(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

Vulnerability Testing of RESTful APIs Against
Application Layer DDoS Attacks

Sivakumar K, Santhi Thilagam P
Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal, India 575025

Abstract—In recent years, modern mobile, web applications
are shifting from monolithic application to microservice based
application because of the issues such as scalability and ease of
maintenance.These services are exposed to the clients through Ap-
plication programming interface (API). APIs are built, integrated
and deployed quickly.The very nature of APIs directly interact
with backend server, the security is paramount important for
CAP. Denial of service attacks are more serious attack which
denies service to legitimate request. Rate limiting policies are
used to stop the API DoS attacks. But by passing rate limit or
flooding attack overload the backend server. Even sophisticated
attack using http/2 multiplexing with multiple clients leads severe
disruptions of service. This research shows that how sophisticated
multi client attack on high workload end point leads to a dos
attack.

Keywords—DDoS; rate-limiting; HTTP/1.1; HTTP/2; API; mi-
cro service; multiplexing; security; DoS; security testing

I. INTRODUCTION

The Application Programming Interface (API) acts as a
software intermediary between modern mobile and web ap-
plications, providing a wide range of services shared across
different platforms and consumers. APIs are built, integrated,
and deployed quickly. API offers several advantages, includ-
ing platform independence, scalability, flexibility, seamless
integration, security, and cost-effectiveness. Because of the
inherent advantages, APIs have emerged as a fundamental
aspect of modern technology, enabling various applications
and platforms to interact and share information. According to
Akamai 83% of all internet traffic are API calls.

The API economy is a strategic approach where orga-
nizations utilize Application Programming Interfaces (APIs)
to enhance accessibility to data and core capabilities, foster-
ing innovation both within and outside the organization. By
exposing APIs externally, businesses position themselves as
platforms, inviting third-party innovation. This creates new
avenues for market expansion, diverse monetization strategies,
and the potential to seize opportunities not achievable through
traditional methods. The API economy involves the controlled
exchange of digital data and services through APIs, encom-
passing the value exchange between providers and consumers,
both within and beyond a company. While an organization
adopts an API-driven approach internally, the primary focus
of the API economy is on business-to-consumer (B2C) and
business-to-business (B2B) interactions. Prominent examples,
such as Amazon Web Services (AWS), Twilio, Google Maps,
and Stripe, illustrate the transformative impact of participat-
ing in the API economy, where companies build, consume,
and expose APIs to accelerate development, enhance digital
experiences, and capitalize on market opportunities.

APIs come in various styles based on their own charac-
teristics and use cases. Those architecture styles are REST,
GraphQl, gRPC, WebScokets, Webhooks, and SOAP. Among
these REST is a widely adopted web service architectural style,
that offers simplicity, scalability, adaptability, cache-ability,
and security. REST uses HTTP methods(GET, POST, PUT,
DELETE) to perform operations on resources, which are repre-
sented as URLs. Since it is stateless in nature, REST API facil-
itates easy resource addition and efficient traffic management.
REST APIs are versatile, functioning across different platforms
while supporting caching, security protocols, authentication,
and authorization mechanisms, making it as a preferred choice
for web service development.An API ecosystem that consists
network of APIs that coexist and work together to provide a
valuable and differentiated experience for customers. It uses
tools, protocols, and standards to integrate and share data
between software systems. API management ecosystems work
to unite consumers and API providers to present a seamless
experience to customers. Successful companies treat APIs as
products and design, deliver, and manage it accordingly.

Robust API security is critical to protect sensitive user
data from rogue cyberattacks. Unauthorized access attempts
are frequent on APIs, and this has the potential to destroy
the company’s reputation as well as its finances. High-profile
data breaches have highlighted the need for robust security
measures. Hence, adequate security practices for APIs involves
access control, monitoring of API activities, vulnerability
testing, as well as covering security during the API devel-
opment. API Gateways are often fully responsible for access
control and rate limiting, but must cover vulnerabilities to
avoid susceptibility to denial of service attacks resulting from
misconfigured limits. API security is in the top 10 list for
2023, the main reason being also covered by Forbes [1]. As
noted in an Imperva report [2], its annual estimate for global
API-prompted cyber loss ranges between $41 and $75 billion.
APIs are the number one attack vector, with conséquence on
consumer privacy, public safety and intellectual property. Well
known breaches include the current Twitter API breach [3]
which exposed user personal data of as many as 200 million
accounts, the Optus breach [4] which exposed the PII of 2.1
million ordinary Australians, and T-Mobile API data breach
[5] affecting 37 million account holders. Apart from leaks,
unsecured APIs poses risks to public safety, as described
in the flaws found in the management system for Hyundai
and Genesis cars [6], which allowed to take control without
permission. Furthermore, there are API security weaknesses
similar to the CircleCI breach [7], which facilitates stealing
and exposing intellectual property.

Ignoring the security aspect, the API developers focus on
design implementations and fast API deployment. Thatexposes

www.ijacsa.thesai.org

1142 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

a whole range of weaknesses that undermine the API. API
security is of the utmost relevance due toits role in protect-
ing sensitive data, safeguarding business reputation, ensuring
regulatory compliance, allowing safe third-party integration,
preventing DDoS attacks, ensuring data integrity, preventing
monetary losses, managing authentication and authorization,
defending against injection attacks, blocking phishing, and
shielding intellectual property while facilitating safe DevOps.
To bridge the digital divide these positives must be clouded
with the right kind of API security measures that acts as
a first defense barrier against unwanted access, breach, and
downtime to maintain the data privacy, customer confidence,
and operational continuity. Security testing helps with identi-
fying weaknesses and vulnerabilities in the system allowing
threats to be minimized and the system to continue operating
unaffected by compromises. REST APIs are used by a lot of
big companies so security testing of them is very important.
But also, in the recent events, there have been denial of service
attacks, bot/scraping, weaknesses, and authentication issues.
Hackers uses such vulnerabilities to steal data, abuse accounts,
or disrupt services. With the growing amount of internet traffic
today and services that use APIs, it is important to protect
against the OWASP top 10 [8] API security threats parameter
through authentication and authorization like stealing a session
by using APIs to research data and expose sensitive parts. Most
of the papers in the literature focused on weak verification,
data leakage, and validation attacks. However, what is missing
is that resource exhaustion attacks by consuming the server
resources that affects the availability of the services. This paper
studies the application layer protocol security vulnerabilities
and their impacts on the API server.

The contributions of this paper are as follows:

e Analyzing the OAS document, Discovering and iden-
tifying the target endpoints.

e Generating legitimate API requests based on attack
types using single requests or multiple requests.

o Testing the API through the requests sent using either
HTTP/1 or HTTP/2 protocol.

e Analyzing the results obtained from the experimental
study.

The organization of the rest of the paper is as follows:
Section II provides an overview of API testing and API
vulnerabilities and attacks. Section III describes the problem
which is addressed. Section IV describes the API security
testing on the application layer. Section V specifies the attack
methodology. Section VI describes the experimental setup and
testing procedures. Section VII presents the findings, while
Section VIII concludes this paper by highlighting the future
research directions.

II. RELATED WORK
A. RESTful API Testing

Most of the applications are not open source, the testing
of Restful APIs is black box in nature. The bugs or errors
generated from testing are either service unavailability or
related to web security since the back end of API is similar
to traditional web services. Many of the testing methods are

Vol. 16, No. 3, 2025

trying to identify errors or bugs from the response status code
500.

1) General API testing methods: RESTTESTGEN [9] is a
black box testing approach in which it reads the OpenAPI spec-
ification for identifying the operation dependencies among the
parameter. It builds an Operation Dependency Graph(ODG)
based on data dependencies between two operations. There
it creates sequences of test cases to test APIs. It classifies
based only on status code and does not incorporate a feedback
mechanism. RESTLER [10] testing approach is a kind of
bottom-up approach where it generates a test case for a single
API and adds more API call sequences by trial and error by
identifying resource dependencies between API endpoints. The
limitation of this approach is that the search space for API
testing is large since it doesn’t have the knowledge of how
APIs are connected.

Another approach MOREST [11] builds a Restful-service
Property Graph(RPG) for single APIs, after each API test-
ing, the graphs are dynamically updated. It is similar to
RESTTESTGEN building graph based on resource dependen-
cies but also has more details such as equivalence relation
between schemas. Also, it incorporates an execution feedback
mechanism to dynamically update the graph. Predicting the
request parameter value or input parameter value for test case
generation using the ML/DL model is another important aspect
of testing where test case generation depends on the parameter
value. MINER [12] uses a neural network model to predict
the critical input or request parameter values. RESTest [13]
is an open-source black-box testing framework for RESTful
web APIs, addressing limitations of existing automated API
testing tools that rely mainly on random fuzzing. RESTest
enhances API testing by incorporating constraint-based testing,
adaptive random testing, and fuzzing techniques, leveraging
API specifications such as the OAS document.

Quickrest [14] finding faults by exposing misalignment
between specification and implementation. It not only analyzes
the response codes but also explores more properties of the
response. It also tests the SUT(System Under Test) with
agnostic input data and data that conformance to the parameter
specification. The testing method [15] focuses on checking
the robustness of the services, thereby identifying the bugs
and security vulnerabilities. By giving unexpected or invalid
input,it triggers a residual fault that is not detected during
verification and validation. Commercial tools such as Post-
man [16], RESTAssured [17], ReadyAPI [18]and APIFortress
[19] provide less automation since the test cases are written
manually and then executed.The above-mentioned methods are
black box techniques that are focused on parsing OpenAPI
specifications, generating test case sequences, and predicting
the input value for parameters. These testing strategies also
look into the response or feedback on HTTP status code 500
but do not focus on security vulnerabilities.

2) Penetration testing methods: Simulated attacks are con-
ducted to identify vulnerabilities in the System Under Test
(SUT). These tests are conducted through human composition
of test cases or executed automatically. Notable tools include
ZAP (Zed Attack Proxy) and the Web Application Attack and
Audit Framework (W3AF). These tools uncovers vulnerabili-
ties, but only for specific API operations. Furthermore, it fails

www.ijacsa.thesai.org

1143 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

to identify dependencies, hence neglecting to recognize multi-
API vulnerabilities in RESTful services.

NAUTILUS [20] incorporates annotations in the OpenAPI
specification papers by recognizing the interdependencies of
operations and parameters. Valid and modified payload se-
quences are generated as test cases. This work primarily
addresses injection vulnerabilities, including SQL injection,
XSS, and command injection, which are significant types of
vulnerabilities resulting from inadequate management of user
inputs. Nonetheless, it does not identify additional risks, in-
cluding inadequate resource management, compromised access
control, and absence of rate limiting.VoAPI [21] proposed
vulnerability-targeted testing by identifying the API functions
from the OpenAPI specifications that are vulnerable and con-
ducting security testing on those functions. Instead of testing
a large space of all API sequences, this method identifies
the API interfaces which are having some keywords related
to vulnerability. This reduces the time of indiscriminately
traversing all API interfaces.

B. API Vulnerabilities and Attacks

Web Service Application Programming Interfaces (APIs)
are essential to contemporary web development, facilitating
smooth communication and integration across various software
systems. The growing complexity and interconnectivity of
these APIs provide considerable security threats, as it became
targets for attackers aiming to exploit flaws and undermine
the security of web applications. This literature survey seeks
to examine the current research and methodologies pertaining
to vulnerability detection.

The Open online Application Security Project (OWASP)
published the 2017 top 10 critical security vulnerabilities for
online apps, based on the contributions of over 40 application
security organizations and an industry wide survey of more
than 500 participants. This massive dataset contains vulnerabil-
ities identified in various organizations, alongside over 100,000
real applications and APIs. The same goes for OWASP, which
updated its TOP 10 threats in 2023 and then identified the
latest risks and security issues in APIS so that developers and
security professionals takes further steps to mitigate it.

1) Broken object level authorization: Broken object-level
permission issue—this is when the API does not properly
restrict object level actions based on user rights. This situation
allows users to modify any API object regardless of rightful
permissions [22]. As shown in the work of [23], malicious
actors leverages this vulnerability to recover sensitive infor-
mation and perform illicit operations. This vulnerability is due
to insufficient methods to control access as well as poor tests
of these controls. Malicious actors exploits this vulnerability
by tampering requests for accessing unauthorized resources
[24]. An attacker exploits a request to gain access to another
user’s data or escalate their privileges to perform actions not
within their designated access level. This vulnerability was
demonstrated, for example, in the Facebook Cambridge Ana-
Iytica affair. A breach of Facebook’s application-programming
interface (API) was exploited by a third-party, providing the
party without approval,access to and ability to extract user data.
As a result, Facebook faced a major data breach and a huge
hit on its brand [25].

Vol. 16, No. 3, 2025

2) Broken authentication: As per the research of [26],
broken authentication is a vulnerability when an API does
not adequately authenticate users, and attackers gain access
to the system without valid credentials. Brute force attacks,
session hijacking, and credential stuffing are some of the ways
this vulnerability are exploited. The failure to utilize complex
passwords that aren’t easily deduced by potential attackers
leaves accounts vulnerable, as failure to implement multi-
factor authentication or secure session management. In gen-
eral, attackers then exploits this vulnerability by stealing user
credentials and using these credentials to access the system
[27]. The Equifax data incident is a concrete example of this
vulnerability. In this case, attackers exploited a vulnerability in
Equifax’s API to gain access to sensitive consumer data. Over
143 million people found that their personal data had been
stolen from this breach, causing millions of dollars in damage
and a loss of trust in Equifax [28].

3) Excessive data exposure: Researchers [29] illustrate that
excessive data exposure becomes a vulnerability when an API
discloses more data than necessary, encompassing sensitive
information or user credentials. Malicious actors exploits this
vulnerability to obtain unauthorized access to sensitive infor-
mation or execute operations without appropriate authoriza-
tion.The causes contributing to this vulnerability include in-
sufficient data sanitization and validation, poor implementation
of access controls, and the use of unsecured data storage.
Attackers exploit this vulnerability by dispatching precisely
formulated queries to obtain sensitive data, as detailed by [30].

4) Lack of resources and rate limiting: The inadequacy of
resources and lack of rate limiting represent a vulnerability that
arises when an API fails to sufficiently limit the number of per-
missible requests, thereby allowing attackers to overwhelm the
system with requests and launch denial-of-service attacks.The
causes contributing to this vulnerability include inadequate rate
restriction, the use of susceptible or easily predictable API
keys, and insufficient monitoring of anomalous traffic patterns.
Attackers exploit this vulnerability by sending a large number
of queries to the API, which overwhelms the system and causes
it to become unresponsive, as noted by [31].

5) Broken function level authorization: The work by [22]
demonstrates that the broken function level authorization vul-
nerability occurs when an API fails to limit access to certain
functions or operations according to user roles or permissions.
The author in [32] demonstrated that this vulnerability exposes
the potential for attackers to execute unauthorized actions
within the system, such as manipulating or erasing sensitive
data. This vulnerability, generally resulting from insufficient
access control implementation, typically occurs due to the
inability to validate user permissions prior to allowing action
execution.

6) Mass assignment: The study conducted by [33] touches
upon the concept of mass assignment vulnerability. The vul-
nerability happens when a user modifies multiple properties
of an object with one requestby the APIL If the attackers
exploit this vulnerability, it changes the sensitive information
or gain unauthorized access. According to [34] this type of
vulnerability is mainly triggered due to lack of user input
validation or lack of proper access control mechanisms. Vari-
ous approaches have been suggested to avoid mass assignment
vulnerabilities. The work [35] proposed a rule-based solution

www.ijacsa.thesai.org

1144 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

TABLE I. SUMMARY OF RELATED WORKS

Reference

Testing Approach

Payload Generation

Description

Limitations

Viglianisi et al. [9]

Model Based

Data Observed in Previous
Response And Malformed In-
puts

Builds Operation dependence
graph and generate test se-
quence based on the graph

No feedback mechanism to
update the graph and checks
only HTTP 500 status code

Liu et al. [11]

Model Based

Last Successful Response
Value, Example and Random

Building Restful service graph
based resource dependencies
and equivalence resource
schema, test case generation
using the graph and feedback
mechanism to update the
graph

Identifies only bugs/errors not
identifying vulnerabilities

Stefan Karlsson et al. [14]

Model Based

Custom Input Generators

Property based on
OpenAPI documents and
responses from the request,
finding faults or bugs by
analyzing misalignment
between specification and
implementation

No security vulnerability de-
tection capabilities.

Atlidakis et al. [10]

Fuzzing

Input Data Dictionary

Based on producer-consumer
dependencies and dynamic re-
sponse feedback mechanism

Testing space is large

Martin-Lopez et al.[13]

Fuzzing and Constraint Based

Test Data Generators

Testing using constrain based
and fuzzing input generation ,
online testing and offline test-
ing

Only 5xx and 4xx errors, not
enough for testing complex
API

lyu et al. [12]

Fuzzing

Dictionary and Previous Value

Deep learning model predict-
ing the input or parameter val-
ues

No security testing

Laranjeiro et al. [15]

Fuzzing

Valid and Malicious Inputs

Testing the robustness of ser-
vice by giving valid, boundary
values and malicious inputs,
detection of user input related
vulnerabilities such as SQL
injection, XSS

Other than injection vulnera-
bilities, OWASP TOP 10 API
vulnerabilities not verified

Deng et al. [20]

Penetration Testing

Data Observed in Previous
Response, Example, Mutated
and Random

Identifying the dependencies
of operation and parameter,
valid and mutated payload se-
quences of test cases are gen-
erated

It fails to find other vulnera-
bilities such as improper re-
source management, broken
access control, and lack of
rate limiting

Du et al. [21]

Penetration Testing

Previous Response, Example,
Random

Identifying the API functions
from the OpenAPI specifica-
tions that are vulnerable and

Detection and verification vul-
nerability is limited, supports
only OpenAPI formats.

conducting security testing on
those functions

to identify and mitigate mass assignment vulnerabilities in
RESTful APIs. This is done by defining rules about what
characteristics of object types are modified by which user roles
or permission. When it gets a request, the system checks the
rights of the user and apply rules that are needed, if the user
is allowed to change the properties. Attacks involving Mass
Assignment generally consist of attackers sending adjusted
requests with extra parameters, or changing the values of
supplied parameters. For example, an assailant uses a user’s
account information and make a request with the boolean field
on; if the API does not validate this parameter, the assailant
is having admin rights.

A security misconfiguration is a type of vulnerability in
which API is implemented with insecure settings like default
passwords, extra functionality enabled. The attackers used this
vulnerability to gain unauthorized access to the system or
to perform malicious acts [36]. Such vulnerability is mainly
due to the lack of configuration management techniques, such
as not disabling unnecessary features, enabling unnecessary
services, and using default passwords [37]. Security miscon-
figuration is described by [38] as a scenario wherein an API
exposes certain resources or functionalities to everyone as a
value. This is due to weak access control settings or incorrect
API authentication methods configured by the developers. This
vulnerability is exploited by attackers to acquire sensitive data

or do actions on behalf of another user.

7) Injection vulnerability: Injection vulnerabilities happen
when an attacker attempts to insert code into an API, includ-
ing SQL or code injections, and incorporates these itself as
such in the research of [39]. This flaw allows attackers to
run random code throughout the system and get access to
confidential data. This vulnerability often results from inad-
equate input-validation or missing access-control measures.
Many researchers have come up with various approaches to
mitigate injection vulnerabilities. For example, a technique was
proposed in, that leveraged both static and dynamic analyzes to
identify injection vulnerabilities in RESTful APIs. It consists
of the static analysis of the APIs source code to find injectable
points and dynamic analysis techniques to assess the APIs
behavior based on different conditions.

C. Rate Limiting

API gateways are a type of tool that help organizations
manage,and aggregate their APIs, addressing key components
like access control, rate limiting, and IP block lists. Because it
is reactive, developers must register the APIs that are managed
manually. API gateways are usually deployed inside of your
organizations infrastructure, departmental level, and in cloud
env. For web services, a commonplace functionality, that is

www.ijacsa.thesai.org

1145 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

provided by API Gateways is rate limiting. Its used to limit
how many times the client makes a request to an API within
a specific time to avoid overloading the system and fair use
among users. Here, rate limiting is done to prevent no of traffic
or no of request which lead to server overload or downtime or
degraded performance. Rate limiting prevents abuse of the API
by controlling the number of requests that requests are received
by the server in a specified timeframe, thereby ensuring that
resources are fairly allocated among users. Various types of
rate limiting configuration are implemented including rate of
requests (per second, minute, hour) as well as user/client-based
rate limits on API Gateways. In addition, some API Gateways
enable you to define rate-limiting rules pr. API endpoint,
which is helpful in situations where different endpoints have
different usage patterns or needs. APIs without rate limiting are
vulnerable to Denial-of-Service (DoS) or brute-force attacks
on the API, causing extensive damage to the platform. In API
Gateways, Rate limiting is implemented to protect such attacks
and protect the underlying system from abuse or misuse.

There are several types of rate limiting mechanism avail-
able, including:

e [P-based rate limiting: This form of rate limiting
confines the quantity of requests originating from a
specific IP address within a designated time interval.
This is effective in deterring abusive conduct from an
individual user or a collective of users utilizing the
same IP address.

e User-centric rate restriction: This form of rate limiting
confines the quantity of requests submitted by an
individual user within a certain time interval. This is
effective in mitigating abusive conduct from users who
submits several requests.

e Token-based rate restriction: This form of rate limiting
confines the quantity of requests executed with a
certain access token or API key inside a designated
time period. This is effective in mitigating API misuse
by a certain client.

e Request-based rate restriction: This form of rate lim-
iting constrains the quantity of requests directed to a
specific API endpoint during a designated time period.
This is effective in mitigating abusive conduct that are
directed against a specific endpoint.

While API gateways provide rate-limiting features to pro-
tect APIs from abusive behavior, some aspects of API usage
are not fully captured by rate limiting alone. Some examples
include:

e Malicious intent: Rate limiting is not be sufficient to
protect against malicious intent, such as targeted at-
tacks aimed at causing denial-of-service or brute-force
attacks to guess authentication credentials. Additional
security measures, such as authentication and access
control, are needed to prevent such attacks.

e Complex use cases: Some API use cases involve
complex workflows that involves multiple API calls
within a short period of time. Rate limiting mechanism
is able to distinguish between legitimate and abusive

Vol. 16, No. 3, 2025

behavior in such cases, leading to false positives or
false negatives.

e Traffic spikes: Rate limiting is typically designed to
handle steady-state traffic patterns. It is not effective
in handling sudden spikes in traffic, such as those
caused by events like product launches or marketing
campaigns.

e Geolocation: Rate limiting based solely on IP ad-
dresses are effective in preventing abusive behavior
from users who are using VPNs or other proxies to
hide their location. Because rate-limiting features of
API gateways are not fully capture certain aspects
of API usage, such as malicious intent, complex
use cases, traffic spikes, and geolocation, the API
gateways are vulnerable to attacks that exploit these
limitations.

D. Rate Limit Vulnerabilities

Rate limiting is a security mechanism that restricts the
number of requests made to an API or web application within
a certain timeframe. There are several rate-limiting algorithms,
each with its own advantages and limitations.

1) Token bucket algorithm: This algorithm allows a fixed
number of tokens to be used within a fixed time interval.
Tokens are generated at a constant rate and are stored in a
“bucket”. When a request is made, a token is removed from
the bucket and the request is processed. If there are no tokens
left in the bucket, the request is denied until more tokens
are generated. This algorithm is simple and efficient but the
challenge is to tune correctly for varying traffic patterns.

2) Leaky bucket algorithm: This algorithm works by col-
lecting requests into a bucket at a constant rate, with excess
requests overflowing from the bucket and being discarded.
Requests are processed at a constant rate, and the bucket
empties over time. This algorithm handles bursts of traffic but
it is inefficient when dealing with smaller requests.

3) Fixed window algorithm: This algorithm allows a fixed
number of requests to be made within a fixed time interval. If
a client exceeds this limit, all requests are denied until the next
time interval begins. This algorithm is simple and efficient but
leads to bursts of traffic at the start of each time interval.

4) Sliding window algorithm: This algorithm is similar to
the fixed window algorithm, but instead of a fixed time interval,
the time window slides over time. This allows for a more even
distribution of requests and is more responsive to changes in
traffic patterns. However, it is more complex to implement and
it leads to uneven traffic distribution if the sliding window is
not appropriately sized.

However, rate-limiting mechanisms are vulnerable to at-
tacks and when it is bypassed or circumvented , allows an
attacker to send the requests exceeding the threshold and
perform unauthorized actions.

The following are some common techniques that attackers
use to bypass rate limits:

e Using null chars: Attackers uses null characters (%00,
%0d%0a, %09, %0C, %20, %0) to bypass rate limits.

www.ijacsa.thesai.org

1146 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

For example, appending a null character to an email
address allows an attacker to continue brute-forcing.

e Adding spaces: Attackers add spaces to usernames
or email addresses to bypass rate limits. Some web
servers strip off extra spaces, allowing an attacker to
continue brute-forcing by appending a space each time
the attackers are blocked.

e Host header injection: Attackers modifies the Host
header of the request to confuse the server after being
blocked. Changing the Host to a different domain or
IP address confuses the server, allowing an attacker to
bypass the rate limit.

e Changing cookies: Attackers change the session
cookie after being blocked by the server. By figuring
out which request sets the session cookie, an attacker
updates the session cookie each time an attackers are
blocked.

e X-forwarded-for: Attackers changes the X-forwarded-
For header to confuse the server or load balancer after
being blocked. This technique allows an attacker to
bypass the rate limit by forwarding the request to
another host.

e Confuse server with correct attempts: Attackers con-
fuses the server by performing just under the max-
imum number of attempts before using the correct
credentials to log in. This technique allows an attacker
to bypass the rate limit by appearing to be a legitimate
user.

e Updating target paths: Appending a random parameter
value to the target path sometimes allows an attacker
to bypass the rate limit on the endpoint. This technique
involves brute-forcing a target path until the attacker
is blocked, then appending a new parameter value and
repeating the process.

e [P-Based rate limits: Attackers bypasses IP-based rate
limits by changing their IP address or using an IP-
rotate Burp extension.

There has been significant research on how to effectively
test REST APIs, with various methods and tools proposed
in the literature as given in the Table I. One approach in-
volves using a combination of manual and automated testing
techniques. Automated testing methods typically include using
API testing frameworks, such as JUnit, Postman, or SoapUI,
to test various API endpoints and validate their responses.In
addition, researchers have proposed various methods for gen-
erating test cases and test data for REST APIs. One such
approach is the use of combinatorial testing, where a set of
test cases is generated by combining different input parameters
and values systematically. Another approach is the use of
model-based testing, where a formal model of the API is
used to automatically generate test cases based on different
input and output scenarios.Despite these advances, there are
several limitations to existing REST API testing methods. One
major limitation is the lack of standardization and guidelines
for testing REST APIs, which leads to inconsistencies and
variations in testing approaches. Another limitation is the
difficulty of testing complex APIs with multiple endpoints

Vol. 16, No. 3, 2025

and dependencies, which makes it a challenging to validate
all possible combinations of input and output scenarios. In
addition, automated testing approaches are not able to catch
all possible errors or bugs, as it relies on predefined test cases
and miss edge cases or unexpected scenarios. Finally, the lack
of effective monitoring and reporting mechanisms makes it
difficult to track and analyze API performance and identify
potential issues in real-time.

E. Research Gaps

In existing works, very few research works have considered
the impact of resource exhaustion attacks in RESTful APIs,
particularly in the context of application-layer DDoS attacks,
but are not adequately covered in existing studies. While vul-
nerabilities such as weak authentication, data leakage, and in-
jection attacks are well-covered, the way attackers exploit API
endpoints to flood server resources and bringservices down,
remains poorly understood. Half-baked research includes ad-
vanced tactics like HTTP/2 multiplexing, which allows attack-
ers to send multiple high-load requests over a single TCP
connection, and rate-limiting attack strategies. Most current
threat detection systems are insufficient in their ability to pro-
vide focus on high-workload endpoints or simulate multi-client
attacks, leaving a gaping knowledge gap on how orchestrated
attacks could deplete server resources. Furthermore, existing
tools cannot fully assess resource exhaustion, highlighting the
need for more sophisticated solutions to manage these complex
attack vectors. The current work endeavours to address this
gap, investigating the exploitation of application-layer proto-
cols (specifically HTTP/1.1 and HTTP/2) to trigger resource
depletion attacks, thus providing guidance on mitigating such
weaknesses in RESTful APIs.

III. PROBLEM DESCRIPTION

More and more web applications are accessed through
mobile, web, or devices, and cybersecurity is paramount, with
relentless hackers targeting organizations daily. As the industry
shifts towards microservices architecture from monolithic, the
need for cutting-edge cyber threat detection remains crucial.
Recent times have seen the emergence of Application Layer
Distributed Denial of Service (DDoS) attacks, focusing on
fundamental aspects like CPU, memory, cache, disk, and net-
work within microservices which is called as resource exhaus-
tion attacks. Yet, modern application complexity introduces
intriguing attack vectors, as illustrated in scenarios where
microservices interact through API Gateways. Simultaneously,
implementing rate limiting in API Gateways is essential for
shielding backends from traffic surges, but it must be done
carefully to prevent overloading. By sending a low volume of
requests which are asymmetric workload requests, exhausting
the resources of the server. This study’s objective is to perform
a vulnerability testing on microservices through REST API
requests, in the presence of Rate limiting in API Gateway.

IV. SECURITY TESTING OF API BASED ON APPLICATION
LAYER PROTOCOL

When requesting to access a service through an API, a
client application sends a request to the Origin server routed
through an API Gateway that includes information such as
the requested resource and any necessary parameters. The

www.ijacsa.thesai.org

1147 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Origin server then processes the request, which involves au-
thentication, data retrieval or modification, and other tasks, it
internally calls some external APIs before sending a response
message back to the client. The specifics of how an API
requests to a server varies, but the basic idea of sending a
request and receiving a response remains the same. HTTP/2
multiplexing aims to minimize the overhead of requesting
and receiving resources by serving it over various streams.
However, multiplexing has introduced some security concerns.
It eliminates the need for a large number of bots to launch
attacks since it enables multiple requests to pass through a
single TCP connection at the same time. Furthermore, there
are no restrictions on the types of requests that are multiplexed
together, allowing attackers to bundle multiple API Requests
into a single connection and force the server to process it
concurrently. This results in a denial of service (DoS) scenario
if computationally expensive requests are combined to form
an attack payload, rather than random base requests [40].
Although rate limiting is a commonly implemented measure
to prevent DDoS attacks, it is not foolproof and has vulner-
abilities that attackers exploit to bypass the threshold limit
set. These weaknesses enables attackers to launch successful
attacks, despite rate limiting being in place.

Little’s law is a theorem in queuing theory, which provides
a relationship between the average number of customers in a
queue (L), the arrival rate of customers (\), and the average
time a customer spends in the system (W). The formula for
Little’s Law is typically expressed as:

L=Xs«sW (D

This is applied to API management infrastructure not
directly but the principles are applied here to optimize the
performance and capacity. The Eq. 1 is rewritten as

N=Xx*R)

Where N is throughput, X is Request Per Second(RPS) and
R is average response time.

For example, if the origin server throughput is 7(i,e.N) and
the response time is 1 ms(R), then the request per second is
7(X). This shows that when the response time is within the
normal time limit, the origin server provides the maximum
throughput. However, in a large distributed system, this is
not happening in real time, and these requests have to spend
more time in places such as memory, CPU cores, queues,
cluster interfaces, connection pools, disk space, and thread
pools because of topology changes, network failures, high-
workload requests, request dependencies, race conditions, and
synchronization issues. When high-workload requests are sent
to the server, the CPU takes more time to execute affecting
the latency. The absence of a rate limit is even worse when
multiple high-workload requests are sent to the server. So Rate
limit is a better mechanism to overcome this situation. How-
ever, this mechanism is bypassed using various mechanisms.
One of the methods is using the HTTP/2 multiplexing feature
to send multiple high-workload requests to the server. Multiple
requests combined in the form streams in a single request.
API gateway which enforces a rate limit is not be able to

Vol. 16, No. 3, 2025

differentiate it. This makes more number of requests going
to the endpoints. This increases the load of the endpoint and
that leads to the unavailability of services to the legitimate
clients.Therefore, when the response time or latency increases
for the above reasons, the requests per second decreases.
This implies that the number of requests for the origin server
process decreases. When more and more requests are queued
this increases the latency and, eventually lead to the failure of
the server. So even though the rate limiting is implemented in
the API Gateway, that is not going to be the cause of the server
failure. In this paper, it shows that high-workload API requests
and dependency requests take more time to process, thereby
increasing latency, subsequently affecting the throughput and
leading to server failure [40].

A. Symmetric Attack

Introducing a security threat referred to as the ”symmetric
single-client attack”. In this scenario, multiple identical attack
requests are generated by the attacker, including the use of the
same URL and parameters, primarily through the transmis-
sion of POST requests. These requests are executed within
a single TCP packet. This type of attack poses significant
risks, especially in scenarios where no rate limit is enforced
on the services.Each of these requests demands significant
computational resources to generate a response. Consequently,
the absence of a rate limit on the server, combined with
multiple symmetric high-workload requests, has the potential
to overwhelm a server with just a few attacking systems.
This becomes especially detrimental when targeting a single
high-workload endpoint. Moreover, the threat intensifies when
the HTTP/2 protocol is employed, as the attacker leverages
its multiplexing feature to further strain the computational
resources of the server when executing attacks on services
lacking rate limits.The proposed attack is known as the “’sym-
metric multiprocessor attack”. In this attack, the aggressor
concurrently creates multiple clients, each of which carries
numerous similar attack requests that are permissible by the
server within a single TCP connection. These requests were
launched simultaneously, exerting a substantial workload on
the server. Even in the presence of rate-limiting measures, this
attack has the potential to disrupt server operation, particularly
when a large number of processes run in parallel. Similar
to a single-client symmetric attack, this threat is even more
pronounced in the presence of the HTTP/2 protocol, both at
the server and application levels.

B. Asymmetric Attack

In the “asymmetric single-client attack”, the attacker ini-
tiates numerous unique attack requests, employing various
URLs or parameters, all within the server’s defined limits
for a single TCP connection. These requests are executed
sequentially. Much like symmetric single-process requests, this
attack places substantial computational demands on generating
responses. Furthermore, it presents a challenge when the server
enforces a rate limit, as each request is distinct and stays
within the defined traffic limit. In this asymmetric multi-client
attack’, multiple clients simultaneously send requests, each of
which carries distinct attack requests. These requests adhere
to the server’s allowable limits for a single TCP connection
and are executed concurrently. Similar to symmetric multi-
client requests, this attack places significant demands on the

www.ijacsa.thesai.org

1148 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

computational resources for response generation. Additionally,
it presents a challenge even when a rate limit is enforced at
the server because each request is unique and does not exceed
the specified traffic limit.

V. ATTACK METHODOLOGY

Prior to launching a symmetric or asymmetric attack on
APIs for vulnerability Testing of REST API web services
against application layer DDoS, certain prerequisites must be
arranged. This testing has been done to find the vulnerability
in rate limiting and the features of HTTP/2. The steps involved
in this process are outlined below. OAS document which
contains the API endpoints information such as operations and
parameters. Also end points are identified from other sources
such as client code which is basically Javascript code. Using
the web scrapper go through the each every link and discover
the end points which are not described in the OAS document.
Similarly through reverse engineering the mobile application
code the hidden endpoints are identified. Using all these as
input for this algorithm which greatly added source to add
more details about the endpoint and other meta data details
which is helpful for generating requests as well as analyzing
the endpoints which are heavily loaded or not.

A. Discovering Endpoints

To discover all the API endpoints of a web application, em-
ploy a comprehensive approach blending manual exploration
and automated tools as given in Algorithm 1.

Algorithm 1 Discovering Endpoints

Input: OAS document, Client Code, Mobile App,
Output: Endpoint List
while Traverse Endpoints do
Update the Endpoint list with operation and parameter
values
end while
while Traverse Client-side code do
Extract Links in the document
while Traverse All Links do
Update the Endpoint list with operation and param-
eter values
10: end while
11: end while
12: Extract Endpoints from APK file using Diggy tool
13: Update the Endpoint list with operation and parameter
values
14: Return: List of Endpoints

ROz

R I

B. Identifying Target Endpoint

To pinpoint the crucial endpoints required for the optimal
operation of the application or business, employing methods
such as monitoring response times, identifying key business
functions, and assessing error rates.The input parameters such
as endpoint list with operations and parameter values is of
much important to analyze the endpoints to identify the weak
endpoint or heavily loaded endpoints in which any requests
ends up with this endpoint as discussed in the Algorithm 18.
After sending the requests to the API server, based on the

Vol. 16, No. 3, 2025

responses and response code it is analyzed to identify the
requests which is having more latency. These requests are
maintained in the list for further use.

Algorithm 2 Identifying Target Endpoints

1: Input: Endpoint List with List of Operations and Param-
eter Values.
Output: Endpoint List High Response Time
while Traverse Endpoints do
while All Operations done do
Sends the request to the server with valid inputs
Analyze the Status code
if Response Code is 200 then
Updates the response time for the current re-
quest with parameter value in the Response list
9: else

e N o

10: Add the Endpoint to the Error list with the
count.

11: end if

12: end while

13: end while

14: while Traversing Response list, Error list do

15: Update the Higher Response time Endpoints to Target
list

16: Update the Target list by selecting more error-prone
Endpoints

17: end while

18: Return: List of Target Endpoints with Operations and
Parameter values

One approach is to monitor the response time of mi-
croservices. High-workload endpoints typically have slower
response times due to the high volume of requests as it
receives. Monitoring tools like New Relic or AppDynamics
to track response times and identify any endpoints that are
taking longer than usual to respond. High workload endpoints
are also identified by analyzing error rates. Endpoints that
are experiencing high workload are prone to more errors,
and status codes 503,520,509 and 429 are going to be an-
alyzed. Look for endpoints that are critical to the business
functions of microservices. These endpoints are more prone
to high workloads due to their functionality.Using the above-
mentioned techniques, it is possible to detect certain high-
traffic endpoints are selected as targets for launching an attack
aimed at overwhelming the systems with an excessive number
of requests.

C. Attack Approaches

After the target API endpoints are identified, then the next
step is to select an attack vector to perform the attack. Analysis
of the endpoint operations and parameter values is also very
crucial to generating the attack request so the request is a high
workload. Different kinds of possible attack scenarios are as
follows: The high workload request of the target endpoint is
taken and sent multiple times to the server. This is done with
HTTP/1.1 or HTTP/2 requests. The request that has the highest
computation workload is “w,” where “x” is the request that
took the highest computation power to respond. The operation
of the type request must be unique since all requests are
intended to perform the same operation (for example POST

www.ijacsa.thesai.org

1149 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

operation). These requests are sent in flooding or multiplexing
mode. In an asymmetric attack, different types of multiple
requests are sent to the target API endpoint. These multiple
requests are sent to the server as flooding of requests or
multiplexing mode. Here operation to be selected to perform
the attack are combination of different operations such as
GET/POST/PUT/DELETE.After selecting the type of attack
the attacker goes with either single client or multi-client.

e Single client: When the attacker wants to attack by
sending more requests one after another from one
client then the attacker goes with a single client attack.

e Multi-client: When the attacker wants to attack by
sending multiple requests from different clients.

When the server and application support the HTTP/2
protocol then the attacker utilizes the features of the HTTP/2
protocol to attack the target endpoint. One of the features
chosen as attack vectors is:

e Multiplexing: HTTP/2’s multiplexing feature enables
attackers to send multiple requests as a single
request with help streams by which a single TCP
connection is only required to be sent, resulting in the
server receiving and executing these requests nearly
simultaneously.

D. Test Case for Testing Symmetric Attack with Single/Multiple
Clients

In this testing scenario, the objective was to identify the
endpoint that imposes the most significant computational load.
Subsequently, a symmetric attack is initiated by dispatching
multiple requests of the same type of operation to the identified
endpoint, utilizing either a single client or multiple clients as
given in the Algorithm 3. Throughout the attack, the applica-
tion’s response times, CPU usage, and error rates were contin-
uously monitored. The primary aim is to validate the resilience
of the application, ensuring that it withstands an attack without
a substantial surge in error rates or system crashes. Addition-
ally, it is vital to ascertain that the application is efficiently
handling the heightened workload without adversely affecting
the performance of the other endpoints within the system.
The anticipated results involve the successful identification
of the high-load endpoint, subjecting it to an attack without
critical failures, and ensuring minimal disruption to the overall
performance of the other endpoints.The parameter API request
describes the request list which is used to generate the attack
request either symmetrically or asymmetrically. The execution
count parameter specifies the number of times the requests to
be generated and sent to the server.Client count describes the
number of clients used in this study, High workload request,
weak endpoint, more number of requests sent and finally client
count are greatly influencing the outcome of the results in
which CPU usage is varying from different levels.

1) Test case for testing asymmetric attack with sin-
gle/multiple clients: The objective is to launch an symmetric
attack using multiple clients based on the Algorithm 4 shown,
sending numerous requests to the identified rate-limited end-
point, with variations in the request headers or body content

Vol. 16, No. 3, 2025

Algorithm 3 Symmetric Attack

1: Input: API Request, ExecutionCount, ClientCount

2: Output: CPU Load

3: Select the Endpoint from the Target Endpoint List created
based on Algorithm 2

4: Construct the API Request using CURL or Shell Script
consisting of Endpoint, Operation, and Query Parameter.

5: if Single Client then

6: while ExecutionCount not NULL do
7: Run the attack script

8 Update the CPU usage

9: end while

10: elseMultiple Client

11: while ExecutionCount not NULL do
12: For Each Client do

13: Run the attack script

14: Update the CPU usage

15: end while

16: end if

17: Return: Final result

aimed at potentially circumventing these rate limits. Through-
out the attack, there is continuous monitoring of the application
response times, CPU utilization, and error rates. The primary
objective is to determine whether the application is effectively
handling an attack or whether it experiences a notable increase
in error rates. Additionally, it is essential to establish whether
the application sustains a heightened workload without ad-
versely impacting the performance of other endpoints within
the system. The expected outcomes encompass the successful
identification of the rate-limited endpoint, execution of an
attack challenging rate limit, potential response time delays,
and an evaluation of the application’s resilience in this testing
scenario, including its impact on other endpoints.

Algorithm 4 Symmetric Attack

1: Input: API Requests, ExecutionCount, ClientCount

2: Output: CPU Load

3: Select an Endpoint from the Target Endpoint List and
Select a set of workload API Requests from the list based
on Algorithm 2

4: Construct the API Request using CURL or Shell Script
consisting of Endpoint, Operation, and Query Parameter.

5: if Single Client then

6: while ExecutionCount not NULL do

7 Run the attack script

8: Update the CPU usage

9: end while

10: elseMultiple Client

11: while ExecutionCount not NULL do
12: For Each Client do

13: Run the attack script

14: Update the CPU usage

15: end while

16: end if

17: Return: Final result

2) Test case for testing HTTP/2 multiplexed attack: An
HTTP/2 multiplexed attack is initiated where multiple requests
are transmitted to the identified endpoint within a single

www.ijacsa.thesai.org

1150 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

TCP connection. Throughout this attack, there is continuous
monitoring of the application response times, CPU utilization,
and error rates. The primary objective was to validate whether
the application effectively withstand an attack without en-
countering a significant increase in error rates or experiencing
crashes. Furthermore, it is essential to evaluate whether the
application manages the increased workload without adversely
affecting the performance of the other endpoints within the
system. The anticipated outcomes involve the successful iden-
tification of the HTTP/2-compatible endpoint, execution of
the multiplexed attack to assess the application’s resilience,
potential response time deceleration, and an assessment of the
attack’s influence on the performance of other endpoints. The
following Algorithm 5 describes the steps for this testing.

Algorithm 5 Multiplexed Attack

1: Input: API Requests, ExecutionCount, ClientCount

2: Output: CPU Load

3: Select an Endpoint from the Target Endpoint List and
Select a set of workload API Requests from the list based
on Algorithm 2

4: Construct the API Request using CURL or Shell Script
consisting of Endpoint, Operation, and Query Parameter.

5: Send Multiple Requests as chunks and send as different
streams with stream identifiers.

6: if Single Client then

7: while ExecutionCount not NULL do

8: Run the attack script

9: Update the CPU usage

10: end while

11: elseMultiple Client

12: while ExecutionCount not NULL do

13: For Each Client do

14: Run the attack script
15: Update the CPU usage
16: end while

17: end if

18: Return: Final result

VI. IMPLEMENTATION DETAILS
A. Application Analysis

To do attacks, the application should be micro-service-
based. For this, the chosen application is the SockShop Appli-
cation which is a micro-service-based demo application. The
architecture of the application in Fig. 1 is as follows. The
application comprises eight microservices, each with distinct
responsibilities. The front-end microservice is responsible for
user interface interactions, presenting information, and gather-
ing user input. The User microservice manages user accounts,
including authentication and authorization, and handles user-
related data and access controls. Catalog oversees product
information and catalog data, offering insights into available
products. Carts are responsible for shopping cart management,
enabling users to add, modify, and oversee items in their
carts during catalog browsing. The payment handles pay-
ment processing, transaction management, and user payments.
Shipping focuses on order fulfillment and logistics, including
tracking and delivery. Order oversees the entire order lifecycle,
from order recording to processing, and inter-micro-service

Vol. 16, No. 3, 2025

communication coordination. Lastly, the Queue-Master likely
manages message queues and orchestrates background tasks
and event-driven processes across microservices.The applica-
tion also contains data services comprising Users-DB, Carts-
DB, Catalogue-DB, Orders-DB, and Shipping-DB. These data
services are responsible for storing and managing user in-
formation, cart contents, product catalog data, order details,
and shipping-related information within the application. Also,
it plays a crucial role in ensuring the application functions
smoothly by providing the necessary data to the micro-services
when needed.

B. Experimental Test Setup

The test bed setup, as depicted in Fig. 2, involves the
processing of requests through a series of systems. Initially, the
requests encounter an Apache server, which is HTTP/2 enabled
and serves as a reverse proxy. This server redirects the requests
to a Tomcat embedded server, responsible for spring boot
applications. A spring boot client serves as an API gateway and
implements rate limiting for the business applications APIs.
The rate limit policy is implemented based on three different
aspects, namely, X-API-KEY, IP, and USER. For X-API-KEY,
requests starting with ”AX001” have a limit of 100 requests
per minute, while those starting with ”B.X 001" have a limit of
70 requests per minute. Requests starting with other characters
have a limit of 50 requests per minute. The rate limit policy
based on IP/USER allows a limit of 100 requests per minute for
each unique IP/USER. This rate-limiting approach is inspired
by the official Twitter API rate limit documentation. Valid
requests that fall within the rate limit are processed further
by the spring boot services, which contain the business logic.

In the proposed setup, the target is a Spring Boot
framework-based application, specifically a Microservice Ap-
plication hosting APIs on an Eclipse-embedded Tomcat server.
This application runs on a Lenovo ThinkCentre M910t system,
equipped with an Intel® Core™ i7-7700 CPU operating at
3.60GHz x 8, and it runs the Ubuntu 21.10 operating sys-
tem. The objective is to subject these applications to attacks
designed to overload CPU performance while considering the
rate limits and usage of the HTTP/2 protocol. The setup was
designed to accommodate both the HTTP/1.1 and HTTP/2
protocols, and rate limiting was enforced through the API
Gateway. Additionally, a performance comparison was per-
formed between HTTP/1.1 and HTTP/2 by attacks carried out
with varying numbers of requests.

C. Attack Tools

Tools like Net-Hunter for API fuzzing with Wordlists and
the ZAP scanner for endpoint identification were employed to
identify all the endpoints. A Python, Shell, or Go script was
crafted to evade rate limits by dynamically altering request
headers (specifically, X-API-KEY in our scenario) for each
new request, with the intention of overwhelming the target
server. The decision on whether to use symmetric or asymmet-
ric attack requests was made based on specific requirements.
These attack requests were executed both individually and
concurrently, utilizing multiprocessing on a Linux platform.
Additionally, the combination of Burp Suite and Curl facili-
tated the sequential execution of request attacks.

www.ijacsa.thesai.org

1151 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

1_> -

DB

D
T O

Reverse
Proxy

Vol. 16, No. 3, 2025

Queue-
Master
Microservice
Replicas

Microservice

Data Store

HTTP

Fig. 1. SockShop application architecture.

D. Launching the Attack

The fourth and final step in an attack involves initiating
the actual attack. This is done using any HTTP request
generation tool that is compatible with HTTP/2.In this testing
procedure, the process initiates with configuring an HTTP
request generation tool, specifying the use of the HTTP/2
protocol, and setting it up to send requests to the designated
target endpoint. The choice between a symmetric or asym-
metric attack is made, and in cases involving multi-client
approaches, the tool is configured to generate multi-client
requests and establish multiple TCP connections. The attack
is set in motion by instructing the tool to dispatch requests
to the target endpoint, and simultaneous monitoring of the
target endpoint’s response times, CPU utilization, and error
rates begins. Success is validated by observing a significant
surge in response times and/or error rates, indicating the
attack’s effectiveness in overwhelming the target endpoint.
Anticipated outcomes involve the tool’s ability to execute the
attack as intended, alongside notable spikes in response times,
CPU usage, and error rates exhibited by the target endpoint,
confirming the successful execution of the attack, resulting in
the target endpoint’s unresponsiveness or error generation.

1) Attack using HTTPX library: Python script was writ-
ten to launch Symmetric and Asymmetric attacks using the
HTTPX library and by changing the headers of the request to
bypass the rate limit for HTTP/1.1 to test the CPU utilization
of the servers and this attack brings down the targeted server
with this attack.

2) Attack using CURL: The shell script was written to
launch Symmetric and Asymmetric attacks using CURL and
by changing the headers of the request to bypass the rate limit
for HTTP/1.1 and HTTP/2 to test the CPU utilization of the

servers and this attack brings down the targeted server with
this attack.

3) Attack using GO multiplexing: Go language script was
written to launch a Symmetric and Asymmetric attack using
the multiplexing feature for HTTP/2 to test the CPU utilization
of the servers and this attack brings down the targeted server
with this attack.

4) Attack using Multiprocessing: Python script was written
to launch a Symmetric and Asymmetric attack using a multi-
processing library to test the CPU utilization of the servers and
this attack brings down the targeted server with this attack.

VII. RESULTS AND DISCUSSION

A. Performance Comparison of HTTP/1.1 and HTTP/2 Under
a Symmetric DDoS Attack

Fig. 3 displays a comparison of the performance between
HTTP/2 and HTTP/1.1 in various scenarios under symmetric
attack by sending multiple same requests where the rate limit
is placed at the target server. In particular, Fig. 3a and Table
IT shows the CPU usage when the requests with low or
normal workload and 3b and Table III show the performance
of HTTP/1.1 with a single client symmetric attack with and
without SSL under heavy workload request respectively. These
HTTP/1.1 requests were generated using the CURL command
and shell script, to send multiple same requests, but it incurs
higher CPU usage combined with SSL than without SSL. Fig.
3c along with Table IV and 3d along with Table V exhibit the
performance of HTTP/1.1 multi-client with and without SSL,
respectively, using five and fifteen clients. When the number of
clients increases the CPU consumption exponentially. Fig. 3e
demonstrates the performance of HTTP/2 with multiplexing

www.ijacsa.thesai.org

1152 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

System 1
Request
—_— Apache Server
(Reverse Proxy)
—
Response

1

1

1

1

1

1

1

1

1

]
HTTP2 enabled !
1

1

1
=

Redirecting to
Spring boot client

Monitoring Apache
server status to analyse
the incoming requests

Vol. 16, No. 3, 2025

- - == -

Spring Boot Client
(Embedded tomcat server)

System 2 : i

If request is
within rate limit

Spring Boot Service

(U1 + Rate Limit)
HTTP2 enabled

1

1

1

1

1

I

1 (Embedded tomcat server)
1

: (Services)
1

1

1

1

Fig. 2. Test bed setup.

using a Go language script and CURL shell script. HTTP/2
outperforms HTTP/1.1 CURL with SSL and exhibits higher
CPU usage than HTTP/1.1 using the HTTPX library. The
better CPU usage of HTTP/2 is due to various attributes,
such as multiplexing, header compression, and server push
compared with Fig. 3c and 3d. Fig. 3f displays the performance
of HTTP/2 multiplexing with five and fifteen clients. For high
workload requests, HTTP/2 multiplexed requests, result in high
CPU usage and effectively bring down the target server. If no
rate limit is placed at the target server it brings down the server
with even less number of requests (Tables VI to IX).

TABLE IV. COMPARISON OF CPU USAGE WITH AND WITHOUT SSL FOR
DIFFERENT NUMBERS OF HTTP/1.1 REQUESTS USING 5 MULTIPLE

CLIENTS
No. of Requests CPU Usage with CPU Usage with-
SSL (%) out SSL (%)
500 20 50
1000 20 55
1500 25 55
2000 25 50

TABLE V. COMPARISON OF CPU USAGE WITH AND WITHOUT SSL FOR
DIFFERENT NUMBERS OF HTTP/1.1 REQUESTS USING 15 MULTIPLE

CLIENTS
TABLE II. COMPARISON OF CPU USAGE WITH AND WITHOUT SSL FOR .]
DIFFERENT NUMBERS OF HTTP/1.1 REQUESTS USING HTTPX CLIENT No. of Requests CPU Usage with | CPU Usage with-
LIBRARY SSL (%) out SSL (%)
500 30 90
No. of Requests CPU Usage with | CPU Usage with- 1000 50 95
SSL (%) out SSL (%) 1500 45 95
300 20 20 2000 50 95
1000 20 25
1500 20 27
2000 20 30
TABLE VI. COMPARISON OF CPU USAGE WITH AND WITHOUT SSL FOR
DIFFERENT NUMBERS OF HTTP/2 REQUESTS USING GO AND CURL
SCRIPT
Nor o ety | CPU Ui i | CPU e i
. CURL Script (%) GO Script (%)
No. of Requests CPU Usage with | CPU Usage with- ?880 2(5) §§
SSL (%) out SSL (%)
500 30 5 1500 25 25
1000 %5 %0 2000 30 35
1500 35 65
2000 30 60

B. Performance Comparison of HITP/1.1 and HTTP/2 Under
a Asymmetric DDoS Attack

Fig. 4 displays a comparison of the performance between
HTTP/2 and HTTP/1.1 in various scenarios under asymmetric

attack by sending multiple different requests by changing
request headers where the rate limit is placed at the target
server. In particular, 4a shows the performance of HTTP/1.1
with a single process asymmetric attack with and without
SSL, respectively. The HTTP/1.1 CURL with and without
SSL is written in shell script and uses the curl command

www.ijacsa.thesai.org

1153 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

HTTP/1.1 using CURL

Vol. 16, No. 3, 2025

HTTP/1.1 Multiprocessing using 5 process

HTTP/1.1 using HTTPX 100 . . — . 100 ; i i i
100 T T T T HTTP/1.1 with ssL —{lk HTTP/1.1 with ssL — il
HTTP/1.1 with ssL — il HTTP/1.1 without SSL —@ HTTP/1.1 without SSL —@
HTTP/L.1 without SSL —@ 80 | i a0 |]
80 |- .
- 2 [S =
] = 6ol P 5 8 <60 - 1
g ©f i g l/. & 5 B
& a &
3 S S a0
3 =] 40 |- - o E
> af R 5 o o 5
d s o o—o 0o ©
_,4'—'—* L o — i = .
20 | = 9 i 20 20
o 1 1 1 1 1] - - - -
0 . 5:19 mlon 15'00 20'00 2200 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Number of requests Number of requests
Number of requests
(a) HTTP/1.1 Using HTTPX (b) HTTP/1.1 Using CURL (c) HTTP/1.1 Using 5 Multiple Clients
HTTP/1.1 Multiprocessing using 15 process HTTP/2 using CURL and Go HTTP/2 Multiprocessing
120 T T T T 100 T T T 120 - - .
HTTP/1.1 with sSL —{il HTTP/2 Go — ik HTTP,2 using 5 process —{ili
HTTP/1.1 without SSL —@F HTTP/2 CURL —@ HTTP/2 using 15 process —@
L] 20 | e 100 | i
100 P— s =
= g - oo 4
£ & L] £
£ gt i L 60 S sof i
& -4 &
@ a &
El 2 El
S 60} . 2 40r 1 > 60} PN 8
o o) | & . - ~——
; e —¥—u—0 —a -
e 20 1
40 | . 40 .
L 4
0 1 L 1 L
20 ’ y g y 0 500 1000 1500 2000 2500 20 y) y y
0 500 1000 1500 2000 2500 o 500 1000 1500 2000 2500

Number of requests

(d) HTTP/1.1 Using 15 Multiple Clients

Number of requests

(e) HTTP/2 Using CURL and Go

Number of requests

(f) HTTP/2 Using Multiple Clients

Fig. 3. The Correlation between CPU usage and the number of requests in an HTTP/2 server during a Symmetric DDoS attack.

HTTP/1.1 using CURL

70 - - — T
HTTP/1.1 with ssL —ilk
60 |- HTTP/L.1 without SSL —@— |
50 //,‘- .
F R
o 40 b
o
3
3 3 e —8 4
3
& &
5] P
20 | E
10 B
0 L L L L
o 500 1000 1500 2000 2500

Number of requests

(a) HTTP/1.1 Using Single Client (CURL)

HTTP/1.1 vs HTTP/2 multiprocessing using 15 process

T T

120 | HTTP/2 —l-
HTTP/1.1 with SSL —@

110 - HTTP/1.1 without S5L .
100 | PR S 2

£ gt e

o | o

=]

T 80 f g

E

2 T0f .

[}
60 |- g
50 |- .
“ar 1 1 1 1]

[500 1000 1500 2000 2500

Number of requests

(b) HTTP/1.1 and HTTP/2 Using Multiple Clients

Fig. 4. Comparison of CPU usage and request handling between single and multiple clients in HTTP/1.1 and HTTP/2.

to send multiple different requests, but it incurs higher CPU
usage with SSL. Fig. 4b exhibit the performances of HTTP/1.1
requests when it is sent from multiple clients with SSL or
Without SSL respectively. Also, it depicts the CPU usage when
HTTP/2 multiplexing requests are sent from multiple clients.
When the number of clients increased thereby increasing the

number of asymmetric requests. When high-workload requests
are processed by the server, latency increases thereby reducing
the throughput of the system. When more and more requests
are coming to the server, either those requests are queued or
rejected even if it’s a legitimate request. With a low volume of
request rates, HTTP/2 multiplexing results in high CPU usage

www.ijacsa.thesai.org

1154 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE VII. COMPARISON OF CPU USAGE WITH AND WITHOUT SSL FOR
DIFFERENT NUMBERS OF HTTP/2 REQUESTS USING 5 AND 15 MULTIPLE

CLIENTS
No. of Requests CPU Usage for 5 CPU Usage for 15
Clients (%) Clients (%)
500 50 90
1000 45 95
1500 60 95
2000 50 90

TABLE VIII. ASYMMETRIC ATTACK: COMPARISON OF CPU USAGE WITH
AND WITHOUT SSL FOR DIFFERENT NUMBERS OF HTTP/1.1 REQUESTS
USING SINGLE CLIENT

No. of Requests CPU Usage with | CPU Usage with-
SSL (%) out SSL (%)

500 20 50

1000 35 45

1500 30 50

2000 35 55

TABLE IX. ASYMMETRIC ATTACK: COMPARISON OF CPU USAGE WITH
AND WITHOUT SSL FOR DIFFERENT NUMBERS OF HTTP/1.1 AND
HTTP/2 REQUESTS USING 15 MULTIPLE CLIENTS

No. of | CPU Usage | CPU Usage | CPU Usage
Requests for HTTP/1.1 | for HTTP/1.1 | for HTTP/2
with SSL (%) | without SSL
(%)

500 40 95 85

1000 45 100 90

1500 50 90 95

2000 45 95 95

and effectively bring down the target server even if the rate
limit is employed.

C. Discussion

Particularly with HTTP/2 multiplexing and multi-client in
our experimental settings, the suggested method consists of
a sequence of tests to find resource depletion attacks that
can effectively stress RESTful APIs. This work compared
with [40] where requests are generated and tested using web
application and URL. But this work took the OAS document
and identifying the endpoint which is heavily loaded and then
it generated the API requests using the endpoint and its opera-
tions. From the CPU utilization statistics shown in the table and
the picture, it is evident that HTTP/2 generates a higher server
workload than HTTP/1.1. For symmetric attacks, for instance,
HTTP/2 multiplexing with 15 clients caused CPU use spikes
of 95% compared to HTTP/1.1, which reached 65% under the
identical loading conditions. This highlights both HTTP/2’s
potential for misuse in DDoS attacks and its efficiency in
letting several requests concurrently. Moreover, Asymmetric
Attack findings revealed that several request-important aspects
put the API server under great pressure since the CPU limit can
reach 95% even with the Rate-limiting. Based on the findings,
SSL with non-SSL scenarios shows that encryption causes
fairly little overhead, suggesting that the true bottleneck is
on the request-processing side rather than the encryption side.
Research by Lookout emphasizes the need of using advanced
detection techniques and stronger rate-limiting mechanisms to
assist in defense against such complex application-layer DDoS
attacks—including those using HTTP/2 capabilities.

Vol. 16, No. 3, 2025

VIII. CONCLUSION

DDoS attacks remain a serious threat to online services
and continue to evolve in sophistication and scale. Recent
years have seen an increase in the frequency and intensity of
DDoS attacks, as well as the emergence of new attack vectors
and techniques. Defending against DDoS attacks requires a
combination of preventive measures, such as network and
application layer defenses, as well as reactive strategies, such
as monitoring and incident response. This paper proposed
a security testing strategy to identify the vulnerability of
API using a feature of HTTP/2 called multiplexing, which is
exploited by a DoS attack. By trying to send a few requests
in parallel from multiple clients through HTTP/2 multiplexing,
the attack made the request consume a large number of CPU
resources even though the rate limit was imposed on the
gateway. It was observed from the experiments the requests
sent using HTTP/1.1 consumed CPU usage relatively better
than HTTP/2. It was also observed that the CPU usage of
the target server was much more when performing testing
based on Multi-client Symmetric/Asymmetric multiplexed on
HTTP/2 was significantly higher that would make the services
unavailable, which is justified by the multiplexing property
of HTTP/2 as it tries to send multiple requests in one TCP
connection.

The paper outlines several future directions for advancing
RESTful API security, particularly in mitigating application-
layer DDoS attacks and resource exhaustion vulnerabilities.
Key areas include developing workload-based testing to as-
sess the impact of high-computation requests, exploring inter-
dependencies between APIs to understand complex attack
vectors, and designing advanced rate-limiting mechanisms to
counter sophisticated attacks like those leveraging HTTP/2
multiplexing. Additionally, research could focus on real-time
monitoring and anomaly detection using AI/ML, integrating
findings into API gateways, and evaluating the security im-
plications of newer protocols like HTTP/3. Comprehensive
tools for resource exhaustion testing and addressing regulatory
compliance in API security are also highlighted as critical areas
for future work. These directions aim to enhance API resilience
against evolving threats and improve overall system robustness.

REFERENCES

[1] S.Levi, “Why api security is critical,”
https://www.forbes.com/sites/forbestechcouncil/2023/03/09/preventing-
data-breaches-in-2023-why-api-security-is-critical, accessed: September
10, 2023.

[2] Imperva, “Quantifying the cost of api insecu-
rity,” https://www.imperva.com/resources/resource-
library/reports/quantifying-the-cost-of-api-insecurity/, accessed:
December 11, 2024.

[3] Twitter, “Twitter data breach,” https://privacy.twitter.com/en/blog/2022/an-
issue-affecting-some-anonymous-accounts, accessed: January 2, 2025.

[4] Optus, “Optus data breach,” https://en.wikipedia.org/wiki/2022-Optus-
data-breach, accessed: January 10, 2025.

[5] Salt, “T-mobile api breach what went wrong,” https://salt.security/blog/t
mobile api breach what went wrong, accessed: January 4, 2025.

[6] PortSwigger, “Critical vulnerability allowed attackers to remotely
unlock control hyundai genesis vehicles,” https://portswigger.net/daily-
swig/critical-vulnerability-allowed-attackers-to-remotely-unlock-
control-hyundai-genesis-vehicles, accessed: January 7, 2025.

[7] CircleClI, “CircleClI incident report for january 4 2023 security incident,”
https://circleci.com/blog/jan-4-2023-incident-report/, accessed: January
11, 2025.

www.ijacsa.thesai.org

1155 | Page

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

(IJACSA) International Journal of Advanced Computer Science and Applications,

OWASP, “Owasp top 10 api security risks-2023,” https://owasp.org/API-
Security/editions/2023/en/0x11-t10/, accessed: December 11, 2024.

E. Viglianisi, M. Dallago, and M. Ceccato, “Resttestgen: automated
black-box testing of restful apis,” in 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST).
IEEE, 2020, pp. 142-152.

V. Atlidakis, P. Godefroid, and M. Polishchuk, “Restler: Stateful rest api
fuzzing,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). 1EEE, 2019, pp. 748-758.

Y. Liu, Y. Li, G. Deng, Y. Liu, R. Wan, R. Wu, D. Ji, S. Xu,
and M. Bao, “Morest: model-based restful api testing with execution
feedback,” in Proceedings of the 44th International Conference on
Software Engineering, 2022, pp. 1406-1417.

C. Lyu, J. Xu, S. Ji, X. Zhang, Q. Wang, B. Zhao, G. Pan, W. Cao, and
R. Beyah, “Miner: A hybrid data-driven approach for rest api fuzzing,”
arXiv preprint arXiv:2303.02545, 2023.

A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “Restest: automated
black-box testing of restful web apis,” in Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2021, pp. 682-685.

S. Karlsson, A. Causevic, and D. Sundmark, “Quickrest: Property-based
test generation of openapi-described restful apis,” 2019.

N. Laranjeiro, J. Agnelo, and J. Bernardino, “A black box tool for
robustness testing of rest services,” IEEE Access, vol. 9, pp. 24 738—
24754, 2021.

Postman, “Postman,” https://www.postman.com, accessed: December 5,
2024.

RestAssured, “Restassured,” https://www.rest-assured.io, accessed: De-
cember 10, 2024.

smartbear, ‘“Readyapi,” https://smartbear.com/product/ready-api/, ac-
cessed: December 13, 2024.

APIFortress, “Apifortress,” https://saucelabs.com/products/api-testing,
accessed: December 17, 2024.

G. Deng, Z. Zhang, Y. Li, Y. Liu, T. Zhang, Y. Liu, G. Yu, and
D. Wang, “Automated restful api vulnerability detection,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023, pp. 5593—
5609.

W. Du, J. Li, Y. Wang, L. Chen, R. Zhao, J. Zhu, Z. Han, Y. Wang,
and Z. Xue, “Vulnerability-oriented testing for restful apis.”

R. Haddad and R. E. Malki, “Openapi specification extended security
scheme: A method to reduce the prevalence of broken object level
authorization,” arXiv preprint arXiv:2212.06606, 2022.

T. Taya, M. Hanada, Y. Murakami, A. Waseda, Y. Ishida, T. Mimura,
M. W. Kim, and E. Nunohiro, “An automated vulnerability assessment
approach for webapi that considers requests and responses,” in 2022
24th International Conference on Advanced Communication Technology
(ICACT). IEEE, 2022, pp. 423-430.

D. Votipka, K. R. Fulton, J. Parker, M. Hou, M. L. Mazurek, and
M. Hicks, “Understanding security mistakes developers make: Qual-
itative analysis from build it, break it, fix it,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 109-126.

M. Le Jeune, “Facebook and the cambridge analytica scandal: Privacy
and personal data protections in canada,” Ph.D. dissertation, Carleton
University, 2021.

[26]

[27]

[28]

[29]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Vol. 16, No. 3, 2025

M. Bach-Nutman, “Understanding the top 10 owasp vulnerabilities,”
arXiv preprint arXiv:2012.09960, 2020.

M. A. Al Kabir and W. Elmedany, “An overview of the present and
future of user authentication,” in 2022 4th IEEE Middle East and North
Africa COMMunications Conference (MENACOMM). 1EEE, 2022, pp.
10-17.

K. Dennis, M. Alibayev, S. J. Barbeau, and J. Ligatti, “Cybersecurity
vulnerabilities in mobile fare payment applications: a case study,”
Transportation Research Record, vol. 2674, no. 11, pp. 616-624, 2020.

L. Pan, S. Cohney, T. Murray, and V.-T. Pham, “Detecting excessive
data exposures in web server responses with metamorphic fuzzing,”
arXiv preprint arXiv:2301.09258, 2023.

S. Khan, 1. Kabanov, Y. Hua, and S. Madnick, “A systematic analysis of
the capital one data breach: Critical lessons learned,” ACM Transactions
on Privacy and Security, vol. 26, no. 1, pp. 1-29, 2022.

B. Amin Azad, O. Starov, P. Laperdrix, and N. Nikiforakis, “Web
runner 2049: Evaluating third-party anti-bot services,” in Detection of
Intrusions and Malware, and Vulnerability Assessment: 17th Interna-
tional Conference, DIMVA 2020, Lisbon, Portugal, June 24-26, 2020,
Proceedings 17. Springer, 2020, pp. 135-159.

0. B. Fredj, O. Cheikhrouhou, M. Krichen, H. Hamam, and A. Derhab,
“An owasp top ten driven survey on web application protection meth-
ods,” in Risks and Security of Internet and Systems: 15th International
Conference, CRiSIS 2020, Paris, France, November 4-6, 2020, Revised
Selected Papers 15. Springer, 2021, pp. 235-252.

D. Kornienko, S. Mishina, S. Shcherbatykh, and M. Melnikov, “Prin-
ciples of securing restful api web services developed with python
frameworks,” in Journal of Physics: Conference Series, vol. 2094, no. 3.
IOP Publishing, 2021, p. 032016.

S. Aslam and M. Mrissa, “A framework for privacy-aware and secure
decentralized data storage,” Computer Science and Information Systems,
no. 00, pp. 7-7, 2023.

H. Gantikow, C. Reich, M. Knahl, and N. Clarke, “Rule-based secu-
rity monitoring of containerized environments,” in Cloud Computing
and Services Science: 9th International Conference, CLOSER 2019,
Heraklion, Crete, Greece, May 2—4, 2019, Revised Selected Papers 9.
Springer, 2020, pp. 66-86.

M. Aljabri, M. Aldossary, N. Al-Homeed, B. Alhetelah, M. Althubiany,
O. Alotaibi, and S. Alsaqger, “Testing and exploiting tools to improve
owasp top ten security vulnerabilities detection,” in 2022 14th Interna-
tional Conference on Computational Intelligence and Communication
Networks (CICN). IEEE, 2022, pp. 797-803.

S. Loureiro, “Security misconfigurations and how to prevent them,”
Network Security, vol. 2021, no. 5, pp. 13-16, 2021.

A. Rahman, S. I. Shamim, D. B. Bose, and R. Pandita, “Security
misconfigurations in open source kubernetes manifests: An empirical
study,” ACM Transactions on Software Engineering and Methodology,
vol. 32, no. 4, pp. 1-36, 2023.

M. Hasan and M. M. Rahman, “Minimize web applications vulner-
abilities through the early detection of crlf injection,” arXiv preprint
arXiv:2303.02567, 2023.

A. Praseed and P. S. Thilagam, “Multiplexed asymmetric attacks: Next-

generation ddos on http/2 servers,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 1790-1800, 2019.

www.ijacsa.thesai.org

1156 |Page

