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Abstract—Machine learning classifiers face significant chal-
lenges when confronted with class-imbalanced datasets, partic-
ularly in multi-class scenarios. The inherent skewness in class
distributions often leads to biased model predictions, with classi-
fiers struggling to accurately identify instances from underrepre-
sented classes. This paper introduces MEXT, a novel parameter-
free oversampling technique specifically designed for multi-class
imbalanced datasets. Unlike conventional approaches that often
rely on the one-against-all strategy and require manual parameter
tuning for each class, MEXT addresses these limitations by
simultaneously balancing all classes. By leveraging anomalous
score analysis, MEXT automatically determines optimal locations
for synthesizing new instances of minority classes, eliminating
the need for manual parameter selection. The technique aims
to achieve a balanced class distribution where each class has an
equal number of instances. To evaluate MEXT’s effectiveness, the
experiments were conducted extensively on a collection of multi-
class datasets from the UCI repository. The proposed MEXT al-
gorithm was evaluated against a suite of state-of-the-art SMOTE-
based oversampling techniques, including SMOTE, ADASYN,
Safe-Level SMOTE, MDO, and DSRBF. All comparative algo-
rithms were implemented within the one-against-all framework.
Hyperparameter optimization for each algorithm was performed
using grid search. An automated machine learning pipeline
was employed to identify the optimal classifier-hyperparameter
combination for each dataset and oversampling technique. The
Wilcoxon signed-rank test was subsequently utilized to statis-
tically assess the performance of MEXT relative to the other
oversampling techniques. The results demonstrate that MEXT
consistently outperforms the other methods in terms of average
ranking of key evaluation metrics, including macro-precision,
macro-recall, F1-measure, and G-mean, indicating its superior
ability to address multi-class imbalanced learning problems.
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I. INTRODUCTION

Multiclass imbalanced learning poses a significant chal-
lenge in machine learning, particularly within real-world ap-
plications [1], [2], [3], [4], [5]. This challenge arises when
training data exhibits a skewed class distribution, where one or
more classes possess substantially fewer instances than others.
This imbalance can detrimentally impact classifier perfor-
mance due to two primary factors, which are data inadequacy
and data ambiguity.

Data Inadequacy: When the number of instances from
a minority class is insufficient, classifiers may struggle to
recognize and accurately model the characteristics of that
class, potentially leading to their misclassification as noise
or outliers. For example, in a medical dataset with a rare

disease, if the number of patients with the disease is very
small, the classifier may not learn to accurately identify the
disease, leading to misdiagnoses.

Data Ambiguity: When minority classes share significant
characteristics with majority classes, classifiers may erro-
neously classify minority instances as belonging to the major-
ity class. This ambiguity arises from the inherent limitations of
traditional classification algorithms, which are often optimized
for generalizability across the entire dataset rather than specifi-
cally addressing class imbalances. For instance, in a dataset of
images containing different types of birds, a classifier might
struggle to distinguish between rare bird species that share
similar physical characteristics with more common species.

Over the past decades, imbalanced learning has garnered
considerable attention within the machine learning research
community, as evidenced by the increasing number of pub-
lications on this topic [6]. This has led to the development
of various approaches to address this challenge, including
algorithmic-level and data-level methods. Algorithmic-level
methods aim to modify existing classification algorithms to
better accommodate imbalanced data. However, their applica-
bility is limited as they are often designed for specific clas-
sifiers. Conversely, data-level methods, which involve prepro-
cessing the training data to address class imbalances, exhibit
greater flexibility and can be applied to a wider range of
classifiers.

One prominent data-level technique is the Synthetic Minor-
ity Over-sampling Technique (SMOTE) [7]. SMOTE addresses
class imbalance by generating synthetic instances of minority
class instances based on their feature similarity. This pro-
cess involves creating new instances along the line segments
connecting existing minority class instances within a defined
region.

The success of SMOTE has spurred the development of
numerous variations, each employing different strategies for
identifying optimal synthesis regions. A comprehensive col-
lection of 86 SMOTE variants is available in the open-source
smote-variants package for Python [8]. While this package
provides access to a wide array of oversampling techniques,
many of these variants are specifically designed for binary
classification problems and cannot directly handle multiclass
imbalanced datasets.

To address multiclass scenarios, the one-against-all (OAA)
approach is commonly employed by decomposing the problem
into a series of binary classification tasks. In each task, a
single class is designated as the positive class, while all other

www.ijacsa.thesai.org 1090 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

classes are aggregated into a single negative class. Despite its
conceptual simplicity, the OAA approach can exhibit inherent
limitations. Notably, it can be susceptible to class imbalance
issues, particularly when the number of classes increases.
This imbalance, arising from a significant disparity between
the number of instances in the positive and negative classes
within each binary classification task, can bias the learned
models towards the majority class, potentially compromising
the accurate identification of instances from the minority
class. Furthermore, the independent training of each binary
classifier can result in inconsistent decision boundaries across
different classification tasks. These inconsistencies can lead
to ambiguous classifications for certain instances, where the
predicted class may vary depending on the specific binary
classifier employed. Consequently, these limitations can po-
tentially diminish the overall accuracy and reliability of the
OAA approach in multiclass classification scenarios.

Furthermore, many SMOTE variants require careful man-
ual tuning of hyperparameters, which can be time-consuming
and may necessitate domain expertise. These hyperparame-
ters often control aspects such as the selection of minority
class instances for synthesis and the determination of suitable
synthesis regions. To mitigate the challenges associated with
globally defined hyperparameters, several enhanced SMOTE
variants [9], [10], [11], [12], [13], [14], [15] incorporate
adaptive strategies. These techniques dynamically adjust key
hyperparameters, such as those governing minority class cate-
gorization or the synthesis process, on an instance-by-instance
basis. However, it is important to note that these adaptive
methods often rely on a secondary layer of hyperparameters,
whose values are not always explicitly exposed to the user,
potentially increasing the complexity of the tuning process.

Despite the numerous variations of SMOTE proposed in
recent years, the development of truly parameter-free imple-
mentations has received limited attention. While some research
has explored parameter-free techniques for post-processing
synthesized instances [16], these methods primarily focus on
refining the output of existing SMOTE algorithms and do not
address the fundamental issue of parameter dependence within
the core SMOTE process. This necessitates the development of
genuine parameter-free oversampling techniques that eliminate
the need for manual hyperparameter tuning, thereby simplify-
ing the application of SMOTE and its variants in real-world
scenarios.

Despite these advances, there is a clear need for parameter-
free oversampling technique. This paper introduces a novel
parameter-free oversampling technique specifically designed
to address the challenges of multiclass imbalanced learning.
Building upon the foundational principles of the Extreme
Anomalous Oversampling Technique (EXOT) [17], this re-
search explores an enhanced framework that extends the capa-
bilities of EXOT to effectively handle multiclass datasets.

The EXOT algorithm represents a significant departure
from traditional SMOTE-based methods by eliminating the
need for hyperparameter tuning. Unlike SMOTE, which heav-
ily relies on the concept of nearest neighbors, EXOT leverages
a set of three distinct anomalous scores to categorize minor-
ity instances and determine optimal synthesis regions. This
innovative approach effectively circumvents the challenges

associated with hyperparameter selection and tuning, which
can often be time-consuming and require domain expertise.

This research aims to investigate the potential of parameter-
free oversampling techniques in achieving optimal classifier
performance across diverse datasets. A key component of
this investigation involves integrating the proposed multiclass
oversampling technique with automated machine learning (Au-
toML). AutoML, encompassing a suite of 15 distinct classi-
fiers, will be employed to identify the most suitable classifier
and its optimal hyperparameter configuration for each dataset
after the application of the enhanced EXOT oversampling tech-
nique. This parameter-free approach, coupled with AutoML’s
ability to efficiently search through a diverse set of classifiers
and their hyperparameter configurations, aims to achieve high
classifier performance on multiclass imbalanced datasets while
minimizing human intervention.

The paper make the following contributions:

• Multiclass imbalance: This research investigates and
addresses the challenges posed by multiclass imbal-
anced learning, a prevalent issue in real-world appli-
cations, by acknowledging and overcoming the limita-
tions of existing methods, particularly those associated
with binary-class oversampling techniques and the
complexities of hyperparameter tuning.

• Parameter-free method: This research introduces
MEXT, a novel parameter-free oversampling tech-
nique specifically designed for multiclass imbalanced
datasets, thereby addressing a critical need by elim-
inating the requirement for manual hyperparameter
tuning, a significant bottleneck in many existing over-
sampling methods.

• Extension of EXOT: This paper investigates the prop-
erties of the anomalous scores utilized in the EXOT
algorithm, providing a formal definition and extending
its applicability to multiclass datasets by introducing
the concept of the extreme anomalous score with
respect to a dataset, enabling the MEXT algorithm to
address multiclass imbalance without requiring class
relabeling procedures.

• Use of anomalous score: MEXT leverages anomalous
score analysis to identify optimal synthesis locations,
departing from traditional neighbor-based approaches
and offering a potentially more robust and effective
solution for oversampling minority classes in imbal-
anced datasets.

• Extensive experiment over datasets and classifiers:
This research encompasses an extensive experimental
evaluation of the MEXT algorithm on a collection
of multiclass datasets from the UCI repository, com-
paring its performance against several state-of-the-
art oversampling algorithms and providing empirical
evidence of its effectiveness.

The remainder of this paper is separated into seven sec-
tions. Section II provides a foundational understanding of
the anomalous scoring concept employed in the EXOT algo-
rithm, contrasting it with the neighbor-based and clustering
approaches utilized in other SMOTE variants. Next, Section
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III generalizes the EXOT concept by introducing the notion of
an “extreme anomalous score with respect to a dataset” and
comparing it to the three anomalous scores employed in the
original EXOT algorithm. Section IV presents the proposed
MEXT algorithm, a novel multi-class extreme anomalous
oversampling technique. Section V details the experimental
setup and methodology employed in this study. The experi-
mental results are presented and discussed in Section VI and
Section VII, respectively. Finally, the essences of this work are
ultimately summarized in Section VIII.

II. PRELIMINARY KNOWLEDGE

Anomalous scores quantify the degree of abnormality ex-
hibited by individual instances within a dataset relative to
their surrounding instances. In Euclidean space, dissimilarity
between instances is typically quantified by Euclidean distance.
Consequently, instances with greater distances to their nearest
neighbors are generally considered more anomalous.

The Extreme Anomalous Score (EAS) is a metric specif-
ically designed for numeric datasets to quantify the degree
of isolation of an individual instance. Originally proposed for
outlier detection, EAS has subsequently been employed in
various applications, including clustering [18] and imbalanced
classification [17].

Within the application of imbalanced classification, EAS
plays a pivotal role in the EXOT algorithm, which is the
parameter-free oversampling algorithm. EAS is defined for all
instances independent of their classes. Formally, EAS for a
given instance is defined as the radius of the largest open ball
centered on that instance that contains no other instances [17].
In addition to EAS, the EXOT algorithm utilizes two class-
dependent anomalous scores: the Negative Anomalous Score
(NAS) and the Positive Anomalous Score (PAS). These scores
are defined based on class labels, where the positive class typi-
cally represents the minority class in imbalanced classification
problems. NAS of any instance is the largest radius of an
open ball centered at that instance containing no other negative
instances, while PAS is the largest radius of an open ball
centered at that instance containing no other positive instances
[17]. By leveraging these three distinct anomalous scores,
the EXOT algorithm effectively circumvents the challenges
associated with hyperparameter tuning, a common limitation
encountered in many traditional SMOTE-based oversampling
techniques.

The original SMOTE algorithm operates within the Eu-
clidean space, necessitating the use of numerical attributes.
It generates synthetic minority instances by interpolating be-
tween pairs of existing minority class instances. For each
minority instance, SMOTE identifies its k nearest neighbors
within the minority class. A new synthetic instance is then
created along the line segment connecting the original minority
instance to one of its randomly selected k-nearest neighbors.

The process of generating a synthetic instance can be
mathematically expressed as follows:

xsyn = xi + γ · (xj − xi). (1)

In (1), xsyn represents a synthetic minority instance, xi

denotes an original minority instance under consideration, xj

represents a randomly selected instance from the k nearest

minority neighbors of xi, and γ is a uniformly distributed
random number within the interval [0, 1]. The sole hyperpa-
rameter within the original SMOTE algorithm is the number
of nearest neighbors, k.

For each synthesizing step, xi is like the core of the
synthesizing region, The vector xj − xi defines the direction
of synthesis, while the scalar γ (a random value between 0 and
1) determines the position of the synthesized instance (xsyn)
along this vector. The region to be densified depends on the
xi selection. The broadening of the minority region depends
on the conditions to select xj , and γ. Variations of SMOTE
diverge primarily in their strategies for selecting xi, xj , and
the range of permissible γ values.

The original SMOTE and neighbor-based SMOTE variants
such as Borderline-SMOTE [19] and Safe-Level SMOTE [20]
define the synthesis region based on the k-nearest neighbors
of each minority instance. These methods operate under the
assumption that synthesizing new instances along the lines
connecting neighboring minority instances will likely generate
instances within the minority class region. The selection of the
neighboring instance (xj) for synthesis is typically performed
randomly from the set of k nearest minority neighbors of xi.

Clustering-based SMOTE variants, such as cluster-
SMOTE, CE-SMOTE, DE-oversampling, kmeans-SMOTE,
MWMOTE, and DDSC-SMOTE [21], [22], [23], [24], [25],
[26], leverage clustering algorithms to identify dense regions
within the minority class distribution. These methods synthe-
size new instances within these localized clusters. Specifically,
the neighboring instance (xj) for synthesis is selected ran-
domly from the set of minority instances belonging to the same
cluster as the original minority instance (xi).

In the EXOT algorithm, the neighboring instance (xj)
serves solely to establish the unit direction vector emanating
from the original minority instance (xi). Consequently, the
selection of xj is not restricted to a specific neighborhood;
any minority instance within the dataset, excluding xi itself,
can be utilized to define the direction of synthesis.

Most conventional SMOTE-based methods constrain the
synthesized instance (xsyn) to lie within the linear subspace
defined by the original minority instance (xi) and its selected
neighbor (xj). This constraint typically restricts the range of
the interpolation parameter (γ) to the interval [0, 1]. When
γ = 0.5, the synthesized instance (xsyn) is equidistant from
the original instance (xi) and its neighbor (xj). To generate
instances closer to the original instance, γ is typically sampled
from the interval [0, 0.5). Conversely, to generate instances
closer to the neighboring instance, γ is sampled from the
interval (0.5, 1].

In contrast, the EXOT algorithm extends the synthesis
region beyond this linear subspace. EXOT allows for the
generation of instances within a “safe region” surrounding the
original instance (xi), defined by the radii of two open balls.
The first one is the Extreme Anomalous Ball (EAB): the largest
open ball centered at xi that contains no other instances. Its
radius corresponds to the Extreme Anomalous Score (EAS) of
xi. The second one is the Negative Anomalous Ball (NAB):
the largest open ball centered at xi that contains no instances
from the majority class. Its radius corresponds to the Negative
Anomalous Score (NAS) of xi. The interpolation parameter
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(γ) is sampled from the interval (0, Radxi
), where Radxi

represents the radius of either the EAB or the NAB, depending
on the specific conditions defined within the EXOT algorithm.

(a) Possible synthesis regions by the neighboring concept using
k = 5.

(b) Possible synthesis regions by the clustering concept.

(c) Possible synthesis regions by the anomalous scoring concept.

Fig. 1. Possible synthesis regions for x1, x2, and x3.

Fig. 1 illustrates possible synthesis regions for three repre-
sentative minority instances regions (x1, x2, and x3) using
three different concepts: the neighboring concept, the clus-
tering concept, and the anomalous scoring concept. In this
visualization, majority class instances are represented by dots,
while minority class instances are represented by stars. The
minority instances in this figure exhibit a clustered distribution,
forming small subclusters near one another within the feature
space. The instances x1, x2, and x3 are representative of this
clustered distribution, each belonging to a distinct cluster of
varying size.

Fig. 1a demonstrates the application of the k-nearest neigh-
bors approach (with k = 5) in defining synthesis regions.
This approach, employed in the original SMOTE algorithm
and its variants, utilizes the number of nearest neighbors as a
global hyperparameter to determine the extent of the synthesis

region. In this example, the arrows emanating from each
instance (x1, x2, and x3) indicate their five nearest minority
neighbors. Instance x3 belongs to a relatively dense cluster
(cluster 5) containing more than five instances. Therefore, its
five nearest neighbors are all members of the same cluster.
In contrast, instances x1 and x2 belong to smaller clusters.
Consequently, some of their nearest neighbors may belong to
other clusters. This reliance on nearest neighbors can introduce
potential challenges. For instance, if the algorithm synthesizes
instances along the line segment connecting a minority in-
stance in one cluster to its nearest neighbor in another cluster,
the synthesized instances may inadvertently fall within the
majority class region. This can lead to misclassification issues,
where the classifier erroneously labels majority class instances
as belonging to the minority class. Furthermore, setting an
appropriate value for the hyperparameter k can be challenging.
Using an excessively large value for k may result in the
generation of synthetic instances within the majority class
region. Conversely, using a small value for k (e.g., k = 1) can
lead to overfitting, as it essentially duplicates existing minority
instances.

To address these challenges, adaptive approaches have been
proposed that dynamically adjust the value of k for each
instance. Additionally, clustering-based methods have been
developed to mitigate the risk of synthesizing instances within
the majority class region [26].

Fig. 1b illustrates potential synthesis regions for clustering-
based SMOTE variants. To mitigate the risk of synthesizing
instances within the majority class region, these methods
partition the minority class into distinct clusters prior to the
oversampling process. For instance x1, which belongs to a
singleton cluster, the synthesis process cannot be directly
applied due to the absence of neighboring minority instances
within the same cluster. For instance x2, synthesis can proceed
by selecting neighboring instances from within its respective
cluster (cluster 4) without the risk of encroaching upon the
majority class region. In contrast, synthesizing instances for
x3, which belongs to a cluster containing two majority class
instances, carries a higher risk of generating synthetic instances
within the majority class region.

Fig. 1c illustrates the application of the EXOT algorithm,
which utilizes anomalous scores to define the synthesis region.
A key advantage of EXOT is its ability to incorporate all
minority instances, including isolated instances such as x1,
into the synthesis process. In this figure, the potential synthesis
regions for each minority instance (x1,x2, and x3) are repre-
sented by the area within their respective Extreme Anomalous
Balls (EABs) or Negative Anomalous Balls (NABs). In this
specific example, the NAS of each instance is equal to its
EAS, resulting in a single dashed circle representing both the
EAB and NAB for each instance. This approach allows for the
generation of synthetic instances in a more diverse range of
positions within the feature space. The extent of the synthesis
region for each instance is dynamically determined by its
corresponding anomalous score, ensuring that the expansion of
the minority class region does not encroach upon the majority
class region.

A key limitation of many SMOTE variants arises from their
reliance on hyperparameters to guide the synthesis process.
These hyperparameters influence various aspects, such as the
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direction of synthesis and the extent of the synthesized region
within the feature space. For instance, datasets containing
isolated minority instances pose a significant challenge for
many oversampling techniques. These techniques often neglect
such instances unless specifically designed to synthesize within
majority class regions. To address this limitation, several
approaches have been proposed that categorize minority in-
stances based on their local characteristics before applying the
oversampling process.

One common approach involves categorizing minority in-
stances based on their proximity to majority instances. These
categories often include isolated minorities, safe minorities,
and borderline minorities. Isolated minority instances are typ-
ically surrounded by majority class instances. Safe minority
instances are located within dense regions of the minority
class. Borderline minority instances reside near the bound-
ary between the minority and majority class regions. These
categorizations aim to guide the oversampling process by
identifying instances that may require special handling. For
example, borderline minorities, due to their proximity to the
majority class, may be more susceptible to misclassification
and therefore require more careful oversampling strategies.

Techniques such as borderline-SMOTEs (both borderline-
SMOTE1 and borderline-SMOTE2), safe-level-SMOTE, MW-
MOTE, MDO, and FLEX-SMOTE [19], [20], [25], [27], [28]
utilize the k-nearest neighbors of a minority instance to deter-
mine its category. By examining the proportion of minority and
majority class instances among the k-nearest neighbors, these
methods attempt to identify the minority instance’s proximity
to the majority class boundary.

While these neighbor-based approaches provide valuable
insights, the accuracy of minority instance categorization can
be sensitive to the choice of the parameter k. An inappro-
priate selection of k can lead to misclassification of minority
instances, potentially impacting the effectiveness of the over-
sampling process.

To address this limitation, the EXOT algorithm utilizes
anomalous scores to characterize minority instances and guide
the synthesis process, eliminating the need for parameter-based
neighbor analysis.

In EXOT, the dangerous minorities or the borderline mi-
norities are identified as those that lie on the boundary of
the Positive Anomalous Ball (PAB) of some majority class
instance. The PAB of an instance x (PABx) is defined as the
largest open ball centered at x that contains no other minority
instances. By definition, the radius of PABx corresponds to
the Positive Anomalous Score (PAS) of x. These “sensitive
positive instances” located on the boundary of a majority
class’s PAB, are particularly important as their presence sig-
nificantly influences the positive anomalous scores of the
surrounding majority class instances.

Most algorithms prioritize enhancing the accuracy of pre-
dicting the minority class, even if it results in a slight decrease
in the accuracy of identifying the majority class. When apply-
ing binary classification algorithms to multiclass datasets using
the OAA approach, the accuracy of predicting the combined
minority class can be impacted. This is because synthetic
instances generated for one minority class may extend beyond

the boundaries of other minority class regions, potentially
leading to misclassification.

The EXOT algorithm, by carefully generating synthetic in-
stances within well-defined boundaries determined by anoma-
lous scores, aims to minimize the impact on other minority
class regions. However, applying EXOT to multiclass datasets
still necessitates the use of the OAA approach, which can
increase computational complexity due to the need to compute
anomalous scores for each minority instance in each OAA clas-
sification. Consequently, further modifications to the EXOT
algorithm may be necessary to optimize its performance for
multiclass imbalanced learning scenarios.

III. GENERALIZED EXTREME ANOMALOUS
OVERSAMPLING TECHNIQUE CONCEPT

This section investigates the properties of the anomalous
scores employed in the EXOT algorithm, commencing with a
generalized definition that encompasses EAS, NAS, and PAS.
This unified framework facilitates a more concise and rigorous
analysis of their inherent properties, avoiding the redundancy
of independent proofs for each individual score.

A. The Extreme Anomalous Score with Respect to a Dataset

Let X = {x1, x2, ..., xn} denote a dataset comprising n
instances, where each instance xi is represented by an m-
dimensional vector of real numbers, i.e., xi = (xi,1, ..., xi,m).
The generalized definition of EAS, NAS, and PAS is formally
presented in Definition III.1. In this context, B(x, r) represents
an open ball centered at x with radius r.
Definition III.1. (Extreme Anomalous Score with Respect to
a Dataset)
For dataset A ⊆ X , the extreme anomalous score of instance
x ∈ X with respect to dataset A denoted by EAS(x, A) is
defined as

EAS(x, A) = sup {r > 0 | B (x, r) ∩ (A\ {x}) = ∅} ,

where B (x, r) is an open ball centered at x with radius r.

Notably, for a dataset comprising a single instance (n = 1),
the instance is considered to be inherently anomalous. Con-
sequently, its EAS with respect to any subset of the dataset
is defined as infinity, as formally established in Proposition
III.1. Conversely, for datasets containing multiple instances
(n > 1), the EAS with respect to a dataset A ⊆ X of any
instance (x) within the dataset (X) is finite. This paper formally
demonstrates that, in such cases, the EAS of an instance can be
directly determined from its Euclidean distance to its nearest
neighbor within the specified dataset (A), as established in
Theorem III.1.
Proposition III.1. If X is a singleton and x1 is an instance of
X , then EAS(x1, A) = ∞ for all A ⊆ X .

Proof: Given dataset X with exactly one instance x1, and
A be a subset of X . Thus A = ∅ or A = {x1}. That is
A \ {x1} = ∅. B(x, r) ∩ (A \ {x1}) = ∅ for all r > 0. By
Definition III.1, EAS(x1, A) = ∞.
Theorem III.1. Given dataset X with |X| > 1. For dataset
A ⊆ X and instance x ∈ X . If A \ {x} ̸= ∅, then

EAS(x, A) = min
a∈A\{x}

d(x,a).
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Note that d(x,a) is the Euclidean distance between x and a,
and |X| denotes the cardinality of X .

Proof: Let X be a dataset containing n instances, where
n > 1. Given subset A of X and instance x of X which
A\ {x} ̸= ∅. Let E = {r > 0 | B(x, r) ∩ (A\ {x}) = ∅}.
Then for any a ∈ A\ {x}, d(x,a) ≥ ε for any ε ∈ E.
Therefore E is bounded above. There exists ε∗ > 0, s.t.
EAS(x, A) = supE = ε∗.

Since A\ {x} is non-empty and finite, there exists instance
a∗ of A\ {x} such that d(x,a∗) = min

a∈A\{x}
d(x,a) = δ. Thus

∀a ∈ A\ {x} , δ ≤ d(x,a).

Since a∗ ∈ A\ {x}, thus d(x,a∗) ≥ ε for all ε. It means
that δ in an upper bound of E , hence ε∗ ≤ δ.

To prove that ε∗ = δ, it is sufficed to show that ε∗ ≮ δ.

Assume that ε∗ < δ, that is ε∗ < ε∗+δ
2 < δ. Hence

∀a ∈ A\ {x} , ϵ∗+δ
2 < δ ≤ d(x,a). That is ∀a ∈ A\ {x} ,a /∈

B
(
x, ε∗+δ

2

)
. Thus ε∗+δ

2 ∈ E. Since ε∗+δ
2 > ε∗ and ε∗+δ

2 ∈
E, thus ε∗ ̸= supE which is the contradiction. Therfore
EAS(x, A) = min

a∈A\{x}
d(x,a).

Based on the findings of Proposition III.1 and Theorem
III.1, it can be concluded that the EAS of an instance x with
respect to dataset A is equivalent to the infimum of the set of
distances between x and all other instances within dataset A,
as stated in Corollary III.1.
Corollary III.1. Given dataset A ⊆ X and instance x ∈ X .

EAS(x, A) = inf{d(x,a) | a ∈ A \ {x}}.

Proof: Let H be the set {d(x,a) | a ∈ A \ {x}}.

Case 1: Given A \ {x} = ∅. Thus H = ∅, and infH =
inf ∅ = ∞. As shown in Proposition III.1, EAS(x, A) = ∞
when A \ {x} = ∅.

Case 2: Given A \ {x} ̸= ∅. Thus H is a non-
empty finite set containing its infimum. Therefore infH =
min

a∈A\{x}
d(x,a) = EAS(x, A), by Theorem III.1.

From all cases, it can be concluded that EAS(x, A) =
inf{d(x,a) | a ∈ A \ {x}}.

Theorem III.1 and Corollary III.1 serve as foundational
principles in the proof of Theorem III.2, which establishes the
following property: the Extreme Anomalous Score (EAS) of
an instance x with respect to a dataset A is always less than or
equal to the EAS of the same instance x with respect to any
subset S of dataset A.
Theorem III.2. Let S and A be subsets of X which S ⊆ A.
For every instance x ∈ X ,

EAS (x, S) ≥ EAS (x, A) .

Proof: Given dataset S ⊆ A ⊆ X and instance x ∈ X .

Case 1: Given A \ {x} = ∅. Since S ⊆ A, S \ {x} = ∅.
By Corollary III.1, EAS (x, A) = ∞ = EAS (x, S).

Case 2: Given A\{x} ̸= ∅. By Theorem III.1, ∃r∗ > 0 such
that r∗ = EAS(x, A), and r∗ ≤ d(x,a) for every a ∈ A\{x}.

Fig. 2. Values of EASx1 and EASx2 in a dataset.

Fig. 3. Values of NASx1 and NASx2 in a dataset.

Case 2.1: Suppose S \ {x} = ∅. Thus EAS(x, S) =
inf ∅ = ∞ > r∗, by Corollary III.1.

Case 2.2: Suppose S \ {x} ̸= ∅. Let s ∈ S \ {x}. Since
S ⊆ A, therefore r∗ ≤ d(x, s) for all s ∈ S \ {x}. Hence
r∗ is a lower bound of set {d(x, s) | s ∈ S \ {x}}. From
Corollary III.1, EAS(x, S) = inf{d(x, s) | s ∈ S \ {x}}.
Because EAS(x, S) is the greatest lower bound and r∗ is a
lower bound of {d(x, s) | s ∈ S\{x}}, thus EAS(x, S) ≥ r∗.

In all cases, for any x ∈ X,EAS(x, S) ≥ EAS(x, A).

The aforementioned theorems, proposition, and corollary
collectively demonstrate the validity of the proposed frame-
work for all anomalous scores employed within the EXOT
algorithm, as they are all inherently equivalent to the extreme
anomalous score with respect to a specific subset of the
entire dataset. Building upon these foundational results, the
subsequent sections utilize these theorems and definitions to
elucidate the concepts of EAS, NAS, and PAS within the
EXOT framework.

B. The Anomalous Scores in EXOT

The EXOT algorithm incorporates three distinct anomalous
scores: the Extreme Anomalous Score (EAS), the Negative
Anomalous Score (NAS), and the Positive Anomalous Score
(PAS). Given an instance x within the dataset X , where N
denotes the set of all negative instances and P denotes the set
of all positive instances, the EAS, NAS, and PAS of x can be
formally defined as EAS(x, X), EAS(x, N), and EAS(x, P ),
respectively, as per Definition III.1 [17].

The Extreme Anomalous Score (EAS) of an instance x,
denoted as EASx, defines the radius of the Extreme Anoma-
lous Ball (EAB) centered at x. By definition, the EAB contains
no instances other than x itself. Fig. 2 illustrates the concept
of EAB for two instances, x1 and x2. The radii of the
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Fig. 4. Values of PASx1 and PASx2 in a dataset.

EABs, represented by dashed circles, visually demonstrate that
EASx2 is greater than EASx1 , reflecting the relative isolation
of x2 within the dataset.

In the EXOT algorithm, the Negative Anomalous Score
(NAS) of an instance x, denoted by NASx, defines the radius
of the Negative Anomalous Ball (NAB) centered at x. The
NAB is characterized as the largest open ball centered at x
that contains no other negative instances.

Fig. 3 illustrates the concept of NAB for two instances: a
positive instance (x1) and a negative instance (x2). The dashed
circles in the figure represent the boundaries of their respective
NABs. Notably, while the NAB of x2 contains only itself, the
NAB of x1 may contain instances other than x1, including
instances from the positive class, as demonstrated in Fig. 3.

From the aforementioned examples, it is evident that the
Extreme Anomalous Ball (EAB) and the Negative Anomalous
Ball (NAB) of a positive instance both exclude negative
instances. To facilitate the synthesis of new positive instances
while maintaining the integrity of the negative region, the
EXOT algorithm leverages both the EAS and NAS of each
positive instance to define the permissible region for synthesis.

As illustrated in Fig. 2 and Fig. 3, the EAS of instance x1
is less than its NAS, while for instance x2, the EAS and NAS
are equal. This observation is consistent with Theorem III.2,
which formally demonstrates that the EAS of any instance is
always less than or equal to its NAS.

The EXOT algorithm incorporates the Positive Anomalous
Score (PAS) as an additional metric, not explicitly defined
in the original EXOT paper [17]. The PAS of an instance x,
denoted by PASx, defines the radius of the Positive Anoma-
lous Ball (PAB) centered at x, which is characterized as the
largest open ball centered at x that contains no other positive
(minority) instances.

Fig. 4 illustrates the concept of PAB for a positive instance
(x1) and a negative instance (x2). The dashed circles in
the figure represent the boundaries of their respective PABs.
Notably, the positive instance located on the boundary of the
negative instance’s PAB signifies a critical point, representing
the nearest positive instance to the negative instance. The
EXOT algorithm identifies such instances as “sensitive positive
instances”.

The PAS of a negative instance plays a crucial role in iden-
tifying the boundary of the positive class region. The positive
instance situated on the boundary of a negative instance’s PAB

effectively marks the edge of the positive class region. In real-
world datasets, where class regions may exhibit overlap, the
identification of these “sensitive positive instances” provides
valuable information about the boundaries of the positive class
region.

IV. MULTICLASS EXTREME ANOMALOUS
OVERSAMPLING TECHNIQUE (MEXT)

The MEXT algorithm, presented in Algorithm 1, extends
the principles of the EXOT algorithm to effectively address
the challenges of multiclass imbalanced datasets.

Initially, the dataset is partitioned into k subsets, each
corresponding to a distinct class. Duplicate instances within
each subset are subsequently removed. These subsets are then
ordered in descending order based on their cardinality. The
oversampling process proceeds iteratively, with each class
being oversampled until it reaches the cardinality of the largest
class.

For each class c, the algorithm commences by identifying
sensitive positive instances and subsequently determines their
corresponding synthesis regions based on their respective EAS
values.

For non-sensitive positive instances (p) within class c, the
algorithm compares EAS(p, Xc∗ ) and EAS(p, X \ (Xc ∪
Xc∗)), where Xc∗ represents the set of all instances belonging
to classes with smaller cardinalities, and X\(Xc ∪Xc∗) rep-
resents the set of all instances belonging to classes with larger
cardinalities. If EAS(p, Xc∗) > EAS(p, X\(Xc ∪Xc∗)), the
MEXT algorithm utilizes NASp to determine the synthesized
region surrounding p. This strategy is employed under the
assumption that synthesizing instances in the NABp region
will have minimal impact on a smaller class; otherwise, the
synthesized region for p is determined by the minimum value
between NASp and EAS(p, Psensitive), where Psensitive de-
notes the set of all sensitive positive instances. This constraint
aims to prevent the generation of synthetic instances in close
proximity to the region of the smaller class. Following the
determination of synthesized regions for each positive instance,
new instances are synthesized within these regions using the
data generation technique employed in the EXOT algorithm.

Fig. 5 illustrates the synthesized regions for two represen-
tative instances from distinct classes. In this figure, x1 denotes
a sensitive instance belonging to the smallest class, while x2

represents a non-sensitive instance from another class. Fig. 5a
depicts the synthesized region for x2 as determined by the
EXOT algorithm. This region, bounded by the NAB of x2,
extends beyond the synthesized region of x1, which is bounded
by its EAB. Consequently, the generation of synthetic instances
within the synthesized region of x2 may potentially influence
the classification of x1, potentially impacting the performance
of the model with respect to the smallest class.

Fig. 5b illustrates the synthesized regions as determined
by the MEXT algorithm. Since instance x1 from the smallest
class resides on the boundary of the NABx2 , the synthesized
region for the non-sensitive instance x2 is constrained by
EAB(x2, Psensitive), where Psensitive represents the set of
all sensitive positive instances. This constraint, visualized as
a dotted circle in the figure, effectively limits the generation
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Algorithm 1: The MEXT algorithm
Input : Dataset X , Class label y
Output: Xresampled, yresampled.
Xresampled = ∅;
yresampled = [ ];
C = {c | c ∈ y};
for c ∈ C do

Xc = {xi ∈ X | yi = c};
end
k = |C|;
csorted = [c1, c2, ..., ck] s.t. |Xc1 | >> |Xc2 | >> ... >> |Xck |;
Th = |Xc1 |;
C∗ = C;
for c ∈ csorted do

C∗ ← C∗\ {c};
Xc∗ =

⋃
ci∈C∗

Xci ;

Xsyn = ∅;
if |Xc| < Th then

nsamples = Th− |Xc|;
Psensitive =
{xi ∈ Xc | ∃n /∈ Xc, d(n,xi) = EAS(n, Xc)};

for pi ∈ Xc do
if pi ∈ Psensitive then

Radpi = EAS(pi, X);
else if
EAS(pi, Xc∗ ) > EAS(pi, X \ (Xc ∪Xc∗ ))
then

Radpi = EAS(pi, X \Xc);
else

Radpi =
min {EAS(pi, X \Xc), EAS(pi, Psensitive)};

end
end
while nsamples > |Xsyn| do

for pi ∈ Xc do
γ = random number between 0 and 1;
pj = random instance from Xc\ {pi};
psyn = pi + γ ·Radpi ·

pj−pi

d(pi,pj)
;

Xsyn = Xsyn ∪ {psyn};
end

end
end
nc = |Xc ∪Xsyn|;
ynew = [c, c, ..., c]1×nc ;
yresampled ← [yresampled | ynew];
Xresampled ← Xresampled ∪Xc ∪Xsyn;

end
return Xresampled,yresampled

of synthetic instances in the vicinity of the smallest class,
mitigating the potential for adverse effects on the classification
of minority class instances.

It is important to note that when applied to a binary class
imbalanced dataset, the MEXT algorithm operates in a manner
analogous to the EXOT algorithm.

Let d(pi, psyn) represent the Euclidean distance between
the original instance pi and the synthesized instance psyn. For
each synthesized instance psyn, if pi is a sensitive positive
instance, then d(pi, psyn) is less than or equal to EASpi

;
otherwise, d(pi, psyn) is less than or equal to NASpi

.

The MEXT algorithm iteratively synthesizes new instances
until all classes within the dataset achieve equal cardinality.
Upon completion, the algorithm returns the balanced dataset,
denoted as Xresampled, along with the corresponding class
labels, yresampled.

V. EXPERIMENT

This section presents a comparative evaluation of the
MEXT algorithm against a suite of state-of-the-art oversam-
pling techniques, including SMOTE, ADASYN, Safe-Level
SMOTE (SLS), MDO, and DSRBF. SMOTE, ADASYN, and
SLS are widely recognized algorithms within the SMOTE
family, readily available in various software modules. MDO
and DSRBF represent contemporary multiclass oversampling
techniques, both accessible within the smote-variants package.

A. Datasets

The experimental evaluation was conducted on a collection
of 36 imbalanced datasets sourced from the UCI Machine
Learning Repository [29]. Table I provides a summary of these
datasets, ordered by their Multiclass Imbalance Ratio (MIR).
The MIR is computed as follows:

MIR =
k−1∑
i=1

∑
j>i

(
nci

ncj

− 1

)
, (2)

where nci and ncj represent the number of instances in
classes ci and class cj , respectively, with nci ≥ ncj for
all i, j ∈ {1, 2, ..., k} and j > i. This metric quantifies
the degree of class imbalance within a dataset. A value of
MIR = 0 indicates perfect class balance, while any non-zero
value signifies the presence of class imbalance.

B. Oversampling Methods

For comparative analysis, a grid search was conducted
to determine optimal hyperparameter values for each of the
following oversampling methods: SMOTE, ADASYN, SLS,
MDO, and DSRBF. The grid search considered values of 5,
10, 15, and 20 for the relevant hyperparameters [30]. Each
dataset was oversampled to achieve class balance, ensuring an
equal number of instances in each class.

C. Base Classifiers

The primary focus of this study lies in evaluating the
effectiveness of various oversampling techniques for address-
ing class imbalance in multiclass scenarios. Consequently, the
assessment of these techniques was conducted by evaluating
the performance of classifiers trained on the oversampled
datasets. To optimize classifier performance, an automated ma-
chine learning (AutoML) framework was employed to identify
the optimal classifier and its corresponding hyperparameter
configuration for each dataset, ensuring unbiased evaluation
of the oversampling methods.

D. Experimental Procedure

All experiments were conducted within a Jupyter Notebook
environment hosted on Google Colaboratory [31], utilizing the
Ubuntu 18.04 operating system on an Intel Xeon processor
with 13022KB RAM. The smote-variants package served as
the primary implementation source for all comparative over-
sampling techniques [8].
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(a) The regions from the EXOT algorithm (b) The regions from the MEXT algorithm

Fig. 5. Example of the synthesized regions for x1 and x2 using the EXOT and the MEXT algorithm.

TABLE I. DATA DESCRIPTIONS

Notations Datasets Instances Att. Classes Description of classes Class distribution Avg MIR
D1 Sonars 208 60 2 ‘M’, ‘R’ 111, 97 104 0.14
D2 Banknote 1372 4 2 ‘0’, ‘1’ 762, 610 686 0.25
D3 Vehicle 846 18 4 ‘bus’, ‘saab’, ‘opel’, ‘van’ 218, 217, 212, 199 211.50 0.31
D4 Audit 772 26 2 ‘not risk’, ‘risk’ 467, 305 386 0.53
D5 Magic 19020 10 2 ‘gamma’, ‘hadron’ 12332, 6688 9510 0.84
D6 Breast Cancer 683 9 2 ‘malignant’, ‘benign’ 444, 239 341.5 0.86
D7 Pima 768 8 2 ‘inliers’, ‘outliers’ 500, 268 384 0.87
D8 Haberman 306 3 2 ‘died within 5 years’, ‘survived 5 years or longer’ 225, 81 153 1.78
D9 Parkinsons 195 22 2 ‘healthy’, ‘Parkinson’s’ 147, 48 97.5 2.06

D10 Blood 748 4 2 ’not donate’, ‘donate’ 570, 178 374 2.20
D11 Vertebral 310 6 3 ‘SL’, ‘NO’, ‘DH’ 150, 100, 60 103.33 2.67
D12 Gastroenterology 152 466 3 ‘adenoma’, ‘hyperplasic’, ‘serrated’ 80, 42, 30 50.67 2.97

D13 Breast Tissue 4c 106 9 4 ‘fad&mas&gla’,
‘adi’, ‘car’, ‘con’

49,
22, 21, 14 26.5 6.18

D14 Climate 540 18 2 ‘failure’, ‘success’ 494, 46 270 9.74
D15 Satimage 6435 36 6 1.0, 7.0, 3.0, 5.0, 2.0, 4.0 1533, 1508, 1358, 707, 703, 626 1072.5 11.02
D16 Ozone8hr 1847 72 2 ‘0’, ‘1’ 1719, 128 923.5 12.43
D17 Glass 214 9 5 ‘2’, ‘1’, ‘7’, ‘5&6’, ‘3’ 76, 70, 29, 22, 17 42.80 15.66
D18 Cannabis 1885 12 7 ‘CL6’, ‘CL0’, ‘CL2’, ‘CL3’, ‘CL1’, ‘CL5’, ‘CL4’ 463, 413, 266, 211, 207, 185, 140 269.29 16.26

D19 Ecoli 327 7 5 ‘cp’, ‘im’, ‘pp’,
‘imU’, ‘om’

143, 77, 52,
35, 20 65.40 19.21

D20 Nicotine 1885 12 7 ‘CL6’, ‘CL0’, ‘CL2’, ‘CL1’, ‘CL3’, ‘CL5’, ‘CL4’ 610, 428, 204, 193, 185, 157, 108 269.29 26.48
D21 Ozone1hr 1848 72 2 ‘0’, ‘1’ 1791, 57 924 30.42
D22 Benzodiazepine 1885 12 7 ‘CL0’, ‘CL3’, ‘CL2’, ‘CL4’, ‘CL1’, ‘CL6’, ‘CL5’ 1000, 236, 234, 120, 116, 95, 84 269.29 53.87
D23 Amphetamines 1885 12 7 ‘CL0’, ‘CL2’, ‘CL1’, ‘CL3’, ‘CL6’, ‘CL4’, ‘CL5’ 976, 243, 230, 198, 102, 75, 61 269.29 65.00
D24 Legal highs 1885 12 7 ‘CL0’, ‘CL3’, ‘CL2’, ‘CL4’, ‘CL6’, ‘CL5’, ‘CL1’ 1094, 323, 198, 110, 67, 64, 29 269.29 121.97
D25 Alcohol 1885 12 7 ‘CL5’, ‘CL6’, ‘CL4’, ‘CL3’, ‘CL2’, ‘CL1’, ‘CL0’ 759, 505, 287, 198, 68, 34, 34 269.29 126.34
D26 Ecstasy 1885 12 7 ‘CL0’, ‘CL3’, ‘CL2’, ‘CL4’, ‘CL1’, ‘CL5’, ‘CL6’ 1021, 277, 234, 156, 113, 63, 21 269.29 130.34
D27 Methadone 1885 12 7 ‘CL0’, ‘CL3’, ‘CL2’, ‘CL6’, ‘CL4’, ‘CL5’, ‘CL1’ 1429, 149, 97, 73, 50, 48, 39 269.29 147.56
D28 Cocaine 1885 12 7 ‘CL0’, ‘CL2’, ‘CL3’, ‘CL1’, ‘CL4’, ‘CL5’, ‘CL6’ 1038, 270, 258, 160, 99, 41, 19 269.29 157.86
D29 LSD 1885 12 7 ‘CL0’, ‘CL1’, ‘CL3’, ‘CL2’, ‘CL4’, ‘CL5’, ‘CL6’ 1069, 259, 214, 177, 97, 56, 13 269.29 192.20

D30 Yeast 1479 8 9
‘CYT’, ‘NUC’, ‘MIT’,
‘ME3’, ‘ME2’, ‘ME1’,
‘EXC’, ‘VAC’, ‘POX’

463, 429, 244,
163, 51, 44,
35, 30, 20

164.33 192.27

D31 Caffeine 1885 12 7 ‘CL6’, ‘CL5’, ‘CL4’, ‘CL3’, ‘CL0’, ‘CL2’, ‘CL1’ 1385, 273, 106, 60, 27, 24, 10 269.29 361.30
D32 Heroin 1885 12 7 ‘CL0’, ‘CL2’, ‘CL1’, ‘CL3’, ‘CL4’, ‘CL5’, ‘CL6’ 1605, 94, 68, 65, 24, 16, 13 269.29 384.58
D33 DrugMushrooms 1885 12 7 ‘CL0’, ‘CL3’, ‘CL2’, ‘CL1’, ‘CL4’, ‘CL5’, ‘CL6’ 982, 275, 260, 209, 115, 40, 4 269.29 525.95
D34 DrugVSA 1885 12 7 ‘CL0’, ‘CL1’, ‘CL2’, ‘CL3’, ‘CL5’, ‘CL4’, ‘CL6’ 1455, 200, 135, 61, 14, 13, 7 269.29 571.84
D35 DrugKetamine 1885 12 7 ‘CL0’, ‘CL2’, ‘CL3’, ‘CL1’, ‘CL4’, ‘CL5’, ‘CL6’ 1490, 142, 129, 45, 42, 33, 4 269.29 610.53

D36 Avila 20867 10 12 ‘A’, ‘F’, ‘E’, ‘I’, ‘X’, ‘H’,
‘G’, ‘D’, ‘Y’, ‘C’, ‘W’, ‘B’

8572, 3923, 2190, 1663, 1044, 1039,
893, 705, 533, 206, 89, 10 1738.92 2487.61

E. Evaluation Metrics

To evaluate the performance of the classifiers, a standard
train-test split was employed. Each dataset was divided into a
training set (80% of the data) used for model training and a
testing set (20% of the data) used for independent evaluation.

To ensure robust model selection, 5-fold cross-validation
was performed on the training set during the model training
and hyperparameter tuning process. The performance of the
final, optimally configured classifiers was then assessed on the
held-out testing set using four commonly employed metrics for
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multiclass imbalanced learning: macro-precision, macro-recall,
F1-measure, and G-mean [32].

Let TPci denote the number of true positives for class ci,
FPci denote the number of false positives for class ci, and
FNci denote the number of false negatives for class ci. The
evaluation metrics are computed as follows:

Precisionmacro =
1

|C|

|C|∑
i=1

TPci

TPci + FPci

(3)

Recallmacro =
1

|C|

|C|∑
i=1

TPci

TPci + FNci

(4)

F1macro =
2 · Precisionmacro · Recallmacro

Precisionmacro + Recallmacro
(5)

G-mean =
|c|

√√√√(

|C|∏
i=1

TPci

TPci + FNci

) (6)

F. Statistical Testing

To evaluate whether the performances of the optimal
classifier from autoML over various datasets after applying
MEXT (parameter-free method) differ from the ones applied
with benchmark methods or not, statistical testing was then
used. Wilcoxon signed-rank test which is a non-parametric
statistical hypothesis test [33] was used for comparing a pair
of oversampling methods: MEXT versus each other methods.
The null and alternative hypotheses for two-tailed Wilcoxon
signed-rank test were set as follows:

H0 : M1 −M2 = 0,

H1 : M1 −M2 ̸= 0,

where M1 denotes the median of the results from MEXT while
M2 denotes the one of compared method.

This Wilcoxon ranks the differences in the performance
of a classifier for each dataset which were rebalanced by two
oversampling methods. This ranking sorts the difference values
in ascending by ignoring the signs and the zero differences.
Then it compares the sum of ranks for the positive and negative
differences called R+ and R−, respectively. The statistical
value T is obtained from min {R+, R−}. If T is from R+,
then the compared method is better; otherwise, EXOT is better.
With a level of significance α = 0.05, the null hypothesis is
rejected in favor of the alternative hypothesis if T is smaller
than the critical value which depends on the number of non-
zero differences and α value.

VI. RESULTS

This section presents the experimental results obtained
using AutoML and six oversampling techniques: SMOTE,
ADASYN, SLS, MDO, DSRBF, and MEXT, on a collection
of UCI datasets. The performance of these techniques was
evaluated using four metrics (macro-precision, macro-recall,
F1-measure, and G-mean) for multiclass imbalanced learning,
employing the optimal classifiers identified by AutoML for

each oversampled dataset. The performance of AutoML with-
out oversampling (labeled as None) serves as a baseline for
comparison.

A heatmap (Fig. 6) visually represents the performance of
each technique across datasets, with color intensity indicating
performance levels. Darker hues signify superior performance,
while lighter hues represent lower performance. The results
demonstrate that most methods exhibit improved performance
on datasets with lower Multiclass Imbalance Ratio (MIR).
However, some datasets exhibited inferior performance with
oversampling compared to the baseline, indicating that the
evaluated oversamplers may not be universally effective.

To facilitate comparison, the average performance of each
technique across all datasets was calculated for each met-
ric. Fig. 7 illustrates these average performances along with
their standard deviations. The results demonstrate that all
oversampling techniques, on average, enhance classification
performance compared to the baseline. However, no signif-
icant performance differences were observed among the six
techniques.

To further analyze the relative performance, the techniques
were ranked within each dataset, with lower ranks indicating
better performance. Fig. 8 presents the average ranks of
each technique across all datasets. This analysis revealed that
three multiclass oversampling approaches (MDO, DSRBF, and
MEXT) exhibited superior macro-precision compared to the
binary-class oversampling approaches (SMOTE, ADASYN,
and SLS). However, MDO and DSRBF did not consistently
outperform binary approaches in terms of macro-recall, F1-
measure, and G-mean. In contrast, MEXT demonstrated supe-
rior performance across all four metrics, exhibiting both the
highest average performance and the lowest average rank.

To statistically validate the superior performance of MEXT,
a Wilcoxon signed-rank test was conducted. Table II presents
the results of the Wilcoxon signed-rank test, conducted under
the null hypothesis that there is no statistically significant
difference in performance between MEXT and each of the five
comparative oversampling methods (SMOTE, ADASYN, SLS,
MDO, and DSRBF), all employing their respective optimal
hyperparameter configurations determined via grid search.

The results, presented in Table II, indicate that MEXT
significantly outperforms SMOTE in terms of macro-precision,
macro-recall, and F1-measure; ADASYN in terms of macro-
recall and F1-measure; SLS in terms of macro-precision and
F1-measure; and MDO in terms of macro-recall, F1-measure,
and G-mean. These statistically significant differences provide
strong evidence of MEXT’s superior performance compared
to the other evaluated oversampling techniques.

VII. DISCUSSION

The empirical findings affirm that oversampling method-
ologies, in general, can yield improvements in classification
performance when applied to multiclass imbalanced datasets,
as evidenced by the enhancement observed relative to the
baseline condition. However, the heatmap visualization (Fig.
6) reveals a discernible heterogeneity in the efficacy of these
techniques across the diverse datasets examined, with instances
of decreased performance observed post-oversampling. This
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Fig. 6. Heatmaps of the performance of the oversampling methods on 36 datasets.

TABLE II. STATISTICAL RESULTS FROM THE WILCOXON SIGNED-RANK TEST COMPARING MEXT AGAINST 5 OVERSAMPLING METHODS

Methods Precisionmacro Recallmacro F1macro G-mean
MEXT vs T R+ p-value T R+ p-value T R+ p-value T R+ p-value
SMOTE 157 404 0.0273 123 438 0.0049 132 429 0.0080 77 199 0.0636

ADASYN 183 412 0.0503 173 422 0.0333 180 415 0.0446 88 188 0.1283
SLS 154 441 0.0142 183 412 0.0503 126 469 0.0034 101 199 0.1615

MDO 213 382 0.1485 26 569 0.0000 75 520 0.0001 13 263 0.0001
DSRBF 218 377 0.1741 206 389 0.1177 216 379 0.1635 117 183 0.3458
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Fig. 7. Bar charts of the performances of the oversampling methods averaged across all datasets.
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Fig. 8. Bar charts of ranking on four measurements of the oversampling methods averaged across all datasets.

variability underscores the critical importance of considering
inherent dataset characteristics, such as the Multiclass Imbal-
ance Ratio (MIR), as pivotal factors in the selection of an
appropriate oversampling strategy.

The observation that all oversampling techniques, on av-
erage, resulted in enhanced performance compared to the
baseline condition suggests that addressing class imbalance is
a significant determinant of improved classification outcomes.
Nonetheless, the absence of statistically significant differences
in average performance among the six techniques (Fig. 7)
implies that the choice of oversampling technique alone does
not fully account for performance variation. This observation
necessitates a more comprehensive investigation into other
potentially influential factors, including but not limited to
classifier selection and hyperparameter optimization, which
may exert a substantial influence on classification performance.

The ranking analysis (Fig. 8) demonstrably illustrates that
MEXT consistently outperformed the comparative techniques
across all evaluation metrics, achieving both the highest av-
erage performance and the lowest average rank. This su-
perior performance is further substantiated by the statistical
significance demonstrated through the Wilcoxon signed-rank

test (Table II). These results provide compelling evidence of
MEXT’s effectiveness in mitigating the challenges posed by
multiclass imbalance, particularly when juxtaposed with both
binary and alternative multiclass oversampling techniques.

The statistically significant improvements of MEXT over
SMOTE, ADASYN, SLS, and MDO across multiple metrics
provide robust evidence for its efficacy. The consistent per-
formance of MEXT across all metrics suggests that it offers a
robust and effective solution for multiclass imbalanced learning
challenges.

VIII. CONCLUSION

This study introduces MEXT, a novel parameter-free over-
sampling technique designed to address the challenges of
multiclass imbalanced datasets. Building upon the EXOT algo-
rithm, MEXT enhances accessibility by utilizing a generalized
extreme anomalous score, thereby eliminating the need for
class-specific conversions. Furthermore, the inclusion of a
synthesis region shrinking mechanism ensures the generation
of high-quality synthetic data. The experimental results pro-
vide compelling evidence that MEXT consistently outperforms
state-of-the-art oversampling techniques, particularly in terms
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of the F1-measure across diverse datasets. This superior perfor-
mance, achieved without hyperparameter optimization, high-
lights MEXT’s potential as a valuable tool for researchers and
practitioners tackling multiclass imbalanced learning problems.

Like the SMOTE-variance algorithm, MEXT cannot di-
rectly handle categorical variables. The required transformation
of these variables to a numerical format is problem-specific
and must be addressed by the user. Looking ahead, future
research should focus on expanding the applicability of MEXT
to a wider array of domains and datasets, including those with
high dimensionality and complex data distributions. Specifi-
cally, investigating the algorithm’s performance on real-world
datasets with varying degrees of imbalance and noise would
provide valuable insights into its robustness. Moreover, while
MEXT is designed to be parameter-free, a thorough analysis
of the impact of potential hyperparameter configurations, such
as the parameters related to the synthesis region shrinkage,
would further refine its performance and provide a deeper
understanding of its behavior. Exploring adaptive mechanisms
for these parameters could also lead to further performance
gains. Additionally, integrating MEXT with other advanced
techniques like deep learning models for imbalanced data
could unlock new avenues for research and practical appli-
cations.
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