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Abstract—In the last few years, researchers have concentrated
on estimating and maximizing the Domain of Attraction of
autonomous nonlinear systems. Based on the Lyapunov theory,
the proposed approach in this paper aims to give an accurate
estimation of the Domain of Attraction with high performance
against the existing conventional methods. The Adaptive Sine-
Cosine Algorithm has been considered one of the most advanced
algorithms. It combines a large exploration with a strong local
search and provides high-quality convergence conditions. This
paper uses the benefits of the Adaptive Sine-Cosine Algorithm to
develop a flexible method to estimate the Domain of Attraction
by an oriented sampling to guarantee the largest sublevel related
to the given Lyapunov function. The approach is applied to some
benchmark examples and validates its efficiency and its ability
to provide performant results.
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I. INTRODUCTION

In the pursuit of excellence, individuals often strive for
perfection in order to effectively navigate a wide array of
situations. However, as absolute perfection is unattainable, the
human focus shifts towards identifying the most favorable
conditions that respect reliability constraints, thereby giving
rise to the notion of “constrained optimization problems” [1].

Optimization problems exist in most scientific research
fields. For example, they are frequently encountered in engi-
neering applications. As a result, sophisticated algorithms are
necessary for addressing optimization issues [2].

The selection of the convenient optimization algorithm
is related to the type and the complexity of the addressed
problem. For convex optimization problems with a low level
of complexity, well-efficient algorithms relying on gradient
computation are generally recommended, thanks to their sim-
plicity and accuracy [3]. However, dealing with non-convex
or nonlinear problems that involve a high number of decision
variables requires employing a different class of optimization
methods called metaheuristics [4].

Metaheuristics are highly recommended optimization tools,
owing to their ability to handle high-dimensional optimization
problems even without a high amount of information about
the objective function itself. Many metaheuristic algorithms
have been developed based on inspiration from some behaviors
observed in nature, particularly in swarm intelligence. The

simplicity of their structure, the minimal number of parameters
required, the no need for derivative and gradient mechanisms,
and the ability to avoid local solutions are among the advan-
tages that have given metaheuristics importance in different
areas of research [4], [5].

The study of system performances, especially stability
analysis, has greatly benefited from the use of metaheuristics.
Researchers become able to improve the performance of the
system in search based on an adequate selection of parameters
using metaheuristics. Some works use metaheuristics in the
observability study [6]. Some others take the benefits of
metaheuristics to determine an optimized tuning to the PID
controller [7], [8].

The field of control engineering presents two primary types
of system behavior: linear and nonlinear.

For linear systems, a comprehensive theory of stability
analysis already exists, which involves techniques such as
checking the eigenvalues of the state matrix, applying the
Routh criterion, and examining the poles of the transfer func-
tion. However, in practice, most systems exhibit nonlinear be-
havior, making these conventional methods inapplicable. The
wide variety of nonlinearities creates the challenge to develop
well-structured and detailed theories of stability analysis for
nonlinear systems.

To address this issue, two main approaches are typically
employed. The first one involves approximating the system
under study to linear modeling and applying the classic the-
ories of stability. The second approach, known as “Lyapunov
theory” [9], looks to draw conclusions about the stability based
on the energy of the system. While Lyapunov’s theory provides
global judgments about stability, it has some weaknesses when
it comes to analyzing instability.

The central idea of Lyapunov’s theory is to identify a region
in which the energy of the system decreases over time, which
means that the system heads to an equilibrium state. This
region is known as the Domain of Attraction (DA).

The DA is defined as the set of initial states in which the
energy of system, mathematically modeled with the Lyapunov
Function (LF), decreases over the time so the state heads to
an equilibrium state [10]. The size and shape of the DA are
strongly influenced by the form and the parameters of the LF.
The quadratic form of LF is the most widely used due to its
ease of implementation. However, the rational form of LF can
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provide a larger DA, which is why the estimation of the DA
via rational LFs has a particular interest.

In this context, the main question is: How to estimate
accurataly the largest DA of a nonlinear system related to a
given LF despite its form.

The existing methods of estimating the DA have several
limitations. These include a lack of flexibility in handling
various nonlinearities and different forms of LF, as well as
inaccuracies where the estimated DA contains failure zones.
Additionally, these methods involve a high level of complexity.

The principal target of this work is to develop a method that
can estimate the DA from a given LF ensuring the following
highlights:

e  The estimated DA rising from the given LF is maxi-
mized.

e  There are no failure sets in the estimated DA.

e The developed method is flexible towards diverse
types of nonlinearity and LF’s forms.

e The implemented algorithm presents performant con-
vergence conditions nad a low level of complexity.

This paper is organized as follows: after the introduction,
there comes Section II, the related works that discuss the
estimation of the DA, and the historical steps of the Sine-
Cosine Algorithm. Section III presents some generalities on
estimating the DA using the Lyapunov theory. Section IV
presents the Sampling method to estimate the DA. The main
theoretical results are presented in Section V: proposed Sine-
Cosine Algorithm for state assessment. Section VI is booked
to the simulations and comparative studies. Sections VII and
VIII present respectively the discussions of the method and the
main conclusions besides the suggested future works.

II. RELATED WORK

This section mentions some works that aim at the DA
estimation problem and the use of optimization problems
in this context. It presents as well a brief literature review
on the Adaptive Sine-Cosine Algorithm ASCA, which has
an important role in this contribution. Over the last three
decades, researchers have tried to develop an efficient method
for estimating the DA. Some of these works are based on the
Linear Matrix Inequality (LMI) computation [11], [12]. The
works presented in [13], [14] show approaches to estimating
the DA of polynomial systems via LMI solving and quadratic
LFs. The works in [15], [16] take the benefits of [14] to select
the best parameters of the LF that give the largest DA using
metaheuristics. Rational Lyapunov functions and LMlIs are
used to estimate the DA of polynomial systems [17], [18]. The
work proposed in [19] presents a method to estimate the DA
of non-polynomial systems through LMIs. Other approaches
estimate the DA by a mechanism of sampling, setting the
system in random initial states, and evaluating the Lyapunov
stability conditions. One of the most famous methods has
been proposed in [20]. The power of [20] manifests in its
ability to deal with polynomials and non-polynomial systems
as well as its availability towards the different forms of LF.
This method has been the fundamental method ameliorated in
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[21]. However, it exhibits a weakness in precision: there are
some failure sets in the estimated DA. The work proposed in
[21] takes the flexibility from the sampling method presented
in [20], and replaces the random mechanism with oriented
research using the Chaoti-Krill Herd (CKH) optimization
heuristic method [22], aiming to compensate for the weakness
of [20]. Similarly to [21], the current work is based on an
optimization heuristic and sampling mechanism to concept
an accurate estimation of the DA. The selection of ASCA
is due to the thought that it provides better conditions of
convergence thanks to its interior mechanisms. The ASCA is
a modified version of the Sine-Cosine Algorithm [23]. It has
been born in 2016. It has demonstrated superior performance
compared to other metaheuristic optimization algorithms like
Particle Swarm Optimization (PSO) [24], Genetic Algorithm
(GA) [25], and Dragonfly Algorithm (DfA) [26]. However, it
suffers from convergence accuracy issues and a high risk of
falling into local optimum. According to the no free lunch
theorem (NFL) [27], there is no one-size-fits-all algorithm
that can be applied to all optimization problems, which has
motivated researchers in the field of metaheuristic algorithms
to develop new versions of existing algorithms to improve
their performance. This paper emphasizes the benefits of the
Adaptive Sine-Cosine Algorithm (ASCA) [28], which features
an interesting transition between the exploration of the research
universe and the exploitation of results through Chaotic Local
Search. Table I shows a general qualitative comparison be-
tween methods of estimating the DA.

III. ESTIMATION OF THE DA USING LYAPUNOV THEORY

The Lyapunov theory is a powerful method for ensuring
the stability of nonlinear systems within the DA. In light of
the fundamental principles of nonlinear system stability, the
objective of this section is to approximate the DA using a
predetermined LF.

Let us observe the following dynamical autonomous sys-
tem:

dzx

R C n.
p f(z), x€d CRY;

o = l‘(to) (1)

In the context of the described system, = represents the
state vector, O denotes the state space, and f : 0 — R" is the
system’s dynamic. The initial conditions of the state are given
by o = x(to).

If x.q is a stable equilibrium state of the closed-loop
system and z(t, o) denotes the solution of (1) at time ¢ with
respect to the initial condition, the region of stability of the
system described by (1) is:

0 = {:co €0: tlggo z(t,x0) = xeq} @)

In literature, a sophisticated analytical technique is em-
ployed for the estimation of the DA. This methodology is
grounded in the principles of Lyapunov stability theory and
is subsequently executed as follows [29], [30].

Theorem IIL.1. /29].
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TABLE I. GENERAL QUALITATIVE COMPARISON

Accuracy Complexity performance Flexibility Elapsed time performance Convergence condition

[14] High Average Low Average High

[17] High Average Low Average High

[18] High Low Low Average High

[19] High Low Low Average High

[20] Low High High High Average

[21] High High High Average Average
Current work High High High High High

A closed set S C R", where the origin of system (1) is its
equilibrium, can conclude an approximation of the DA for this
origin if:

e S is an invariant set for the system (1);

e A candidate LF V(x), positive definite, such that its
derivative V (x) is negative definite within the set S
can be found.

If the equilibrium state x., is shifted from the origin of
the system (1), a substitution can be made by introducing
w = x — xg,, where 7, is the nonzero equilibrium. This
transformation can be carried out without any loss of generality
and allows for the analysis of the system to be centered on the
equilibrium state [31]. The conditions cited in Theorem III.1
guarantee that the set S is certainly included in the absolute
DA. The selection of an appropriate candidate LF is not an easy
task. As well, the approximation of the DA is sensitive to the
shape of the level sets related to the chosen LF. A proposed
procedure is detailed in [32] to find a performant LF, where
algorithms based on the gradient search are implemented in
order to compute a performant candidate LF. Furthermore, the
use of composite polynomial and rational forms of LF instead
of quadratic forms could lead to better approximations thanks
to their rich representation power [33]. Quadratic LFs are quite
conservative since they restrict the estimates to ellipsoids [34].

The sublevel set Q(r) of V' (z) could be defined as follows:

Qr)y={z€d:V(z)<r} 3)

If V(z) is quadratic, it can be represented as:

V(z) =27 Px “)

where P is a symmetric matrix in R™*".

Based on Theorem IIL1, every sublevel set Q(r) of a
candidate LF satisfying the locally asymptotic stability of x4,
could be an estimating of the DA with respect to the time
derivative of V(r) is negative for every state included in Q(r).
Since the largest sublevel set provides an estimation with better
accuracy of the DA, the DA approximation could be converted
to estimate the largest sublevel set of a chosen LF [35]. In order
to find the largest estimated DA, one has to find the maximum
value 7 € R for Q(r) satisfying the conditions of Theorem
11.1.

Theorem IIL2. [35]. The invariant set Q(r*), sublevel set of
V (), is the largest estimate of the DA for the origin of system

@ if:

r* = maxr

st Qr) C ¥(x) (5)
U(z) = {0} U {x €R":V(z) < o}

This problem can be presented as an optimization problem
that can be solved by calling the Sum Of Square program-
ming, methods applying both simulation and Sum Of Square
programming, and methods based on the theory of moments.
However, these approaches are restricted to polynomial sys-
tems and LFs.

The next section presents an alternative method based on
taking random samples and testing the conditions of Lyapunov
stability, in order to attend an estimation of the DA.

IV. SAMPLING METHOD TO ESTIMATE THE DA

This sampling method has the same aim as the Lyapunov-
based optimization methods: approximating the DA by finding
the largest set from a candidate LF. The principle of this
procedure is to check the conditions of Theorem III.1 on
a given LF such that the state x; is chosen randomly, then
eliminate the level sets relative to z; with positive derivative
of LF. The LF impacts directly the shape and the volume of the
DA: for example, a quadratic form of LF provides an ellipsoid
shape of the DA. Thus invites researchers to concept more
sophisticated types of LF to estimate a DA that covers the
majority of the stability region. This paper also puts a light on
the LFs with a rational form.

The rational LF V' (z) has the following form:

k
vy M@ _ 2, @) ©
D)y, S Qu(a)

where R (x) and Qs(z) are homogeneous polynomials of
degree s. The sampling method to estimate the DA is based
on a random sampling of states, checking the conditions of
Theorem III.1, and determining the attractiveness radius r.
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A. DA Estimation with Sampling Method [20]

This method aims to maximize the value of r in (5). As a
first step, x; is chosen randomly within 0. The conditions of
Theorem III.1 are checked for V(x;) and V(x;). Let 7 and
r* be respectively the upper and the lower bound of r*. The

combination of 7* and r* offers an accurate prediction for the

DA related to V(z). At the start of the mechanism, 7 and
r* are initialized respectively to co and 0. If V(z;) < 0 and

V(z;) is between 7 and r*, then the value of r* is updated
to r* = V(z;).

Otherwise, in the case when V (z;) > 0 and V(z;) < 7,
then 7* takes the value of V(xz;). With proceeding with the
algorithm, after a sufficient number of samples, r* increases,
but not obligatorily monotonically. It converges, eventually,
to an estimate 7*. As a result, the largest sublevel set w(r*)
is determined. Likewise, the lower bound 7* increases to

converge finally to 7*. When all conditions of Theorem III.1
are “checked true” for a state x;, considering the value of
V(z;) as a possible estimate for r*, it is stored then in an array.
The usefulness of this array is to guarantee the obedience of the
approximated DA found by 7* to the conditions of Theorem

III.1. Storing the results in an array provides tighter estimates.
This array, denoted ¢, has to be initialized null, its length of in
the worst is the number of samples 1s4mpres- When V(z;) and
V(x;) < 7, V(x;) is stored in € as 7(V(x;)) is a potential
estimation of the DA. When V(z;) > 0 and V(x;) < 7, if

*

r* > 7* then the algorithm has to update the lower bound
r* among the values stored in the array e. To ensure the no-
failure of convergence, the algorithm chooses the maximum
value of r* from e respecting that r* > 7*. The selection of
a previously stored lower bound has to satisfy the condition
V' < Ofor the sublevel set w(r*). In the worst case, r* = 0.

Algorithm 1 Sampling Method for Estimating the DA

Define: V (x),its derivative and n_samples
Initializing 7* = oo
for i going from 1 to Nggmpies dO
Generate a random state x; within the state space 0
if V(z;) <0et V(x;) <#* then
Store V' (z;) in €
if V(z;) > r* then
update r* with r* = V(z;)
end if
else if V' (z;) > 0 then
if V(z;) <7 then
if r* > 7* then
r* =argmax{r € ¢ | r <7*}
end if
end if
end if
end for
Return r*

To have a more accurate estimation the random mechanism
is replaced with an optimization technique that looks for
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maximizing the attractiveness radius r*, based on assessment
of the state x.

V. PROPOSED SINE-COSINE ALGORITHM FOR STATE
ASSESSMENT

The objective of this section is to find the most distant
initial state from the origin with respect to the conditions of
Theorem III.1. Which means maximizing the DA’s radius r*.
This task needs the Sine-Cosine Algorithm to be achieved [23].

A. Sine-Cosine Algorithm (SCA) [23]

The mechanism of the Sine-Cosine Algorithm starts from a
set of random generation of solutions. The updating’s formula
makes the algorithm converge to an “accepted global” optimal
solution continuously after a large exploration all over the re-
search universe, then an exploitation stage in a tighter region in
which the optimum is placed. Initially, the algorithm generates
a population of decision variables (initial state’s vector zg)
with random positions, it calculates then the fitness of each
position (radius 7), and stores the position of the optimum, by
proceeding iterations, the position is updated as follows:

The updating’s function of the position X related to the
agent ¢ is determined through the value of the random term b,
distributed on [0, 1].

by PF — XF
bsPF — XF

,b4<5

Xk +b;sinb
Rl S+ 2
Xi —{ by >5 7

Xf ~+ by cos by

where k is the actual iteration number, Xik represents the
ith agent position at iteration k, PF represents the i'h agent of
the best population after the k'h iteration, and the usefulness
of by is the generation of a linear decreasing phenomena, it
can be modeled as follow:

a
bi=a—kz 8)

where a is a constant (chosen equal to 2 in most cases), T'
presents the maximum iterations bound, by and b3 are random
scalars respectively in the ranges [0, 27| and [—2,2].

The new computed solution is evaluated by its fitness
function and compared with the actual optimum, if a better
solution is obtained, the optimal solution will be updated.
These tasks will be repeated for all the iterations and for every
agent of the population. Algorithm 2 presents the pseudo-code
of SCA.

B. Adaptive Sine-Cosine Algorithm (ASCA) [28]

The main parameters of the original SCA are by, bo, b3,
and b4, mentioned in the previous paragraph. When ([b; sin by)
or (by cosby is in [—1,1], the algorithm has already attained
the local exploitation phase. If it is outside, then it is a global
search stage. The parameters b; and b, influence the value
of the updated population X. The parameter b; has a more
significant impact on the convergence to the local stage. In the
original SCA, b; is calculated using Eq. (8) which is linearly
decreasing with iterations. However, a linear decreasing con-
vergence may affect the ultimate search performance of the
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Algorithm 2 Sine Cosine Algorithm (SCA)

Initialize: N (population size), dim (problem dimension), a
(control parameter), and 7' (maximum iteration number).
Initialize the actual iteration number k at 0.
Initialize randomly the population X.
while £ < T do
for i =1to N do
for j =1 to dim do
Evaluate the solution by calculating the fitness of

X.
Record the optimal individual Xpes;.
Recalculate b; by equation (8).
Update bo, b3, by.
if by < 0.5 then
Update the population X by equation (7)
(sine part).

else
Update the population X by equation (7)
(cosine part).
end if
Evaluate the solution by calculating the fitness of
the updated population X.
Update Xpes:.
end for
end for
k=k+1.
end while
Return the best solution.

SCA: the attacked objective function is always complicated,
nonlinear, and non-convex and it may not be continuous.
Therefore, the parameter b; has to be represented differently.
In this aim, and to ameliorate the SCA computing power,
the parameter b; has a form able to balance the phase of
exploration and local intensification stage of the SCA. The
new parameter by, called adaptive, has to be reduced quickly
in earlier iterations of the algorithm to move quickly to the
exploitation stage. Therefore, the value of b; has to be larger
in the early iterations to guarantee a better exploration in the
search universe and then to move to the local intensification
phase with a high decreasing rate. Therefore, the proposed
adaptive b; has the form shown in the following formula:

by :4(1—5) <1_2((k/T)_1)> )

such that T' represents the maximum number of iterations
and k is the actual iteration.

The new formula of b; represented by Eq. (9), by the
negative exponential term, is decreasing at a high rate at the
beginning of the algorithm progress and this rate becomes
lower in the end. Fig. 1 shows the difference between b; in Eq.
(8) and (9), knowing that the solid line represents by of SCA,
and the dashed line represents b; of ASCA on 100 iterations.

Fig. 2 shows a comparison between the decreasing pattern
for the range of sine and cosine in SCA and ASCA on 100
iterations.
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Fig. 1. Comparison between b1 with Eq. (8) and (9).

SCA convergence
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ASCA convergence
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Fig. 2. Decreasing pattern for a range of sine and cosine in SCA and ASCA.

Fig. 2 presents a faster convergence of ASCA than that of
SCA, which provides more iterations for local exploitation.

C. Chaotic Local Search (CLS) [36], [37]

Chaotic phenomenon is one of the most interesting figured
phenomena. It has an arbitrary, disorganized behavior with
a complicated structure. Despite that it looks disorganized,
the chaotic phenomena have two principal characteristics:
“randomness” and “regularity”’. The chaos system can conserve
the characteristic of randomness thanks to the random update
process of the SCA, it explores the totality of search space as
much as possible. The Chaotic Local Search (CLS) searches
in the neighborhood of the optimum and generates new ran-
dom solutions without repetition. Since population diversity
decreases in the second half proceeding of SCA, CLS can be
used to improve search space exploration and local exploitation
capacity at the same time [27], [28]. In literature, several kinds
of chaotic systems are figured. The chosen chaotic system of
this paper is a common logistic map shown as follows:

Yk+1 = pyr(1 — yi) (10)
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where k represents the iteration number and p represents
the control parameter. When p and yq are selected as p = 4
and yo ¢ {0.25,0.5,0.75, 1}, the Eq. (10) is a chaotic system.

The local search (LS) is useful for searching within a
tight region. The search made with LS in the neighborhood
of the actual optimal solution may lead to a new better
optimum. The CLS adds the chaotic aspect to the LS to avoid
local optimization. It can help the algorithm avoid premature
convergence due to the “randomness” of a chaotic system. The
local search for chaos is shown in the following equation:

Loc = (1 — A\) Xpest + A (min + yi, (maz — min))  (11)

where Loc is the location generated through the CLS, Xj.s¢
is the actual optimum, min and max are respectively the lower
and upper bounds of the search universe, yj is the chaotic
sequence shown in (10), and A is found from the following
statement:

(T—k+1)

A= T

12)

where T is the upper iteration limit, and k is the current
iteration.

Eq. (10) produces a chaotic sequence following the CLS
in the [0,1]. For every independent execution of (10), ys is
initialized randomly. The chaotic value y; produced with the
logistical map with 100 runs and yo = 0.001 is shown in Fig.
3.

0.8

0.6

Yk

0.4

0.2

0 I I 1 I ! I I I
0 10 20 30 40 50 60 70 80 90 100

Itrations

Fig. 3. Chaotic sequence of y; on 100 iterations.

Algorithm 3 recapitulates the principle and the different
steps of the ASCA.

D. Applying ASCA to Optimize the State

This section has opted to combine the sampling method
with the Adaptive Sine-Cosine Algorithm, it is an optimization
problem where r is the cost to maximize and the state x
is the decision’s variable. Algorithms 4, 5 and the flowchart
in Fig. 4 explain how to apply ASCA to find the best state
corresponding to the maximum estimated r rising from the
given LF.
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Algorithm 3 Adaptive Sine-Cosine Algorithm

Initialize: N (population size), dim (problem dimension),
and T' (maximum iteration number).
Initialize the actual iteration number k at 0.
Initialize randomly the population X.
while £ < T do
for i =1to N do
for j =1 to dim do
Evaluate the solution by calculating the fitness of

Record the optimal individual Xpcg;.
Recalculate b; by equation (9).
Update bo, b3, by.
if b4 < 0.5 then
Update the population X by equation (7)
(sine part).
else
Update the population X by equation (7)
(cosine part).
end if
Evaluate the solution by calculating the fitness of
X.
Update Xpes:.
Calculate A by equation (12).
Generate the chaotic sequence by equation (10).
Substitute X;.,; into equation (11) to generate
the new individuals Loc.
Evaluate Loc by calculating its fitness and com-
paring it with Xpes;.
if Loc is better than X;.,; then
Xpest takes the value of Loc.
end if
end for
end for
k=Fk+ 1.
end while
Return Xpess.

Algorithm 4 Objective r

if V(X) <0and V(X) < #* then
Store V(X) in e
if V(X) > r* then
Update r* with r* = V(X)
end if
else if V' (X) > 0 then
if V(X) < 7 then
™ =V (X)
if r* > 7* then
r* =argmax{r € e | r <7}
end if
end if
end if
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Algorithm 5 Applying Adaptive Sine-Cosine Algorithm on
Sampling with Memory Method

Initialize: N (population size), dim (problem dimension), a
(control parameter), and 7" (maximum iteration number).
Initialize the actual iteration number & at 0.
Initialize randomly the population X.
while £ < T do
for . =1to N do
for j =1 to dim do
Evaluate the solution by calculating the fitness
(Objective r) of X.
Record the optimal individual Xpes;.
Recalculate b, by equation (9).
Update by, b3, by.
if by < 0.5 then
Update the population X by equation (7)
(sine part).
else
Update the population X by equation (7)
(cosine part).
end if
Evaluate the solution by calculating the fitness
(Objective r) of X.
Update Xpest.
Calculate A by equation (12).
Generate the chaotic sequence by equation (10).
Substitute X;..; into equation (11) to generate
the new individuals Loc.
Evaluate Loc by calculating its fitness (Objective
r) and comparing it with Xpest.
if Loc is better than X, then
Xpest takes the value of Loc.

end if
end for
end for
k=k+1.

end while
Return Xpes:.

VI. SIMULATIONS

The objective of this work is to find the farthest initial
conditions xy from which the system converges to the equi-
librium point. This objective is achieved by maximizing the
radius r. In this section, there are some two-order and three-
order examples illustrating our method on which we applied
the ASCA to find the optimal state  maximizing the radius
r. The parameter values used in ASCA are: 100 search agents
for 100 iterations for all examples.

Example 1 The following expression represents the state
space dynamical medialization of the Van Der Pol oscillator:
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Calculate the fitness
(Objective ) and record
the best position of X

Initialize a
population of states
position: X,

Initialize parameters:
N, dim,aand T
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Evaluating X by its
fitness (Objective 1) and
update the Xpeqr

I,._._._._._ R e e s //,/ ‘\\
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i Update 4 by Evaluating Loc by it B w C:eikr‘f ~
: equation (12) fitness (Objective r) and | S = -

i l S
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Fig. 4. Flowchart of sampling method with ASCA.

{ =0 (14)
46 —0—-0+06%

The select of the LF is one of the most interesting issues
in the realms of control engineering. Based on a theoretical
analysis, some approaches are developed to synthetize the LF.
In this context, we find the method of LaSalle [38], method of
Zubov [39], etc. Some other methods based on an iterative test
are adopted [40]. One of the most popular approaches admitted
to synthetize a candidate LF is the linearization around the
equilibrium point.

The Jacobean linearization of the system (13) around the

origin [ 8 is computed with the following formula:
of 0 -1
Oz | a=[0,0)7 g { 1 -1 ] (1

To identify the parameters of V() it is sufficient to find the
matrix P positive definite by solving the following equation:

ATP4+ PA, =Q (16)

where () is a symmetric matrix that has to be negative
definite.

To proceed, it is supposed for ) to be as follows:

-1 0
Q = [ 0 -1 ] (17)
doy — g,
{ M 9 (13)
o T UL T2 A T The computing of P using (16) gives:
This modal fits with a simple pendulum with non-linear
. - . 1.5 =05
damping where x; represents the angular position ¢ and x5 is pP= 05 1 (18)
representing the angular velocity 6. '
The Van Der Pol oscillator modeling becomes: As a result:
www.ijacsa.thesai.org 1163 |Page
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V(z) = 1.527 — 2129 + 23 (19)

In order to validate the robustness of the convergence, the
Monti-Carlo statistic study is established. The algorithm ASCA
is applied 100 times, the standard deviation o, the variance o2

and the mean value y are calculated. Table II shows the values
of each term.

TABLE II. MONTI-CARLO STATISTICAL STUDY

o o2 "

0.0027 7.4095e — 06 2.3047

The values mentioned above present a high robustness of
convergence of the algorithm with a law standard deviation

(~0.3%).

Fig. 5 presents the distribution of the optimized values
obtained in 100 reprises of ASCA on the Van Der Pol system.

pourcentage

0
229 2.295 23 2.305 2.31 2315
Values

Fig. 5. Distribution of the optimized values obtained in 100 reprises of
ASCA.

The distribution of the optimized values is centered on the
value of r = 2.3047 (about 32% of the trials).

The result of applying ASCA on this example is the
following:

[ —0.8569
X=1 07492

r = 2.3047

with an elapsed time of 0.365ms.

In Fig. 6, there is a representation of the DA optimized with
ASCA, where the solid blue line is representing the LF Vix),
the dashed line represents its derivative V(z), and the solid
red oriented line shows the state trajectory beginning from the
initial state X found with the ASCA.

As it is shown in the zoomed part of the Fig. 6, there is
no states in the domain with a positive derivative of the LF
(curves are not secant), so the result is admitted correct.

The Fig. 7 shows the evolution of state in the time, where
the red and the blue lines present respectively the evolution of
I (t) and T (t)

Vol. 16, No. 3, 2025

Fig. 6. Representation of LF V' (z) of example 1 and its derivative.

xI(t)
x2(1) | |

Time

Fig. 7. Representation of state’s evolution 1 (¢t) and x2(t).

As it is shown in Fig. 7, x(t) clearly attain the equilibrium
state [ 8 ] As a result, the convergence is guaranteed.
Fig. 8 presents a comparison of the results of applying

ASCA to maximize the radius r with the apply of SCA and
CKH

[
T

o
T

IS
T

w

Actual optimum

N

o

10 20 30 40 50 60 70 80 90 100
Iterations

Fig. 8. Comparison of convergences dynamics.

The red dashed line represents the convergence of SCA,
the blue solid line corresponds to the convergence of ASCA
and the black dotted represents the convergence dynamic of
CKH. As it is clearly shown, ASCA is the first algorithm that
moves from the exploration to the local search.

Example 2 Let us see the following system:

jﬂitl = 211 + 2172
X
G = T2t ixs
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The LF corresponding to this system is the following:

V(x) = |||

Applying the optimization metaheuristic ASCA with the
conditions declared above gives the following results:

1.2194
X =1 16156
r=4.0971

with an elapsed time of 0.205ms

The Fig. 9 represents the DA optimized with ASCA
where the solid line is representing V' (z) and the dashed line
represents its derivative:

-3 -2 -1 0 1 2 3
¥

Fig. 9. Representation of LF V' (x) of example 2 and its derivative.

As it is shown, there is no states in the domain with a
positive LF’s derivative (curves are not secant) so the result is
admitted correct.

Example 3 Let us see the following system:

{ % =—2z1+In(1+zs)
2 = Sy — taywy + (§21 — 32) cos (z1)

The LF corresponding to this system is the following:

V(z) = |lz|”

The results of applying ASCA on this example are the
following:

—0.4446
X=1 _o.2726
= 0.2740

with an elapsed time of 0.372ms.

In Fig. 10, there is a representation of the DA optimized
with ASCA, where the solid line is representing V' (x) and the
dashed line represents its derivative:

Example 4 Let us observe the following system:

t

oy _ g
{ &2 = —0.229 + 0.81sin (21) cos (x1) — sin (1)

We take the LF as follows:

Vol. 16, No. 3, 2025

Fig. 10. Representation of LF V' (x) of example 3 and its derivative.

V(z) = 22 4 z129 + 422

The results of applying ASCA on this example are the
following:

—0.7409
X=1 03077
r = 0.6997

with an elapsed time of 0.340ms.

In Fig. 11, there is a representation of the DA optimized
with ASCA, where the solid line is representing V' (x) and the
dashed line represents its derivative:

31 v T
1 \\ 1
| 1
2 \ \ l
\ ' I
1 \ \ 1
Seoo L \ \
\ =<
\ ~
- JI \ \\
I ! 1
2 H \
] ‘ !
3 1 . ‘l |
-3 2 1 0 1 2 3

Fig. 11. Representation of LF V' (z) of example 4 and its derivative.

Example 5 Let us observe the following third order system

system:
dzy

dity

ity
dt

—x1 + x2m§
—To + T1X2
—23

We take the LF as follows:

V(z) =2 +x§ +x§

When we applied the ASCA, we found these results:

1.1806
X = 1.5407 ]

—1.0917
7 = 4.9594
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With an elapsed time of 0.155ms.

In Fig. 12, there is a representation of the DA optimized
with ASCA, where the yellow spherical form represents V (z)
and the blue surface represents its derivative:

Fig. 12. Representation of LF V' (x) of example 5 and its derivative.

Example 6 Let us observe the following third order system
system:

dxl . 1 2

St =1+ax3+ gw3 —exp (1)
T;f = -y — I3

Lo 1,.2
W—*IQ*2I’3*§I1

We take the LF as follows:

V(x) =i +a3 + 23

When we applied the ASCA, we found these results:

-1.339
X = [ 0.5708 1

0.7523
r = 2.6865

With an elapsed time of 0.166ms.

In Fig. 13, there is a representation of the DA optimized
with ASCA, where the yellow spherical form represents V (z)
and the blue surface represents its derivative:

Fig. 13. Representation of LF V' (x) of example 6 and its derivative.
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Comparison with other heuristic methods

In Table III, we made a comparison between the Adaptive
Sine Cosine Algorithm And the Chaotic Krill Herd.

This comparison shows that in most cases, the results of
ASCA are better than those of CKH with a shorter elapsed
time without loss of precision. This statement means that the
method applied ameliorates two factors at the same time: the
computing time reserved for the estimation of the DA, and the
stability region guaranteed from a given LF.

In the following, some examples with rational LF are
shown.

Example 7 [20] Consider the following system:

% = —xy + x9 + 0.5(exp(z1) — 1)
GF = —11 — 29 + 1122 + 71 COS(71)

Table IV presents the rational LF.

After applying the approach to this example, we find the
following result:

[ 13010
X =1 _0.6179
r=1.2252

The result obtained in [20] is » = 1.2251. We can see that

the DA obtained in this paper is larger than the DA obtained
in [20].

Fig. 14 shows the DA obtained by using a rational LF on
example 7, where the LF and its time derivative are represented
respectively with the solid blue line and the dashed black line.
The red solid-oriented line presents the trajectory of the system
initialized in the optimal state found with the ASCA.

2 \
A} 1
S

1 ‘“\\\\\\\\\\\\\\ 1
~
~
\\ B
k“ 0 )

-
QS
[

-3 -2 -1 0

1

Fig. 14. Representation of LF V' (x) of example 7 and its derivative.

The following example cites a comparison between results
obtained with this approach and those in the literature. As well,
a comparison between DAs related to polynomial and rational
LFs is presented.

Example 8 [18] Consider the following system:

drl _—

{ lﬂt =
L2
dt

= —3x1 — 229 + x%
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TABLE III. COMPARISON BETWEEN RESULTS OF ASCA AND CKH

Example 7 Optimized with ASCA 7 Optimized with CKH Elapsed time ASCA (ms) Elapsed time CKH (ms)
1 2.3047 2.3045 0.365 0.542
2 4.0971 4.0955 0.205 0.350
3 0.2740 0.2737 0.372 0.258
4 0.6997 0.3611 0.340 0.236
5 4.9594 4.969 0.155 0.770
6 2.6865 2.6617 0.166 0.813

TABLE IV. LF OF EXAMPLE 7

R ()
Ra(z) = 2 + 1.3333z 22
+1.1667x3
R3(z) = —0.2272x3
—0.139622 22 4 0.3785z1 232
+0.1798z3
Ry(z) = 0.0136z]
—0.2864a5 2
+0.1918x%22 — 0.053z, =3
+0.01725

Qs(x)

Q1 (z) = —0.560521 — 0.7255x>
Q2(x) = 0.3254z7 + 0.0910x x>
+0.101523

TABLE V. LFs OF EXAMPLE 8

Rational LF
Ry (z) = 2I? +x172 + $§
Ry(z) = Gwéll + 7a:‘rfa:2 + 79:%9:%
+3x1mg + xg
Q2(z) = af + 2

Polynomial LF

V(z) = 2:1:% + 170 + x%

Table V presents the quadratic and rational LFs.

The results of the application of the algorithm are shown
in Table VI and Fig. 15:

TABLE VI. RESULTS OF EXAMPLE 8

Polynomial LF Rational LF
—1.8188 1.2592
X = X =
2.1008 2.2879
r = 7.2085 r = 24.1795

When we observe these results we realize that: The DA
related to a rational LF is larger than the DA of a polynomial
LF. The approach provides better results than those in [18]
(r = 24.1795) which approve the high performance of the
algorithm.

Fig. 15 shows a comparison between the domains of
attraction obtained with polynomial and rational LFs. The red
and the blue solid lines represent respectively the rational and
the polynomial LF. The red and the blue dashed lines represent
respectively the derivatives of rational and polynomial LFs.

VII. DISCUSSION

This section presents a detailed discussion on the compari-
son between methods. The proposed method shows a flexibility
towards diverse forms of nonlinearity and LFs. Unlike the
LMI based methods [14], [19], this method does not require

2

Fig. 15. Comparison of DAs related to polynomial and rational LF of
example 8.

any approximation to any conventional form of nonlinearity.
Another benefit of the proposed method is mentioned in the
Table II. This table shows a more performant convergence
dynamic than the Chaoti-Krill Herd method [21].

The Table III gives a recapitulative comparison between the
current work and the method proposed in [21]. The estimation
with ASCA takes a less amount of time for computing than the
CKH method. It gives also a larger estimation of DA without
containing failure sets in which the time derivative of the LF
is positive.

As this work has huge benefits, it has also some weak-
nesses. The general aim of estimating the DA is to determine
the largest region of stability, which is influenced by the LF
selection. This work does not provide a way to select the
optimal parameters of LF.

Another weakness of this work is related to the use of
heuristic methods. The heuristics in general do not provide a
proof that the optimum found is absolutely global, even with
the integration of the CLS. It also presents a low performance
in the case of real time cascading architectures. As a result, it
appears a need of other optimization algorithms providing bet-
ter qualities of results and respecting the real time constraints.

VIII. CONCLUSION

This paper uses a hybrid technique that combines a sam-
pling and testing method with the ASCA, in order to find the
farthest initial state of the DA related to the LF. Besides to
the larger DA that the followed approach provided, it proved
a high accuracy against the classic sampling method that may
include some failure sets. This method achieved two principal
goals. It gives an accurate estimation of the DA related to a
given LF, and it maximizes this DA by applying the ASCA at
the same time.
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The hybridization with ASCA proved a high performance
in the elapsed time and the results qualities in relation to some
other metaheuristic methods (SCA, CKH).

The weaknesses mentioned in the discussion section lead
to some ideas of future works. As a perspective, by a non-
Lyapunov and inverse modeling method we will try to integrate
“deep learning” in order to build a candidate LF providing
an optimized stability region with a respect to the real time
constraints.
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