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Abstract—Detecting wheat diseases and pests, particularly
those characterized by small targets amidst complex background
interference, presents a significant challenge in agricultural re-
search. To address this issue and achieve precise and efficient
detection, we propose an enhanced version of YOLOv8, termed
MGT-YOLO, which incorporates multi-scale edge enhancement
and visual remote dependency mechanisms. Our methodology
begins with the creation of a comprehensive dataset, WheatData,
comprising 2393 high-resolution images capturing various wheat
diseases and pests across different growth stages in diverse
agricultural settings. To improve the detection of small targets, we
implemented a multi-scale edge amplification technique within the
backbone network of YOLOv8, enhancing its ability to capture
minute details of wheat diseases and pests. Furthermore, we
introduced the C2f GlobalContext module in the neck network,
which integrates global contextual relationships and facilitates
the fusion of features from small-sized objects by leveraging
remote dependencies in visual imagery. Additionally, we incor-
porated a Vision Transformer module into the neck network
to enhance the processing efficiency of small-scale disease and
pest features. The proposed MGT-YOLO network was rigorously
evaluated on the WheatData dataset. The results demonstrated
significant improvements, with mAP@0.5 values of 90.0% for
powdery mildew and 65.5% for smut disease, surpassing the
baseline YOLOv8 by 5.3% and 6.8%, respectively. The overall
mAP@0.5 reached 89.5%, representing a 2.0% improvement
over YOLOv8 and outperforming other state-of-the-art detection
methods. These findings suggest that MGT-YOLO is a promising
solution for real-time detection of agricultural diseases and pests,
offering enhanced accuracy and efficiency in complex agricultural
environments.
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I. INTRODUCTION

Detecting pests and diseases in wheat is a vital component
of agricultural production, playing a vital role in ensuring
wheat quality. During the cultivation of wheat, factors such
as climate and geographical conditions can lead to varying
levels of interference from diseases and pests [1]. These
issues not only compromise wheat quality but also disrupt
normal agricultural operations [2], [3]. Accurate and timely
identification of these diseases and pests during cultivation can
mitigate potential problems to a significant extent [4], [5].
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In the field of computer vision-based object detection,
two primary architectural paradigms have emerged: two-stage
and single-stage detection models. Representative two-stage
detectors including RCNN [6], Fast-RCNN [7], and Faster-
RCNN [8] are characterized by their hierarchical processing
architecture that achieves superior localization precision and
detection accuracy. However, these models suffer from inherent
computational complexity due to their region proposal genera-
tion mechanism, resulting in suboptimal inference speeds that
limit their practical applicability in real-time agricultural dis-
ease and pest monitoring scenarios. By contrast, single-stage
detection frameworks represented by SSD [9] and the YOLO
series [10], [11] employ end-to-end detection pipelines that
directly predict bounding boxes and class probabilities. This
architectural simplification enables these models to achieve a
favorable trade-off between detection performance and com-
putational efficiency, making them particularly suitable for
real-time agricultural applications. Despite significant advance-
ments in detection accuracy through successive iterations,
current YOLO variants still exhibit limitations in recognizing
small-scale pathogenic features under complex field conditions
with cluttered backgrounds [12], [13], an inherent challenge
exacerbated by the scale variations and occlusion patterns
typical in agricultural environments.

To tackle the inherent challenges of YOLO architectures in
capturing and integrating fine-grained features across backbone
and neck network hierarchies, this research presents an inno-
vative Multi-scale Edge Augmentation Framework (MEAM)
specifically tailored for improved detection of minute wheat
disease patterns and pest characteristics. This architecture-
level enhancement strategically reinforces feature representa-
tion through multi-level edge preservation operations. Addi-
tionally, a feature fusion module named C2f GlobalContext
is introduced to capture global contextual relationships and
strengthen the fusion of small-object features by leveraging
long-range dependencies in visual images. Furthermore, the
efficiency advantages of the Vision Transformer network are
utilized to improve the processing of small-scale disease and
pest features.

Thus, this study presents the MGT-YOLO network, which
aims to achieve precise and rapid detection of wheat diseases
and pests, addressing the challenges of small-object detection
in agricultural applications.

As summarized above, the key contributions can be de-
scribed as follows:
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1. Proposed the MGT-YOLO approach for the detection of
small-scale wheat diseases and pests. This method achieves
higher precision and lightweight performance compared to
traditional models.

2. Designed and integrated the Multi-scale Edge Augmen-
tation Mechanism (MEAM) into the backbone network to
enhance the extraction of fine-grained features, such as wheat
disease and pest characteristics, from images.

3. Developed the C2f GlobalContext feature fusion mod-
ule, which incorporates global contextual relationships to
strengthen the fusion of features for small-scale diseases and
pests in images. This module enhances feature integration by
capturing long-range dependencies in visual images. Addition-
ally, the Vision Transformer module was introduced into the
neck network to improve the efficiency of processing small-
scale disease and pest features.

The structure of this paper is organized as follows: First,
we introduce the related work of computer vision detection
technology in agricultural pest and disease detection. Then,
we present the improvements made based on the YOLOv8 al-
gorithm in feature extraction and feature fusion, as well as the
overall workflow of the proposed algorithm framework, MGT-
YOLO. Next, we describe the experimental work on wheat pest
and disease detection, including the self-constructed dataset
WheatData, the evaluation metrics used in the experiments, a
comparison of the proposed MGT-YOLO algorithm with other
state-of-the-art algorithms, and the results of ablation studies.
Finally, we summarize the experimental findings and provide
an outlook for future research.

II. RELATED WORK

The application prospects of computer vision technology
in the agricultural field are vast [14], [15]. Quan [16] and
colleagues employed an improved Faster R-CNN model to
detect maize diseases in complex field environments. As a two-
stage detection framework, Faster R-CNN exhibits inherent
computational latency that fails to satisfy the stringent real-
time processing demands characteristic of modern agricul-
tural robotics and automated crop monitoring systems. This
limitation primarily stems from its region proposal network
architecture and sequential feature processing pipeline, which
significantly constrain inference speed in field deployment
scenarios. Liangquan [17] and Jizhong Deng [18] used an
improved YOLOv7 model to detect rice pests and diseases by
replacing the YOLO backbone with lightweight networks such
as MobileNetV3 or GhostNet. While this approach improved
real-time detection performance, it did not effectively enhance
detection accuracy when the base model already satisfied real-
time requirements. Similarly, Yinkai [19] implemented a self-
attention mechanism in the YOLOv8 backbone to detect tea
pests and diseases. Although this method improved feature
extraction capabilities, it introduced a significant number of
parameters and required extensive exploration to determine the
optimal placement of the attention mechanism.

Wang [20] integrated the Global Attention Mechanism
(GAM) into the C2f structure of YOLOv8’s backbone network,
enabling the model to better comprehend the overall semantics
of the image. Zhang [21] designed the C2f ODConv module,
introducing it alongside ODConv into YOLOv8’s backbone

network, enhancing feature extraction capabilities while reduc-
ing parameter redundancy through a multi-dimensional atten-
tion mechanism. Qu [22] replaced the convolutional modules
in YOLOv8’s backbone network with spatial depth convolu-
tions. Zhen [23] further strengthened YOLOv8’s feature rep-
resentation capabilities by introducing the Multi-Scale Feature
Attention Module (MSFAM). Luo [24] enhanced YOLOv8’s
ability to capture fine details and its detection accuracy
by incorporating Channel-Priority Attention Dynamic Snake
Convolution and a Dynamic Small Object Detection Head
Layer (DyHead-SODL). Although these efforts have enhanced
the feature extraction capability of the backbone network to
some extent, they have significantly increased the number of
parameters in the backbone network. Wang [25] enhanced the
feature extraction capability of the base model by incorporating
their self-designed PotentNet network into the backbone of
YOLOv8. However, this strategy did not account for long-
range dependencies between different features, indicating that
there remains significant potential for improving the base
model’s feature extraction ability.

Zhengyu Zhang [26] and colleagues incorporated Coordi-
nate Attention (CA) and lightweight GSConv into YOLOv8
to minimize the model’s parameters and enhance feature
extraction in the backbone to some extent. However, during
the prediction stage, the performance relied heavily on the
feature fusion capability of the neck network. As a result, the
method was insufficient for detecting small-scale agricultural
pests and diseases. Bai Shao [27] and colleagues enhanced
the feature fusion capabilities of YOLOv8 by introducing
a multi-head attention mechanism for tea pest and disease
detection. While this approach improved feature integration,
it significantly increased computational demands and model
parameter count [28], making it less suitable for resource-
constrained inference devices. Therefore, improving feature
fusion capabilities while maintaining model lightweightness
remains a critical consideration [29].

From the above works, it is evident that convolutional
neural network-based teams often focus on enhancing the
lightweight design of backbones and improving feature ex-
traction for crop pest and disease detection tasks. However,
relatively little attention has been given to optimizing the fu-
sion of extracted features. Additionally, the lightweight design
of feature fusion networks has not been sufficiently addressed.

To systematically address these challenges, this study intro-
duces a comprehensive algorithmic refinement framework for
YOLO-series architectures, focusing on optimizing the model’s
capability in multi-scale feature extraction and hierarchical fu-
sion mechanisms specifically for small-sized agricultural pest
and disease patterns. The proposed improvements span both
backbone feature representation learning and neck network
feature integration modules, while maintaining computational
efficiency through lightweight structural optimizations.

In terms of base model selection, YOLOv8 [30] is an
algorithm in the field of object detection that excels in both
lightweight design and detection performance. However, based
on the analysis of related improvements to YOLOv8, it is
evident that YOLOv8 still has several shortcomings, such as
room for enhancement in feature extraction and feature fusion.
Therefore, this paper chooses YOLOv8 as the base model and
explores improvements in feature extraction and feature fusion.
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III. METHODS

A. Multi-Scale Edge Amplification Module

The backbone of the YOLOv8 performs layer-by-layer
feature extraction through multiple convolutional layers. How-
ever, when dealing with multi-scale small-object features, it
still suffers from insufficient feature extraction capabilities
[31]. Inspired by the initial block design of DEM [32], we
made modifications to adapt it for real-time detection tasks,
enhancing the ability to capture features across multiple scales.
This enhanced module is referred to as the Multi-scale Edge
Augmentation Mechanism (MEAM).

The structure of MEAM, shown in Fig. 1, comprises
an AP (Average Pooling) layer with a 3*3 kernel, a Conv
(Convolution) layer with a 1*1 kernel, and an EE (Edge
Enhancer) module. The EE module itself is composed of an
AP layer with a 3*3 kernel and a Conv layer with a 1×1 kernel.
By leveraging residual connections, the EE module performs
deep extraction of input features to capture object edges in the
feature maps.

Fig. 1. Schematic diagram of the MEAM module structure.

When input features are processed through the MEAM
module, the following steps are performed: First, the input is
subjected to a 1*1 convolution operation to produce the feature
map Fe

0. Subsequently, Fe
1, Fe

2, and Fe
3 are obtained through

three successive average pooling and convolution operations.
These features are then passed through the EE module to
yield enhanced features Fee

1 , Fee
2 , and Fee

3 . The enhanced
features, together with Fe0, are concatenated along the channel
dimension. Finally, two additional convolution operations are
applied to the concatenated features to produce Fme, which is
passed to the neck network for subsequent computations.

The mathematical operations involved in processing feature
information through MEAM are described in Eq. (1) to (6). In
these equations, ϕ1∗1 represents convolution operations using
a Conv layer with a 1*1 kernel, and AP represents average
pooling operations with a 3*3 kernel. Flocal represents the
input feature.

Fe
0 = ϕ1∗1(F

local) (1)

Fe
t+1 = AP (ϕ′1×1(F

e
t )), (0 ≤ t ≤ 2) (2)

Fee
l = ψ(Fe

l ), (1 ≤ l ≤ 3) (3)

Fedge
l = Fe

l −AP (Fe
l ) (4)

Fee
l = ϕ′1×1(F

edge
l ) + Fe

l (5)

Fme = ϕ1×1([F
e
0,F

ee
1 ,F

ee
2 ,F

ee
3 ]) (6)

B. C2f GlobalContext for Capturing Visual Remote Depen-
dencies

The neck architecture in YOLOv8 demonstrates suboptimal
performance in handling multi-scale feature flows, particularly
for capturing discriminative patterns of small-object disease
manifestations and pest morphological characteristics. This
limitation leads to compromised feature fusion efficacy in
cross-scale aggregation. To address this critical bottleneck, we
propose the integration of a Global Context (GC) mechanism,
an attention-based architectural enhancement that establishes
long-range dependency modeling across hierarchical feature
representations [33]. This strategic modification enables con-
textual reasoning over global receptive fields while preserving
local structural details essential for fine-grained pest and
disease recognition. A new module, C2f GlobalContext, incor-
porating the GC mechanism, was designed to replace specific
layers of the network’s original C2f module.

The structure of the GC mechanism, shown in Fig. 2,
consists of a convolutional layer (Conv) with a 1*1 kernel,
a Softmax layer, and a Layer Normalization (LayerNorm)
layer. The processing flow of the GC mechanism is described
in Eq. (8). When input features x are passed into the GC
mechanism, they first undergo Wk processing in the Con-
textModeling module, where features are aggregated using a
weighted average with weights αj (calculated as shown in
Eq. (7)). This step groups the features from all positions to
generate global context features v1. The v1 features are then
processed through the Transform layer, which includes Wv1
convolution, LayerNorm, and Wv2 convolution in sequence.
These operations capture channel dependencies to produce
refined global context features v2. Finally, the global context
features v2 are aggregated with the input features x.

αj =
eWkxj∑
m eWkxm

(7)

z = x+Wv2ReLU

LN

Wv1

Np∑
j=1

eWkxj∑Np

m=1 e
Wkxm

xj


(8)

By capturing long-range visual dependencies, this approach
enriches the gradient flow of small-object features, signifi-
cantly enhancing the feature fusion capability of the neck
network.

As illustrated in Fig. 3, the C2f GlobalContext module is
composed primarily of CBS units and GCBottleneck units.
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Fig. 2. Schematic diagram of the GlobalContext network structure.

Each GCBottleneck unit integrates a CBS unit with a Glob-
alContext unit, enabling the module to extract features from
the input data across multiple hierarchical levels and varying
degrees of abstraction. These features are subsequently fused
through element-wise addition, resulting in a comprehensive
and robust integration.

Fig. 3. Structure diagram of C2f GlobalContext module.

To demonstrate the enhanced feature fusion capacity of
the C2f GlobalContext module, we conducted a controlled

comparison of activation patterns between the baseline C2f
module and our proposed architecture using the Wheat-Data
dataset. Fig. 4 systematically presents this analysis: panel (a)
displays object detection outputs from both architectures, while
panels (b) and (c) contrast intermediate feature representations
extracted from equivalent network depths in the C2f and
C2f GlobalContext models respectively.

Comparative analysis of Fig. 4 reveals that the network
incorporating the C2f GlobalContext module achieves marked
improvement in feature recognition accuracy. Specifically, this
enhanced architecture exhibits enhanced precision in localiz-
ing wheat powdery mildew-related features while effectively
suppresses extraneous background interference. Conversely,
the baseline C2f module not only fails to accurately de-
lineate disease-specific characteristics but also demonstrates
pronounced susceptibility to background artifacts, as evidenced
by its inappropriate attention allocation to non-pathological
regions.

Fig. 4. Feature visualization comparison of C2f and C2f GlobalContext
modules on the WheatData.

C. Architectural Design of the MGT-YOLO

The architectural configuration of the MGT-YOLO network
is visually presented in Fig. 5. Our methodology extends the
YOLOv8 framework through three strategic enhancements:
Implementation of a lightweight Multi-scale Enhancement
Attention Module (MEAM) at the backbone’s terminal layer,
specifically engineered to amplify discriminative feature rep-
resentation through cross-channel interactions; Substitution of
the standard C2f module with a Global Context-aware C2f
variant (C2f GlobalContext) in the neck network, enhancing
multi-scale feature fusion through spatial-channel contextual
modeling; Integration of a Vision Transformer (ViT) layer
[34] with adaptive window attention, strategically positioned
in the neck architecture to address the critical challenge of
capturing long-range dependencies among fragmented pest and
disease patterns, particularly beneficial for small-object feature
preservation.

The operational pipeline of MGT-YOLO for detecting
wheat pest and disease features in digital images comprises
two principal phases. During the preprocessing stage, input
images undergo dimension standardization through bilinear
interpolation to achieve a fixed resolution of 640*640 pixels.
Subsequently, the architecture’s backbone network employs
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a hierarchical feature extraction mechanism, utilizing convo-
lutional blocks to progressively capture multi-scale feature
representations - from low-level texture patterns to high-level
semantic information - through depthwise separable convolu-
tion operations. Following the feature extraction phase, the
backbone network sequentially delivers multi-level feature
representations (low, medium, and high-resolution) to the
neck network for hierarchical feature fusion. Through bidirec-
tional cross-scale connections, the neck network systematically
propagates these enhanced feature maps across three distinct
detection scales to the head network. Ultimately, the detection
head generates precise bounding box coordinates and category
probability distributions by simultaneously analyzing the com-
plementary spatial and semantic information contained in the
multi-scale feature maps.

Fig. 5. Structure of MGT-YOLO network.

The head network performs dual-task optimization by si-
multaneously computing classification and localization losses,
which are subsequently minimized through the Stochastic
Gradient Descent (SGD) optimizer. The classification branch
employs Binary Cross-Entropy (BCE) to quantify prediction
errors, while the localization module adopts the Complete
Intersection over Union (CIoU ) Loss [35] for bounding box
regression, as formalized in Eq. (9). Here, b and bgt denote
the geometric center coordinates of the predicted and ground-
truth bounding boxes, respectively. p2(b, bgt) computes the
Euclidean distance between the two centers, and the Intersec-
tion over Union (IoU ) measures the intersection-over-union
ratio between the predicted and ground-truth boxes. The model
incorporates two critical parameters: the weight coefficient α
and the consistency coefficient v. The IoU metric is mathe-
matically formulated in Eq. (10), where A and B denote the
predicted bounding box and ground-truth box, respectively.
This metric quantifies spatial overlap by calculating the ratio
between the area of intersection and the area of union of the
two boxes. The derivation of coefficients α and v follows
distinct computational procedures as specified in Eq. (11) and
(12), respectively. In Eq. (12), w,h and wgt,hgt represent the
width and height parameters of the predicted and ground-truth
boxes, respectively.

LCIoU = 1− IoU +
ρ2(b, bgt)

c2
+ αv (9)

IoU =
|A ∩B|
|A ∪B|

(10)

α =
v

(1− loU) + v
(11)

v =
4

π2
(arctan

wgt

hgt
− arctan

w

h
)2 (12)

IV. EXPERIMENT

The study utilizes MGT-YOLO for training, validation, and
testing on the Wheat-Data dataset. Additionally, the detection
performance of MGT-YOLO is compared with models from
related studies, followed by a comprehensive data analysis.

A. Dataset Specifications and Experimental Configuration

The study focuses on a custom-built wheat pest and disease
detection dataset, Wheat-Data, which comprises 2393 images
of six types of wheat pests and diseases. An 8:1:1 split ratio is
implemented for the dataset allocation across training, valida-
tion, and test subsets respectively. The images were manually
captured at different stages of wheat growth and include six
typical characteristics of wheat pests and diseases: baifen (Bf,
powdery mildew), chimei (Cm, fusarium head blight), heisui
(Hs, smut disease), yeman (Ym, wheat mite disease), qianying
(Qy, leaf miner disease), and yachong (Yc, aphid disease). The
shapes of these six characteristic features are illustrated in Fig.
6. These pests and diseases are all common in wheat, and
training models capable of recognizing these pest and disease
characteristics is of significant importance for promotion on
farms.

Fig. 6. Annotated representative features in Wheat-Data: (a) baifen, (b)
chimei, (c) heisui, (d) yeman, (e) qianying, and (f) yachong.

In the experimental setup of this study, the operating system
used is Linux, with an i9-14900HX CPU and an NVIDIA
GeForce RTX 4090 GPU. The experiments are conducted us-
ing the PyTorch-2.4.0 deep learning framework, with CUDA-
12.4 utilized for training acceleration.
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B. Assessment Criteria

To comprehensively evaluate the model’s accuracy, this
study employs classic validation metrics such as precision,
recall, average precision (AP), and mean average precision
(mAP), with mAP as the primary evaluation metric. As shown
in Eq. (13) to (16), the definitions of these metrics are as
follows:

Precision =
TP

(TP + FP )
(13)

Recall =
TP

(TP + FN)
(14)

AP =

∫ 1

0

p(r)dr (15)

mAP =
1

n

n∑
i=1

APi (16)

In classification evaluation metrics, the fundamental com-
ponents are defined as follows: True Positives (TP ) denote
correct positive predictions, False Positives (FP ) indicate
erroneous positive classifications, and False Negatives (FN )
represent undetected positive instances. The precision-recall
relationship is mathematically characterized by the function
p(r), where n signifies the sample quantity within the i-th
category. The detection performance for individual classes is
quantified through Average Precision (AP ), with APi specif-
ically denoting the computed average precision for the i-th
category.

To assess the model’s computational efficiency and real-
time capabilities, this study employs the Frames Per Second
(FPS) metric as a key performance indicator. Specifically, FPS
quantifies the maximum throughput achievable by the system
by measuring how many image frames can be processed con-
secutively within one second. From an agricultural application
perspective, higher FPS values directly correlate with enhanced
real-time detection capacity for wheat pathogen symptoms
and pest manifestations, which is particularly crucial for field
deployment scenarios requiring instant diagnosis.

C. Results and Discussion

1) Comparative Analysis of Model Performance: To sys-
tematically assess the effectiveness of the proposed MGT-
YOLO framework, this investigation conducts a comparative
evaluation between the baseline YOLOv8 architecture and our
enhanced MGT-YOLO implementation using the WheatData
benchmark dataset. The quantitative evaluation results, includ-
ing critical performance metrics of precision (P), recall (R),
and mean average precision (mAP@0.5), have been compre-
hensively compiled in Table I for comparative analysis.

The comparative analysis presented in Table I reveals
substantial performance enhancements achieved by the MGT-
YOLO detection framework on the WheatData benchmark.
Our architecture demonstrates a 2.0% absolute improvement
in mean average precision (mAP@0.5) over the baseline
YOLOv8 implementation, accompanied by consistent preci-
sion (P) gains across all feature categories. Particularly note-
worthy are the 5.3% and 6.8% relative mAP@0.5 increments

TABLE I. DETECTION PERFORMANCE OF YOLOV8 AND MGT-YOLO ON
WHEATDATA

Dataset Methods Detect Type P% R% mAP%

Wheat-Data

YOLOv8

Bf 75.1 80.6 84.7
Ch 81.2 81.5 85.0
Hs 62.4 50.7 58.7
Ym 94.7 98.9 98.7
Qy 95.9 99.6 99.2
Yc 89.8 99.2 98.7

MGT-YOLO

Bf 83.4 82.2 90.0(^5.3)
Ch 81.6 79.6 84.7(_0.3)
Hs 68.2 51.8 65.5(^6.8)
Ym 94.9 99.5 98.8(^0.1)
Qy 97.0 99.3 99.4(^0.2)
Yc 89.8 99.2 98.5(_0.2)

observed for the Bf and Hs detection tasks, respectively. These
quantitative metrics substantiate the framework’s superior effi-
cacy in precisely identifying phytopathological characteristics
associated with wheat crop infestations.

The integration of our novel Multi-scale Enhancement At-
tention Mechanism (MEAM) into the backbone network archi-
tecture significantly augments feature extraction capabilities.
Through systematic architectural innovation, the redesigned
C2f GlobalContext module in the neck network incorporates
global context-aware operators that explicitly model cross-
regional contextual dependencies, thereby effectively capturing
long-range spatial-semantic relationships within agronomic
visual data.

A comparative analysis was conducted to evaluate the
small-object detection performance between the proposed
MGT-YOLO framework and the baseline YOLOv8 model.
We constructed precision-recall (PR) curves from experimental
data. The PR curves for both methods are shown in Fig. 7,
where Fig. 7(a) represents the PR curve of the baseline model,
and Fig. 7(b) represents the PR curve of the MGT-YOLO
model.The results demonstrate that MGT-YOLO achieves a
larger area under the PR curve compared to its baseline coun-
terpart.The overall mAP@0.5 achieved by the MGT-YOLO
model on the WheatData dataset is 89.5%, surpassing the
baseline model by 2.0 percentage points. It is worth noting
that the Bf, Hs, and Ch features primarily appear as small
objects. From the PR curve plots, it can be observed that the
PR curve area for detecting these three small-object features
is significantly larger for the MGT-YOLO model compared to
YOLOv8.

To evaluate the performance of the MGT-YOLO model for
each feature in the WheatData dataset, the study compares the
mAP@0.5 values of several classical models on wheat pest and
disease features within this dataset. The results are presented
in Tables II and III.

Compared to other models, the MGT-YOLO model demon-
strates superior overall detection accuracy as well as the best
accuracy for each individual feature. This advantage is partic-
ularly evident for the Bf, Hs, and Ch wheat disease features,
which are characterized by their small-object distribution. The
enhanced performance can be attributed to the integration of
the MEAM module, which further extracts high-level features
of wheat diseases, and the C2f GlobalContext module in the
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Fig. 7. The PR curves for YOLOv8 and MGT-YOLO on the WheatData. (a)
The PR curves of YOLOv8 on the WheatData dataset. (b) The PR curves of

MGT-YOLO on the WheatData dataset.

TABLE II. THE DETECTION RESULTS ON WHEAT-DATA DATASET

Dataset Methods mAP@0.5/% GFLOPS Parameters FPS

Wheat-Data

Faster R-CNN 84.2 83.4 51.3 M 34.0
SSD 83.4 30.6 34.5 M 53.3

Transformer 85.2 126.2 50.5 M 46
RetinaNet [36] 73.2 74.5 46.4 M 38.7
YOLOX [37] 80.3 26.8 9.9 M 79.2
YOLOv7 [38] 85.9 103.2 46.5 M 50.7

YOLOv7-tiny [38] 82.6 13.1 7.0 M 96.2
YOLOv8 87.5 8.1 4.6 M 179.2

MSC-DNet [39] 88.1 78.6 44.1 M 90.0
BHC-YOLO [27] 88.3 9.6 10.6 M 140.5

MGT-YOLO 89.5 9.2 5.9 M 161.4

neck network. By capturing long-range dependencies in visual
data, the C2f GlobalContext module achieves stronger feature
flow and facilitates more effective feature fusion.

As evidenced by the quantitative benchmarking in Table
III, we conducted a visual comparative analysis between
MGT-YOLO and selected single-stage detection networks that
demonstrated optimal trade-offs in overall accuracy, model

Fig. 8. Performance of MGT-YOLO and other comparative models on the
Wheat-Data.

TABLE III. DETECTION RESULTS FOR EACH TYPE ON THE WHEATDATA

Types YOLOv8 Faster R-CNN RDD-YOLO DsP-YOLO MGT-YOLO

Baifen 84.7 83.6 85.2 85.0 90.0
Chimei 85.0 79.3 84.6 85.2 84.7
Heisui 58.7 57.6 55.5 58.5 65.5
Yeman 98.7 95.6 98.6 98.7 98.8
Qianying 99.2 95.3 98.5 98.9 99.4
Yachong 98.7 94.3 96.3 98.7 98.5
Overall mAP 87.5 84.2 88.1 88.3 89.5

compactness, and inference efficiency suitable for edge com-
puting deployment. Fig. 8 provides a comprehensive visu-
alization of detection outcomes across these models on the
WheatData dataset. As depicted in the comparative results,
MGT-YOLO exhibits markedly superior performance in cap-
turing fine-grained pest and disease characteristics, particularly
demonstrating enhanced detection precision for small-scale
pathological features when contrasted with benchmark models.

As shown in Fig. 9, the confusion matrix of the proposed
MGT-YOLO on the WheatData dataset is presented. From
the analysis of Fig. 9, it can be observed that the model
performs well in most categories, especially with minimal
misclassification between the “qianying” and “wenku” classes.
However, there is significant confusion between the “heisui”
and “chimei” classes, with a relatively high misclassification
rate between the two. This is due to the fact that both diseases
occur in the spike part of the wheat. Despite this, the MGT-
YOLO framework shows significant improvement compared
to the baseline model. The misclassification rate in other
categories is low, demonstrating good recognition capabilities.

As shown in Fig. 10, this is the performance result of
MGT-YOLO on the WheatData dataset. In the figure, the top-
left corner displays a bar chart where the x-axis represents
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Fig. 9. Confusion matrix of the proposed MGT-YOLO on the WheatData
dataset.

different categories such as baifen, chimei, heisui, and the y-
axis represents the number of instances for each category. From
the chart, it can be seen that the ”yeman” and ”yachong” cat-
egories have the highest number of instances, while ”baifen,”
”chimei,” and ”heisui” have relatively fewer instances. The box
plot in the top-right corner shows the distribution of bounding
box sizes for the MGT-YOLO model across different target
categories. The scatter plot in the bottom-left corner illustrates
the distribution of the x and y variables. The x-axis represents
the position of the center of the bounding box along the image
width, usually normalized with a range of [0, 1], while the
y-axis represents the position of the center of the bounding
box along the image height, also typically normalized with
a range of [0, 1]. This plot demonstrates the distribution of
the centers of different detection boxes in the image. The
denser the scatter points, the more concentrated the bounding
boxes are in that area. This plot shows that the data points are
clustered around the central region, where the targets tend to
appear more frequently. The scatter plot in the bottom-right
corner shows the relationship between the height and width
of the bounding boxes. The points are scattered, indicating
a certain correlation between the height and width variables,
with the density of points being mainly concentrated towards
the lower part of the graph.

Fig. 11 shows the relationship between the center position
and size of the MGT-YOLO detection boxes. Here, x and
y represent the normalized coordinates of the center of the
target box, and the histogram shows that the centers of the
target boxes are generally concentrated in the central region of
the image. Width and height represent the normalized width
and height of the target boxes, and their distribution is more
dispersed, indicating significant variation in the size of the
target boxes. The scatter plot demonstrates the correlation
between the variables, with x and y showing a certain concen-
tration trend, while width and height exhibit a strong positive
correlation.

2) Ablation Study: To systematically evaluate the in-
dividual and combined contributions of the MEAM,

Fig. 10. Data analysis of the proposed MGT-YOLO on the Wheat-Data
dataset. (a) Number of instances for different categories; (b) Distribution of

bounding box sizes for different object categories; (c) Distribution of the
center points of bounding boxes in the image; (d) Relationship between the

height and width of the bounding boxes.

C2f GlobalContext, and Vision Transformer modules to model
performance, we performed a series of ablation studies on
the WheatData dataset. As detailed in Table IV, the baseline
YOLOv8n architecture achieves a mean average precision of
87.5% at IoU threshold 0.5 (mAP@0.5), while maintaining
computational efficiency with 5.0M parameters and sustaining
real-time inference speed at 179.2 frames per second. This
experimental framework establishes a quantitative foundation
for assessing the incremental improvements brought by each
architectural enhancement.

TABLE IV. THE ABLATION EXPERIMENTS ON WHEATDATA

Methods mAP@0.5/% Parameters FPS

Baseline 87.5 5.0 M 179.2
+ MEAM 88.3 5.5 M 153.2
+ C2f GlobalContext 88.8 5.3 M 153.5
+ Vision Transformer 88.3 4.9 M 181.0
+ MEAM + C2f GlobalContext 89.0 5.6 M 178.8
+ MEAM + Vision Transformer 88.3 5.3 M 155.1
+ C2f GlobalContext + Vision Transformer 88.8 5.7 M 177.6
MGT-YOLO 89.5 5.9 M 161.4

The integration of the MEAM module into the backbone
network demonstrates a 0.8% improvement in mAP@0.5,
accompanied by a moderate computational cost increase of
0.5M parameters and a marginal reduction in inference speed
(26.0 FPS decrease). Building on this, by integrating the
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Fig. 11. Relationship between the center position and size of the
MGT-YOLO detection boxes.

C2f GlobalContext module into the neck network to capture
long-range visual dependencies, we observe a further 0.7%
enhancement in mAP@0.5, achieving the great performance
of 89.0%. This modification slightly increases the parameter
count and reduces FPS further. With the introduction of the
Vision Transformer, the mAP@0.5 reaches 89.5%. Although
the parameter count increases further, the real-time detection
requirement is still met.

Compared to other models in the ablation experiments, the
MGT-YOLO model achieves the greatest performance while
maintaining an FPS comparable to the baseline, making it
suitable for real-time wheat pest and disease detection tasks
despite the added parameters.

V. CONCLUSION

This paper proposes the MGT-YOLO network, which in-
tegrates a multi-scale edge enhancement mechanism and a
visual long-range dependency capturing mechanism to address
the challenges of small-object recognition in wheat pest and
disease detection under complex backgrounds. By introducing
the Multi-scale Edge Enhancement Mechanism (MEAM), the
Global Context Feature Fusion Module (C2f GlobalContext),
and incorporating the Vision Transformer module, the model
significantly improves its ability to extract and integrate small-
object pest and disease features. Experimental results on the
self-constructed WheatData dataset demonstrate that MGT-
YOLO outperforms traditional methods in detecting powdery
mildew and smut, achieving an overall mAP@0.5 of 89.5%,
significantly surpassing methods from related studies. The re-
search shows that MGT-YOLO not only excels in small-object
pest and disease detection but also holds potential for real-
time applications in agricultural pest and disease management,

providing crucial support for intelligent agricultural detection
technologies.

The improvements in this paper are based on the YOLOv8
algorithm, focusing on feature extraction and feature fusion.
This algorithmic model requires data collection and training
for typical features, lacking universality in detection tasks.
In the future, we plan to explore universal agricultural pest
and disease detection tasks by incorporating multimodal large
models.
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