5 effective sharing of information 12.25 4 SF3 communication & coordination 11.30
5 SF9 quick response in GSD teams 11.00 5 SF4 geographical distributed change 11.07
6 SF3 communication & coordination 10.12 6 SF8 roles & responsibilities 11.13
7 SF7 RCM process awareness 8.55 7 SF1 allocation of resources 10.57
8 SF8 roles & responsibilities 8.26 8 SF7 RCM process awareness 9.97
9 SF6 skilled human resources 7.64 9 SF6 skilled human resources 9.70

A. Ranking Analysis

Our experimental setup was strategically designed to in-
corporate prompt engineering techniques and persona devel-
opment to ensure each virtual expert provided unique and
insightful criteria rankings. This approach has shown great
results with LLM-specific domain tasks [32], which, in our
case, involve ranking ARCM success factors in the GSD
context.

Table II demonstrates the aggregated results from human
experts and virtual experts on criteria. The findings from
human experts indicate that human resources (18.85%) and
communication (18.01%) emerged as the most critical crite-
ria, highlighting their significant influence on overall project
success. On the other hand, virtual experts assigned the high-
est importance to communication (18.74%) and integration
(17.69%), shifting the focus toward systematic collaboration
and seamless interoperability.

Table III compares human and LLM rankings of SF and
highlights notable similarities and differences in prioritization.

Human experts identified traceability (14.91%) and alloca-
tion of resources (13.54%) as key contributors to achieving
project objectives, emphasizing the importance of effective
resource management and maintaining a clear link between
requirements and their implementation. Conversely, virtual
experts assigned the highest priority to quick response in GSD
teams (12.25%), effective sharing of information (12.04%),
and requirements traceability (11.97%), highlighting a stronger
preference for responsiveness, knowledge distribution, and
maintaining requirement clarity. While both rankings acknowl-
edge requirements traceability as crucial, the virtual experts
place greater emphasis on responsiveness and knowledge shar-
ing, whereas human experts lean towards resource and change
management as pivotal for project success.

Overall, as shown in Fig. 3, both recognize the importance
of strategic criteria in ARCM for GSD but prioritize different
aspects. Human experts focus on context-specific elements
and the human aspect, while the LLM emphasizes systematic

Fig. 3. Side-by-side comparisons for both criteria and SF between the
Human and LLM.

aspects and effective information sharing. Integrating these
perspectives can enhance the framework for managing ARCM
in global projects.

B. Consistency Evaluation

Table IV presents the CR for both groups, which remained
significantly below the threshold of 0.01. The results demon-
strated consistent performance, with both human participants
and LLMs achieving consistency ratios below 0.01, indicating
reliable decision-making processes in ranking ARCM within
the context of GSD. Particularly, the LLM demonstrated
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consistency ratios under 0.06, emphasizing its precision in
handling complex decision-making scenarios.

Human expert evaluations yielded CR values of 0.0855
for criteria selection and 0.0592 for CSFs. In comparison,
the LLM produced values of 0.0660 and 0.0684, respectively.
These findings suggest that the LLM performs similarly to
human experts in maintaining ranking stability and making
coherent decisions in complex MCDM scenarios. The LLM’s
lower CR for criteria selection indicates that it effectively
captures ranking relationships while minimizing subjective
inconsistencies. Overall, the results highlight the LLM’s po-
tential as a decision-support tool for ARCM in GSD.

TABLE IV. CONSISTENCY RATIO OF HUMAN AND LLM ON CRITERIA
AND SUCCESS FACTORS

Metric Human LLM

Level 1 (criteria) 0.0855 0.0660
Level 1 (success factors) 0.0592 0.0684

C. LLM and Human Ranking Similarity Assessment

Table V presents the values of evaluation metrics used to
compare the rankings of LLMs and human experts. The results
highlight the nuanced differences in their performance across
the criteria and SF.

The MAE indicates a minimal average difference for
criteria (0.47), suggesting that the LLM closely aligns with
human judgments, while a higher MAE for SF (1.52) reflects
greater divergence in this area. Similarly, the RMSE, which
emphasizes larger discrepancies, remains low for criteria (0.52)
but rises to 1.68 for SF, underscoring the LLM’s reliable
performance in criteria ranking and its comparatively larger
deviations in success factor prioritization. Spearman’s (ρ)
demonstrates a perfect match (1.00) in the ranking order
of criteria and an almost perfect correlation (0.98) for SF,
highlighting the LLM’s strong ability to preserve ranking
order even when exact values differ. Kendall’s Tau (τ ) further
confirms this consistency, showing full agreement (1.00) in
criteria ranking pairs and very strong agreement (0.94) for SF.

TABLE V. COMPARISON OF LLM AND HUMAN RANKINGS USING
VARIOUS METRICS

Metric Criteria Success Factor

Mean Absolute Error (MAE) 0.47 1.53
Root Mean Squared Error (RMSE) 0.53 1.69
Spearman’s Rank Correlation (ρ) 1.00 0.98
Kendall’s Tau Correlation (τ ) 1.00 0.94

Overall, the results indicate that while LLMs can effec-
tively replicate human rankings for criteria with near-perfect
accuracy, their performance in ranking CSFs, although still
robust, demonstrates slight variations due to differences in
weight assignment and prioritization.

V. DISCUSSION

The differences between LLMs and human decision-
making come down to a few key factors. LLMs are trained
on vast amounts of data, which helps them generate responses

based on patterns they have learned. However, they lack real-
time learning and experience-based adaptation, hindering their
ability to adjust to new situations. Humans, on the other hand,
are always learning from their experiences, which helps them
adapt to unexpected circumstances [33], [34].

LLMs exhibit a capability for maintaining logical consis-
tency in structured tasks; however, they may struggle with un-
derstanding context because they rely on statistical correlations
rather than true comprehension. Humans have intuition and
contextual awareness, which help them navigate ambiguous
situations and make decisions based on the specifics of each
scenario [35], [36].

Another difference is that LLMs can reflect biases from
their training data, which can lead to outputs that fail to align
with human ethical standards. Humans, while also prone to
bias, use moral reasoning and ethical considerations to make
decisions that reflect societal norms and values [37], [38], [39].

These differences show that LLMs and human decision-
making complement each other. A hybrid approach can be
utilized where LLMs provide consistency and efficiency in
data-driven tasks, and humans bring depth in ethical reasoning
and contextual understanding. By using this hybrid approach,
we can combine computational precision with human insight
to improve decision-making processes [40], [41].

VI. CONCLUSION

This study explored the integration of LLMs with FBWM
to enhance decision-making in ARCM within GSD. The find-
ings reveal that LLMs can effectively replicate expert decision-
making, producing consistent and reliable prioritization of
CSFs. The results highlight the significance of CSFs, such
as communication and human resources, in shaping ARCM
success. By leveraging LLMs, this research can assist prac-
titioners and decision-makers in enhancing decision-making
processes and operational efficiency, ultimately improving
software quality, accelerating delivery, and fostering better
collaboration in GSD. The study underscores the potential of
AI-driven methodologies in optimizing software development
practices and lays the foundation for future research in integrat-
ing advanced AI models with decision-support frameworks.
However, the study has some limitations, including scalability
to larger datasets and resource constraints, such as limited
access to computational tools, which hinder the broader appli-
cability of the proposed model. Future work should focus on
integrating domain-specific models and testing the scalability
of FBWM with larger datasets to validate its robustness.
Additionally, exploring lightweight computational tools can
enhance accessibility for resource-constrained organizations.
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