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Abstract—Hydraulic fracturing is a common practice in the oil
and gas industry meant to increase the production of oil and natu-
ral gas. In this process, appropriate fracturing design parameters
are important to maximize the efficiency of fracture propagation.
However, conventional fracturing parameter design methods often
rely on expert experience or fail to take into account complex
geological conditions, resulting in suboptimal parameter design
schemes. Therefore, this paper presents PPOHyFrac, a novel
paradigm for optimizing hydraulic fracturing parameters with
large language model and machine learning, which aims to
automatically extract, assess and optimize fracturing parameters.
PPOHyFrac uses advanced large language model to perform
the extraction of key parameters from hundreds of fracturing
design documents, and then refines the extracted data using
statistical methods such as missing value imputation and feature
normalization. Besides, the techniques in correlation analysis are
utilized to identify key influencing factors and finally machine
learning methods are implemented to optimize and predict the
key influencing factors. This paper also presents a comparative
study of five machine learning methods. Experiments show that
random forest is the best choice for parameter optimization and
can improve the prediction and optimization accuracy of key
parameters.
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I. INTRODUCTION

The global requirement for energy is increasing and never-
ending, leading to the increased demand to produce more
natural resources, such as oil and natural gas [1]. Hydraulic
fracturing, which is a technique that improves oil and gas
recovery worldwide, stands to improve high production effi-
ciency since it boosts flow movement of hydrocarbons into
low-permeability reservoirs. In this technique, a fluid mixture
with extremely high pressure is injected into the reservoir
to create fractures, and then proppants are used to keep the
fractures open so that oil or natural gas can flow smoothly into
the wellbore, and finally achieves the purpose of increasing
the production of oil wells [2]. Hydraulic fracturing improves
the efficiency in production and recovery rates through the
increased permeability of the rocks, which makes it an indis-
pensable technology in modern resource extraction [3].

However, optimizing the parameters from hydraulic fractur-
ing becomes a tough task due to the multiplicity of elements

involved, such as geological conditions, the propagation be-
havior of the fracture and rock mechanics. These components
tend to interact with one another frequently in a nonlinear
way, which makes it difficult to predict the effects that a given
design will have on the system. All of these add up to the
need to have a thorough understanding of reservoir dynamics
and the ability to sensibly tweak specific designs to particular
conditions [4].

In the traditional sense, hydraulic fracturing optimization
has largely relied on the experience of professionals and
numerical simulation [5], [6], [7], [8]. Although these solutions
can provide initial findings under certain conditions, there
are limitations in traditional hydraulic fracturing optimization
methods. The expert experience-based approaches are usually
historical and based on the operator’s expertise, while numer-
ical simulation approaches usually take more time to execute
and require updating every time new information is input. In
recent years, the rapid development of data-driven methods,
such as machine learning [9], [10], deep learning [11], [12],
and data mining [13], have greatly improved the ability to
model complex systems. These methods are good at extracting
potential patterns from large-scale datasets and identifying re-
lationships between variables, providing new ways to optimize
the production performance and design parameters of hydraulic
fracturing [14], [15], [16], [17].

Inspired by the rapid development of data-driven meth-
ods, this paper proposes the implementation of a data-driven
PPOHyFrac for optimizing hydraulic fracturing parameters
using large language model (LLM) [18] and machine learning
techniques [19] to systematically extract, analyze, and optimize
key fracturing parameters. The locally deployed large language
model QWen2.5 enables PPOHyFrac to automatically extract
key parameters defined by experts and build a high-quality
dataset. Data preprocessing and statistical analysis can help
identify and extract key parameters affecting the general design
of the overall fracturing scheme. For these extracted key
parameters, the model employs five classic machine learning
algorithms for prediction and optimization purposes, finally
determining the random forest algorithm as the optimum
strategy.The main contributions are as follows.

• We proposed a data-driven PPOHyFrac for optimizing
hydraulic fracturing parameters, which integrates an
LLM with traditional machine learning algorithms to
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systematically extract, analyze and optimize key frac-
turing parameters, thus enhancing oil well fracturing
production efficiency.

• Through the dedicated local LLM, a database of hun-
dreds of fracturing design documents from an oilfield
in China is constructed. The dataset spans a number
of fracturing modes, namely conventional fracturing,
repeated fracturing, and multi-stage fracturing, creat-
ing a rich basis for subsequent analysis and model
development.

• The correlation analysis enables identification of a
potential association among the retrieved fracturing
parameters. Experimental evidence suggests that Aver-
age Proppant-to-Liquid Ratio and Preflush Percentage
are the most important parameters affecting fracturing
performance.

• A comparative study of five different machine learning
techniques, such as neural networks, random forest,
linear regression, Bayesian ridge regression, and ridge
regression, shows that random forest is better than
other techniques, thereby providing the best result
along with its predictions for optimizing fracturing
parameters.

The remainder of the paper is organized as follows:
Section II introduces the related work. Section III describes
the methodology of our work. Section IV ”Experiment” has
detailed the experimental setup and results. And Section V
”Conclusion” summarizes our work and explains its practical
application.

II. RELATED WORK

Hydraulic fracturing is an important technology to increase
the production of aging oil wells, as it improves the flow
efficiency of gas and oil by creating fractures in the reservoir
rock. To achieve optimal economic benefits and operational
performance, it is essential to optimize the key parameters
in hydraulic fracturing. This section reviews the literature on
hydraulic fracturing parameter optimization. By analyzing the
strengths and limitations of these methods, we highlight the
motivation to develop PPOHyFrac proposed in this study.

A. Methods Based on Expert Experience

Methods based on expert experience have long been a cor-
nerstone in the optimization of hydraulic fracturing parameters,
particularly during the early development of the technology
[20]. Commonly, these methods are effective when geological
conditions close to the oil well appear to be relatively clear but
may fail in cases of greater complexity or greater uncertainty.
As noted by Mata and Zhou [21], these approaches usually
struggle in scenarios involving complex geological conditions,
where they may not be easily configured to the dynamic
and diverse character of geological environments, leading to
inefficiency and unsatisfactory results.

In addition, the reliance of personal experience and ex-
pertise is also evident in the process of selecting parameters,
which is the inherent limitation of expert-based methods [22].
Miskimins et al. further pointed out [23] that although expert
methods are valuable, they must be complemented by advanced

modeling and data analysis to address the challenges of to-
day’s unconventional reservoirs. Despite the defects mentioned
above, expert-based methods are still an indispensable part
of PPOHyFrac, as the final determination of key fracturing
parameters still requires in-depth participation of experts.

B. Methods Based on Numerical Simulation

Numerical simulation methods simulate fluid flow, rock
deformation and fracture propagation through computational
models to predict fracture behavior [24]. These methods take
a wide range of geological variables into account, and thus
provide better predictability than traditional methods [25].

Early numerical simulation methods relied on classical
models, such as the Kristianovich-Geertsma-de Klerk (KGD)
model and the Perkins-Kern-Nordgren (PKN) model [26].
These models usually perform well under relatively simple
geological conditions. However, they are based on some over-
simplified assumptions, such as linear elastic fracture mechan-
ics (LEFM), which assumes the formation is homogeneous,
isotropic and exhibits in the linear way. But according to Yang
et al. [27], the actual formations are generally heterogeneous
and anisotropic, which greatly limits the scope of applications
of these methods.

In recent years, with the continuous advancement of com-
puter hardware and numerical algorithms, advanced numerical
simulation methods such as the extended finite element method
(XFEM) [28] and discrete element method (DEM) [29] have
been widely developed and applied to hydraulic fracturing
simulation, which has significantly improved the simulation
accuracy. These models overcome the limitations of traditional
models in representing complex geological conditions, making
the numerical results more representative of the actual envi-
ronment. However, these methods also demand more powerful
computing resources and processing time, which still poses
challenges in practical application.

C. Data Driven Approach

Recent advancements in deep learning and machine learn-
ing have brought new solutions to hydraulic fracturing opti-
mization. These data-driven approaches are especially good
at capturing complex relationships between parameters, which
indicates a promising prospect for optimizing fracturing pa-
rameters [30].

Lizhe et al. [31] proposed a method that integrates nu-
merical simulation with machine learning to optimize the
production performance of hydraulic fracturing. They designed
a novel neural network (NN) structure to predict the net present
value (NPV) of fracture parameters through a pre-NN, and
transferred the learned weights to the main-NN to predict
the NPV of the treatment parameters. Morozov et al. [32]
constructed a digital database containing data from more than
5,000 multi-stage hydraulic fracturing operations in western
Siberia, and applied the CatBoost algorithm to develop a
production performance prediction model, achieving an R2

accuracy of 0.815, which builds a crucial foundation for further
optimizing hydraulic fracturing design parameters.

Despite these successes, data-driven methods still face chal-
lenges. Many existing methods are limited to certain aspects
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of the optimization process of the hydraulic fracturing design.
In addition, the comprehensive integration of data acquisition,
processing, and parameter optimization into a single workflow
remains a challenging task.

D. Summary of Limitations and Research Gap

Expert-based methods, while crucial in providing infor-
mation, generally tend to be subjective and not scalable.
Numerical simulations, on the other hand, improve the ac-
curacy of the forecast but are based on some oversimplified
assumptions and require excessive computational resources.
Modern data-driven approaches are indeed more promising,
but still tend to address narrow aspects of the optimization
space. The limitations mentioned highlight the fact that there is
a need for an overarching framework that supports the efficient
extraction of data, detailed statistical analysis, and advanced
machine learning strategies intended to improve hydraulic
fracturing parameters for diverse operating environments. This
identified requirement catalyzes the creation of our suggested
framework, PPOHyFrac, which utilizes a locally implemented
large language model (LLM) combined with traditional ma-
chine learning strategies to extract, analyze, and optimize key
fracturing parameters systematically.

III. METHODOLOGY

The proposed solution has streamlined hydraulic fracturing
optimization by extracting parameters, analyzing key parame-
ters, and predicting significant results using machine learning
algorithms, as represented in Fig. 1.

A. Parameter Extraction

1) Data Acquisition: Fracturing design documents, which
usually exist in unstructured formats, hold plenty of crucial
information essential for optimizing hydraulic fracturing oper-
ations. These documents are the foundation upon which most
data-driven methodologies are built, but the unstructured and
heterogeneous nature of these documents makes it difficult to
apply traditional data extraction methods, which forces the
use of advanced natural language processing techniques to
automate and streamline data extraction processes.

To this end, a locally deployed QWen2.5-7B large language
model was employed to ensure both data security and scalabil-
ity for efficient access. The model extracted six key parameters
from the unstructured fracturing design documents described in
Table I. The reasons for choosing QWen2.5-7B are as follows:

1) Although models with more parameters usually offer
higher accuracy, they also require more resources
and time. QWen2.5 with 7B parameters has shown
enough accuracy for content extraction without too
much resource crunch, time, and effort;

2) QWen 2.5 - 7B can accurately follow instructions,
generate long text, understand unstructured data for-
mat, such as docx, and produce structured formats
like JSON, and thereby ensure an exhaustive and
organized parameter extraction;

3) The robustness of QWen2.5-7B against different
types of tasks has enabled it to sustain a high level
of processing performance across diverse document
structures and formats;

TABLE I. EXTRACTED PARAMETERS FROM HYDRAULIC FRACTURING
DESIGN DOCUMENTS AND DESCRIPTION

Parameter Description
Total Fluid Volume The total volume of fluid injected during the fracturing

process, which typically includes water, chemicals,
and other additives. It is a key factor influencing
the fracture propagation and overall efficiency of the
fracturing job.

Average Proppant-
to-Liquid Ratio

The ratio of proppant (sand or other materials) to the
Total Fluid Volume. This ratio determines the effec-
tiveness of the fracture in terms of proppant transport,
fracture conductivity, and the ability to keep fractures
open under pressure.

Preflush
Percentage

The proportion of fluid used before the main fracturing
fluid, typically designed to help improve proppant
transport or clean the formation. It is crucial in op-
timizing the overall fluid performance and enhancing
fracture efficiency.

Fracturing Fluid
Type

The composition of the fluid used in the fracturing
process, which can vary from water-based to oil-based
or gel-based fluids. The fluid type affects fracture fluid
properties such as viscosity, temperature stability, and
proppant suspension ability.

Proppant Type The material used to prop open fractures, typically
sand, ceramic beads, or other engineered materials.
The choice of Proppant Type influences fracture con-
ductivity, proppant flowback, and long-term fracture
performance.

Pumping Rate The rate at which fracturing fluid is injected into the
wellbore. It influences fracture initiation, propagation,
and the overall pressure profile within the reservoir. A
high Pumping Rate may lead to more extensive frac-
tures, but careful management is required to prevent
damage to the formation.

4) The considerable extent of the context length sup-
ported by QWen2.5-7B guarantees that complex doc-
uments can be processed as a whole, preserving
contextual information and improving parameter ex-
traction accuracy.

As illustrated in Fig. 1, the LLM was equipped with well-
designed templates of instructions, which could systematically
mark the target parameters across various document types such
as free-text, tables, and mixed layouts.

Apart from targeting the extraction of critical parameters
from a wide variety of unstructured fracturing design docu-
ments, the PPOHyFrac also does this in a reliable way and
thus establishes a solid groundwork for future data analysis
and machine learning model development.

2) Missing Value Imputation: While LLM can successfully
automate parameter extraction, the final dataset has missing
values that result from inconsistent initial design documents.
Therefore, a non-parametric algorithm, the K-Nearest Neigh-
bors (KNN) imputation technique [33], is used to fill in the
missing parts. The KNN imputation technique estimates the
values of the missing parts based on the similarity of the
observations, which enables the filling values to have the same
distribution as the original data. It works in this way:

1) For each observation with missing values, calcu-
late the Euclidean distance to all other observations
using the available data. In an n-dimensional fea-
ture space, the distance between two observations
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Fig. 1. Schematic workflow: (a) A locally deployed LLM automatically extracts parameters identified by experts in geology and hydraulic fracturing, followed
by imputation and scaling performed. (b) We utilize Mutual information to analyze the parameters and identify the most influencial parameters. (c) We utilize

random forest to predict these parameters, optimizing the whole design.

a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) using
Euclidean method is defined as:

d(a,b) =

√√√√ n∑
j=1

(aj − bj)2, (1)

where d(a,b) represents the Euclidean distance be-
tween a and b;

2) For every observation o with missing data, the KNN
imputation algorithm identifies the k observations
(n1,n2, ...,nk) that have the smallest Euclidean dis-
tances to o. These nearest neighbors share a similar
distribution with the missing values, which is impor-
tant in statistical analysis.

3) For the missing feature xmissing in observation o, the
KNN imputation algorithm uses a weighted average
of the corresponding feature values from the k-nearest
neighbors to estimate its value. The estimation is
performed as follows:

xmissing =

∑k
i=1 wixi∑k
i=1 wi

, (2)

where xi is the missing value from the i-th nearest
neighbor ni, and di = d(o,ni) indicates the i-th
nearest neighbor’s distance of the target o from ni.
The weight wi =

1
di

is expressed as wi =
1
di

, which
means that it is inversely related to the distance from
o. With this weighted method, closer neighbors are

given higher influence on the missing value, which
in turn improves the imputation accuracy.

The KNN imputation approach is effective in dealing
with missing values through the use of inherent patterns and
similarities as it is stored in the dataset, which guarantees the
completeness and validity of the retrieved parameters.

3) Feature Scaling: Normalization and standardization are
performed during feature scaling with an aim to minimize
the effect of different magnitudes and the value range on
the optimization results. Data normalization refers to scaling
the input data within a uniform range, and this not only
maintains the relative size relationship between parameters
but also makes the algorithm treat all input features with the
same weight. The Min-Max normalization formula is given as
follows:

x′ =
x− xmin

xmax − xmin
, (3)

where x is the original value, and xmin is the smallest value,
xmax is the maximum value of the variable, and x′ is the
normalized value.

The data standardization method transforms the distribution
of the input data into a standard normal distribution with a
mean of zero and a standard deviation of one. The formula of
standardization is given as follows:

z =
x′ − µ

σ
, (4)
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where x′ is the normalized value of the feature, and µ is the
mean of the normalized feature, and σ is the standard deviation
of the normalized feature, and z is the standardized value.

The Fracturing Fluid Type and Proppant Type are written
in the categorical manner, while most machine learning algo-
rithms can only handle the numerical variables, thus they are
processed in the one-hot encoding manner. One-hot encoding
is a way of creating a new, binary-valued feature for every
category, the presence of a category is encoded by 1, while
the absence of a category is encoded by 0.

The combination of advanced techniques in natural lan-
guage processing with systematic data preprocessing, not only
ensures precise points in the analysis and modeling stages,
but lays a solid foundation for section Statistical Analysis and
Optimization of Key Parameters.

B. Statistical Analysis

The relationships among hydraulic fracturing variables are
inseparable from prioritizing the model’s most predominant
factors for predictive modeling. Mutual information (MI) is a
statistical concept that is used to measure the mutual depen-
dence between two random variables. MI can clearly show the
relationship between different variables of hydraulic fracturing.
It is also beneficial from the perspective of selecting the
relevant parameters which have a major effect on the hydraulic
fracturing process.

MI [34] is a measure of the quantity of information shared
between two variables, also presenting a nonlinear measure
of their dependence. In contrast to linear correlation coeffi-
cients, MI contains the account for both linear and nonlinear
relationships, making it more useful for examining hydraulic
fracturing data of complex nature. Traditional methods, such
as Pearson correlation [35], are only capable of detecting linear
dependencies. Whereas mutual information is able to depict a
wider range of relationships, which proves it is an efficient tool
in this study, where fracturing happens in a nonlinear manner.

However, MI is particularly suitable for discrete variables.
Given the fact that the extracted parameters include both dis-
crete and continuous variables, the next step is to categorize the
continuous variables before obtaining the mutual information
matrix. Quantile binning is a specific discretization method.
In this method, the data matrix will be weighted in k bins,
where each bin covers the same number of observations. This
procedure guarantees that each bin has equal frequency, which
is a great advantage, especially for databases with skewed
distributions.

Quantile binning allows the transformation of continuous
variables into discrete intervals such that one may easily
compute the mutual information matrix between all pairs of
parameters, whether they are naturally discrete or continuous.
This step of discretization is a very important preliminary step
for the accurate capture of the relationships between param-
eters and therefore influences the efficiency of the following
MI analysis in selecting the most informative variables with
regards to hydraulic fracturing optimization. Considering two
fracturing parameters, respectively represented by Zi and Zj ,

mutual information is defined as:

I(Zi;Zj) =
∑
zi∈Zi

∑
zj∈Zj

p(zi, zj) log

(
p(zi, zj)

p(zi)p(zj)

)
(5)

where p(zi, zj) is the joint probability distribution of Zi

and Zj , while p(zi) and p(zj) are the marginal probability
distributions of Zi and Zj , respectively. Fig 2 depicts the
results of the mutual information among all parameters.

Each element of the mutual information matrix will be
summed row by row to pick up parameters that have the
most influence on others, and the results are listed in Table II.
This approach gives a measure of the total influence of each
parameter on all other parameters in the system and clearly
shows the parameters that have the most impact on fracturing
performance. According to Table II, the Preflush Percentage
and Average Proppant-to-Liquid Ratio have relatively higher
total MI scores. As a result, it is reasonable to believe that
they play a more important role in the process of hydraulic
fracturing optimization. Therefore, it makes the optimization
work focus on the most impactful parameters to leverage a
better fracturing design with an enhanced overall efficiency
and success.

TABLE II. PARAMETER IMPORTANCE BASED ON SUM OF ROWS IN
MUTUAL INFORMATION MATRIX

Parameter Value
Preflush Percentage 3.125211

Average Proppant-to-Liquid Ratio 3.103264

Total Fluid Volume 2.988999

Fracturing Fluid Type 2.918993

Pumping Rate 1.886995

Proppant Type 1.642624

C. Optimization of Key Parameters

At the data analysis stage, all key parameters that need
to be optimized are identified methodically according to their
effect on fracking performance. Such target parameters are
those that will be predicted from other parameters as input
in the optimization step. According to such intrinsic patterns,
a good modeling of the relationship between input parameters
and target parameters will be done to make sure that the
learned relationships reflect the real-world successful fractur-
ing schemes.

To model these relationships, we employed five machine
learning algorithms: neural networks [36], random forest [37],
linear regression [38], Bayesian ridge regression [39], and
ridge regression [40]. Among them, the best performance,
according to the overall performance comparison, was obtained
using a random forest algorithm for the prediction of the target
parameter.

Random forest is a kind of ensemble learning approach
that joins the predictions from several decision trees to obtain
more accurate as well as stable results. In a random forest,
each decision tree is developed with a bootstrapped subset of
the training data, where samples are drawn with replacement
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Fig. 2. Mutual Information Matrix within Total Fluid Volume (TFV), Average Proppant-to-Liquid Ratio (AP), Preflush Percentage (PP), Pumping Rate (PR),
Fracturing Fluid Type (FFT), and Proppant Type (PT).

and independently of each other. Also, at each split of a
decision tree, only a random subset of features is contemplated
when determining the next best split. This technique leads
to a decreasing correlation between the individual trees and,
consequently, a better performance of the model model as far
as generalization is concerned.

The input to the random forest is given as Z, and Z is a 372
by 4 matrix in this study. The output Ẑ represents the predicted
mean values of the target parameter. Apart from classification,
random forest can also be adapted to the regression task, and
it takes the average of all leaf nodes’ outputs in the regression
task as the final prediction:

Ẑ =
1

T

T∑
t=1

ft(Z), (6)

where T denotes the total number of trees in the forest, and
ft(Z) is the forecast made by the t-th decision tree.

Each tree in the forest splits the data at its nodes according
to the best criterion that minimizes the prediction error. The
resultant output can effectively exploit the strength of this
ensemble to reduce overfitting and variance, thus the predictive
accuracy remains comparatively high. The unique integration
mechanism of the random forest is reliable in dealing with
the complex nonlinear relationship described among fracturing
parameters. These parameters then will be used to update the

original fracturing parameters:

X ← Ẑ (7)

IV. EXPERIMENT

A. Experimental Setup

This section presents the experimental setup and explores
the results derived from the proposed workflow. A com-
plete dataset was processed from 372 fracturing design doc-
uments from an oilfield in China with the application of
the QWen2.5-7B model. The dataset includes six important
hydraulic fracturing design parameters—Total Fluid Volume,
Average Proppant-to-Liquid Ratio, Preflush Percentage, Frac-
turing Fluid Type, Proppant Type, and Pumping Rate—which
further intern describes on the Table I. These parameters will
be used as the basis for predictive modeling and parameter
optimization.

To evaluate the relationships among parameters, we ap-
plied the mutual information matrix. However, some of the
parameters extracted from the documents are continuous and
the MI matrix requires discrete variables, thus the continuous
parameters were discretized with the KBins method with
n = 20 bins. In particular, this choice aimed to meet the need
for the greatest granularity of information while safeguarding
robustness against overfitting. Among the analyzed parameters,
Preflush Percentage, as well as Average Proppant-to-Liquid
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Fig. 3. Performance of imputation: The KNN method effectively addressed data sparsity by filling missing values in alignment with the existing data structure.
The mode and spread of all three parameters remained consistent after imputation.

Ratio have shown to have the strongest relationships with other
variables in the database.

Five machine learning models were used to predict the
Average Proppant-to-Liquid Ratio and Preflush Percentage,
and the remaining variables were used as input parameters.
The neural network architecture used here consisted of three
fully connected layers: an input layer with 64 neurons, a hidden
layer with 32 neurons, and an output layer equal to the number
of target parameters. The random forest model was configured
with 100 decision trees to be more predictive and robust.
Linear regression is the baseline model because it minimized
the residual sum of squares without regularization. Bayesian
ridge regression used Gaussian priors for the regularization
of model coefficients, and the strength of regularization was
adaptively estimated from the data. Finally, the ridge regression
used L2 regularization and set its strength parameter (α)
to 1.0, a balanced choice for both training accuracy and
generalization. These configurations were chosen with the aim
of investigating different modeling strategies.

B. KNN-Based Imputation

In this study, the Average Proppant-to-Liquid Ratio and
Preflush Percentage have been detected of missing values,
so the k-nearest neighbor (KNN) technique was used to fill

the missing values. Significant improvement before and after
imputation, both qualitative and quantitative, may be noticed
in Fig. 3. The imputation preserved the central tendency and
shape of the original distributions. For the Average Proppant-
to-Liquid Ratio, the imputation did not affect the generally pos-
itively skewed nature of the distribution, and it also smoothed
out sparsity in the tail region. The Preflush Percentage had
a central peak around 25% and had improved continuity
without the introduction of distortions, whereas for the Preflush
Percentage, centered around 40%, it maintained its overall
spread while filling gaps and enhancing smoothness. KNN
method amply resolved the challenge of data sparsity by filling
missing values in line with the structure already inherent in
the data. These histograms proved that the mode and spread
of the two parameters remain the same after imputation. The
frequency of values around the central peaks, especially for Av-
erage Proppant-to-Liquid Ratio and Preflush Percentage, has
significantly increased, which preserves important statistical
properties for further analyses.

C. Experimental Analysis

This section visualizes the distributions of important con-
tinuous parameters as violin plots and displays the frequencies
of discrete parameters as histograms. This section also builds
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Fig. 4. Violin plot of continuous parameters Average Proppant-to-Liquid
Ratio, Preflush Percentage and Pumping Rate.

a mutual information matrix to quantify the dependencies
between key hydraulic fracturing parameters.

Fig 4 shows violin plots for the distributions of the follow-
ing four critical continuous variables in hydraulic fracturing:
Total Fluid Volume, Average Proppant-to-Liquid Ratio, Pre-
flush Percentage, and Pumping Rate. The Total Fluid Volume
is right-skewed; most values lie below 300, indicating common
operational practices. The Average Proppant-to-Liquid Ratio
and Preflush Percentage are also relatively symmetrically dis-
tributed around the center of 25 and 40, respectively, which
could indicate consistent design patterns. The Pumping Rate
reflects a narrower range, clustering around 3 to 4, reflecting
its controlled nature in fracturing operations.

As shown in Fig. 5, Fracturing Fluid Type and Proppant
Type frequency histograms are highly concentrated in a few
categories. Regarding Fracturing Fluid Type, category 2 Guar
Gum Fracturing Fluid is used most, closely followed by
categories 3 Polymer Fracturing Fluid and 5 Low-Polymer
Fracturing Fluid, suggesting dependence on certain types
of fracturing fluids that may suit geological conditions and
operational requirements. A similar case is Proppant Type,
dominated by category 0 Quartz Sand, reflecting the prefer-
ence for a given proppant that will provide optimal fracture
conductivity and stability. Skewed distributions indicate that,
though several options are available, only a few types of fluids
and proppants have shown consistent effectiveness through hy-
draulic fracturing practices, likely due to compatibility with the
reservoir conditions and cost efficiency. Understanding these
parameters is essential for selecting and optimizing parameters
because dominant categories usually represent proven solutions
in prior successful fracturing designs.

Fig. 2 presents a Mutual Information Matrix. This matrix is
obtained by calculating the MI between six important hydraulic
fracturing parameters, and these six parameters are Total
Fluid Volume (TFV), Average Proppant-to-Liquid Ratio (AP),
Preflush Percentage (PP), Pumping Rate (PR), Fracturing

Fig. 5. Frequency histograms of discrete parameters Fracturing Fluid Type
and Proppant Type.

Fluid Type (FFT), and Proppant Type (PT). As shown in the
matrix, the Average Proppant-to-Liquid Ratio and Preflush
Percentage are more correlated with the other parameters, and
the color blocks in the corresponding areas are also darker.
For example, the MI between Average Proppant-to-Liquid
Ratio and Fracturing Fluid Type is 0.71, and this number
increases to 0.83 when MI is calculated between Average
Proppant-to-Liquid Ratio and Total Fluid Volume. Proppant
Type follows a similar rule to Average Proppant-to-Liquid
Ratio. All of the above information shows the dominance of
Average Proppant-to-Liquid Ratio and Preflush Percentage in
the fracturing process.

It is also worth noting that both Average Proppant-to-
Liquid Ratio and Preflush Percentage have relatively high
MI with Fracturing Fluid Type, which actually reflects the
influence of fluid choice on proppant behavior. In fact, the
efficiency of proppant transport and fracture conductivity is
directly related to the different types of fracturing fluids. For
example, guar gum and polymer-based fluids have different
rheological properties, which significantly affect the proppant
behavior. On the other hand, lower cumulative mutual infor-
mation scores are obtained for Pumping Rate and Proppant
Type, indicating that these parameters depend less on other
parameters in this dataset.

In all, the identification of Average Proppant-to-Liquid
Ratio and Preflush Percentage as the most relevant parameters
agrees with the basic principles of hydraulic fracturing, in
which the optimization of proppant concentration and preflush
strategy is of paramount importance in attaining effective
fracture propagation and improving the performance of the
reservoir.

D. Parameter Optimization

Feature selections were performed based on the results
obtained from mutual information analysis for the target pa-
rameters to be predicted and optimized in this work, namely
Average Proppant-to-Liquid Ratio and Preflush Percentage.
Five different machine learning models were used to predict
these target parameters. Performance comparisons are made
based on the mean squared error-MSE, the root mean squared
error-RMSE, the mean absolute error-MAE, R2 score, and the
maximum absolute error between the true value and the model
prediction value-Max Error.
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A total of five machine learning models in Table III and
Table IV display their performance in predicting Average
Proppant-to-Liquid Ratio and Preflush Percentage, respec-
tively.

TABLE III. PERFORMANCE COMPARISON ON PREDICTING Average
Proppant-to-Liquid Ratio.

Model MSE RMSE MAE R2 Max Error
Neural Network 0.008997 0.094850 0.063098 0.142182 0.339860

Random Forest 0.007582 0.087078 0.053089 0.277015 0.328058

Linear Regression 0.010878 0.104296 0.067682 -0.037174 0.395630

Bayesian Ridge 0.010783 0.103841 0.067177 -0.028151 0.380968

Ridge 0.010804 0.103941 0.067449 -0.030123 0.385983

TABLE IV. PERFORMANCE COMPARISON ON PREDICTING Preflush
Percentage

Model MSE RMSE MAE R2 Max Error
Neural Network 0.017676 0.132950 0.071928 -0.115064 0.542560

Random Forest 0.018345 0.135443 0.073504 -0.157274 0.595212

Linear Regression 0.014045 0.118512 0.074651 0.113971 0.493211

Bayesian Ridge 0.013969 0.118191 0.074049 0.118776 0.495936

Ridge 0.013683 0.116973 0.071300 0.136836 0.507866

From Table III, the random forest model has the best
predictive capability for Average Proppant-to-Liquid Ratio,
with the lowest MSE of 0.007582 and RMSE of 0.087078,
while the R2 score is high at 0.277015. What’s more, its
strong performance is further supported by the lowest MAE
of 0.053089 and a Max Error of 0.328058, hence it is reliable
to capture the underlying relationships of the target variables.
The neural network is also doing quite well, with an RMSE
of 0.094850 and MAE of 0.063098. However, the R2 score
of 0.142182 shows that it explains less variance in the target
compared to the random forest. On the other hand, linear
models such as linear regression, Bayesian ridge, and ridge
regression have larger errors and negative R2 scores, which
point out their inability to model the nonlinear trends within the
data. From Table IV, the ridge regression model yields the best
results for the Preflush Percentage with an MSE of 0.013683
and an RMSE of 0.116973, while the R2 score is very high,
equal to 0.136836. It follows that the ridge regression greatly
balances the prediction accuracy and generalization of the
model performance for this parameter. The Bayesian ridge
model runs relatively well, with a higher error but still a
positive R2 score at 0.120377. On the other hand, both the
neural network and the random forest model underperform.
The neural network shows an MSE of 0.17676 and a Max Error
of 0.542560, reflecting greater variability and lower reliability
in its predictions for this parameter. Taking into account both
targets and overall metrics, the random forest model proves
to be the most powerful method. It is very consistent when
forecasting the Average Proppant-to-Liquid Ratio, for which
it is ranked first among all models, and delivers competitive
results in the Preflush Percentage. Its capability to handle
nonlinear relationships and keep prediction errors low for dif-
ferent parameters makes it very robust for hydraulic fracturing
applications. Meanwhile, the interpretability and robustness of
the random forest against overfitting increase its practical value
in optimizing key fracturing parameters.

The plot of Predicted versus Actual Values using random

(a) Average Proppant-to-Liquid Ratio

(b) Preflush Percentage

Fig. 6. Prediction vs Actual: The random forest model performs
commendably for both Average Proppant-to-Liquid Ratio and Preflush

Percentage, accurately capturing dominant patterns and relationships within
the data.

forest model for the two most important parameters Average
Proppant-to-Liquid Ratio and Preflush Percentage is given by
Fig. 6. Most predicted values of Average Proppant-to-Liquid
Ratio in Fig. 6 (a) are very close to the red dashed line,
especially within the range from 0.1 to 0.3. That reflects that
the model has captured the underlying pattern and relationship
quite nicely; hence, predictions in most cases are very accurate
and reliable. Although there are minor deviations at higher
actual values, the values are very minimal and can be attributed
to data sparsity or variability in the higher range. These
small discrepancies do not take away much from the overall
performance, and the model is really robust to nonlinear
relationships.

Similarly, Fig. 6 (b) shows the model’s prediction accuracy
for the Preflush Percentage. Most of the data points are close
to the red line, and the low to medium range is well covered
between 0.1 and 0.4. This indicates the strength of the model
in general trends and thus it makes fairly reliable predictions.
There are a few outliers at higher values, which may be due to
class imbalance; that is, these higher values occur less in the
dataset. However, its strong alignment with actual values over
the majority range makes the model practically applicable and
reliable. Overall, the Random Forest model performed very
well for both Average Proppant-to-Liquid Ratio and Preflush
Percentage, capturing the dominant patterns and relationships
in the data quite well. Its robustness in handling nonlinear
dependencies makes it a reliable choice for predicting key hy-
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draulic fracturing parameters, with minor deviations providing
potential opportunities for further refinement.

V. DISCUSSION

A. Theoretical Implications

Our approach demonstrates that the integration of a large
language model with classical machine learning algorithms
can improve the efficiency of parameter optimization. By
automating parameter extraction and involving statistical anal-
ysis, PPOHyFrac implements a systematic framework that
streamlines the process of optimizing hydraulic fracturing
parameters. This integration proves the worth of data-driven
methods in capturing complex nonlinear reservoir dynamics
while opposing the simplistic conceptions of conventional
models.

B. Practical Considerations

PPOHyFrac is practically applicable as a scalable solution
for optimizing hydraulic fracturing parameters in different
geological environments. Automated data extraction of the
system reduces the effort and subjectivity of manual input. The
modularity of the framework also makes it possible to adapt
it so that it conforms to region-specific fracturing practices.
But its performance would still depend on the quality and
consistency of the input documents. Moreover, computational
requirements will still have to be taken into consideration,
especially for large-scale implementation.

C. Future Research Directions

Given that the dataset we use is collected from a specific
region, there may be limitations in its transferability and
generalization performance; thus, future efforts should focus
on obtaining wider datasets in terms of different types of
fracturing design documents so that generalization with the
model can be improved. In addition, PPOHyFrac mainly
focuses on optimizing key parameters in hydraulic fracturing.
Nevertheless, a complete hydraulic fracturing project needs to
address several other critical factors, such as wellbore design,
drilling optimization, environmental impact mitigation, and
operational safety, to maximize production efficiency while
minimizing operational risks. While PPOHyFrac is of positive
significance in simplifying the design of the fracking process,
its current scope does not encompass these broader operational
and ecological considerations. To achieve end-to-end optimiza-
tion, subsequent research could consider incorporating multi-
objective optimization methods to balance competing goals,
and other techniques such as active learning approaches may
also be a good choice for refining designs based on real-time
oil filed data.

VI. CONCLUSION

This paper proposes PPOHyFrac, a data-driven scheme
that pairs a locally deployed large language model with
classic machine learning techniques to optimize key hydraulic
fracturing parameters. This framework consists of automated
extraction of key parameters in unstructured documents, and
rigorous statistical analysis and machine learning models that
aim at predicting and optimizing fracture performance-related

parameters. By using the locally deployed LLM, we have
constructed a holistic dataset from 372 unstructured fracturing
design documents. Subsequent mutual information analysis
reveals that Average Proppant-to-Liquid Ratio and Pre-flush
Percentage have relatively higher influence on fracking per-
formance. Comparative experiments demonstrate that random
forest is the best choice for the optimization of hydraulic frac-
turing. In conclusion, PPOHyFrac bridges the gap between the
usage of unstructured data and the optimization of hydraulic
fracturing and also provides actionable and thoughtful insights
for sustainable energy extraction. Since the main focus of
PPOHyFrac is parameter optimization, future research will pay
more attention to build a comprehensive system that can be
applied to areas with complex geological conditions.
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