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Abstract—Federated learning enables collaborative model
training across multiple clients without sharing raw data, where
the global server aggregates local models. One of the primary
challenges in this setting is dealing with non-i.i.d data, which can
lead to biased aggregations, as well as the overhead of frequent
communication between clients and the server. Our approach
improves state-of-art aggregation by adding statistical significance
testing. This step assigns greater weight to client updates with
higher statistical impact. Only statistically significant updates
are included in the global model. The process begins with
each client training a local model on its dataset. Clients then
send these trained parameters to the server. At the global
server, statistical significance testing is applied by calculating z-
scores for each parameter. Updates with z-scores below a set
threshold are included, with each update weighted based on
its significance.SSFed achieves a final accuracy of 88.71% in
just 20 rounds, outperforming baseline algorithms and resulting
in an average improvement of 25% over traditional federated
learning methods. This demonstrates faster convergence and
stronger performance, especially under highly non-i.i.d client data
distributions. Our SSFed implementation is available on GitHub1.
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I. INTRODUCTION

Federated learning is a recent paradigm that enables mul-
tiple clients to contribute their machine or deep learning
together, while preserve the privacy [1]. Each client sends local
model updates to the global server after training these models
locally [2]. This approach preserves privacy at some level by
sharing the local models’ updates, not the actual underlying
data [3]. Data remains locally on clients’ servers and is never
shared, making this paradigm suitable for sensitive sectors,
such as healthcare and financial. Federated learning thus
addresses privacy concerns by keeping sensitive information
decentralized [4]. This paradigm was first proposed by Google
with its application in Gboard [5].

Non-i.i.d data presents challenges in this federated learning
paradigm [6]. Client datasets vary across the network, where
each client holds unique data that usually represents its own
environment. This causes bias in the global server at the
aggregation level, where the server model might be biased
toward certain clients’ datasets over others [7]. After each
training, the global server receives these local models from

1https://github.com/SimuEnv/SSFed

each client, and the bias becomes further from optimal [8].
While federated learning is solving major issues in data and
AI, this remains a significant issue.

Here are great efforts and techniques addressing non-
i.i.d in federated learning. Aggregation techniques include
SCAFFOLD [9], which reduces gradient variance through a
control variate; FedProx [10], which stabilizes learning with
a proximal term to limit model divergence; FedMA [11],
which matches and averages neurons for consistent global
models; FedNova [12], which normalizes updates based on
local steps; MOON [13], which uses contrastive loss to reduce
client-specific biases; q-FFL [14], which adjusts weights for
fair performance across clients; and FedAvgM [15], which
incorporates momentum in aggregation to smooth updates and
reduce oscillations. FedAvg [16] is widely used and is the
default aggregation algorithm in federated learning.

Although these aggregation algorithms are powerful, they
face challenges when dealing with distribution issues, and
some require complex adjustments or a high number of
communication rounds. Sensitive parties, such as hospitals
or financial institutions, do not appreciate the large number
of communications due to security concerns and potential
bottlenecks [2], [17]. In federated learning, clients train their
models locally and share the full models with the global server
for aggregation. At the aggregation stage, our approach applies
adaptive weights to each client’s parameters based on their
significance. We believe that instead of aggregating all updated
parameters from clients, assigning adaptive weights to specific
parameters that add significant value to the global model and
are close to the rest of the parameters might reduce drift or
bias.

Although numerous federated learning aggregation tech-
niques have been proposed to mitigate non-IID data issues,
they often lack fine-grained mechanisms to evaluate the actual
significance of individual model parameters during aggrega-
tion. Most approaches either rely on data size, gradient norms,
or heuristic assumptions, overlooking the statistical importance
of updates. Moreover, many of these methods still require
extensive communication rounds, posing challenges in privacy-
sensitive or resource-constrained environments.

In this paper, to bridge this gap, we propose SSFed — an
aggregation algorithm that introduces statistical significance
testing at the parameter level to ensure only impactful client
contributions are integrated, thereby improving convergence
efficiency and overall model performance. First, each client
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trains a local model locally and does not share raw data with
the global server. Second, clients send model updates to the
global server for the aggregation stage after completing the
first training round. Third, the server calculates z-scores for
each parameter to evaluate their statistical significance across
client updates. Fourth, adaptive weights are assigned to these
parameters based on their significance, giving more weight to
influential updates. Finally, the global model aggregates these
weighted updates to create a more balanced and representative
model that addresses biases from non-i.i.d data distributions.

The contributions of this paper are as follows:

• Existing Aggregation Techniques: We discuss well-
known and recent aggregation techniques in the lit-
erature.

• Enhanced Aggregation Technique: Developed a sta-
tistical significance-based weighting mechanism in
federated learning to specifically address non-i.i.d data
issues.

• Statistical Significance Testing: Integrated z-score cal-
culations to identify parameters with high statistical
impact, assigning them higher weights.

• Efficiency in Handling Diverse Data: Demonstrated
the effectiveness of the aggregation technique and
compared it with existing techniques.

The organization of this paper is as follows. In Section
II, we discuss the related works is discussed. In Section III,
the Preliminaries of this research is explained. In Section IV
we discussed the proposed model. In section V experiment
setups are summarized and the results of the experiments are
evaluated. In Section VI, we present the limitations of our
approach and outline directions for future work. Section VII
concludes our study and provides.

II. RELATED WORK

Efficient aggregation to address non-i.i.d data in federated
learning is widely researched. A number of strategies have
tackled this issue. Since our weighted aggregation is based
on studying the difference between local and global models
and assigning different weights to updates with high drift,
we examine several methods that analyze this difference. We
believe this approach is beneficial because it builds on well-
known algorithm patterns, where drift is captured after clients
update their local models.

Karimireddy proposes SCAFFOLD [9], a Stochastic Con-
trolled Averaging algorithm for Federated Learning, cited as
one of the early and widely used methods to mitigate non-
i.i.d issues in federated learning environments. SCAFFOLD
introduces a concept known as the correction factor such as

yi ← yi − ηl(gi(yi) + c− ci)

where yi is the client’s local model, ηl is the local learning
rate, gi(yi), which adjusts the drift of a client’s model towards
the global model before the model is sent for aggregation.

Wang proposed CMFL [4] as an efficient method in fed-
erated learning. CMFL calculates the updates between the
local and global models to exclude irrelevant clients from the

next round of communication. Our approach is very similar
to CMFL; instead of estimating the relevance in the current
update, SSFed tests the difference between local and global
through z-scores, with direct testing.

Xu introduced the FTTQ algorithm [18] to reduce up-
dated models by quantizing them. The algorithm follows two
strategies by quantizing both the global and local models
so that efficiency accrues in overhead in both downloading
and uploading the model. The FTTQ algorithm follows dif-
ferent steps. First, the clients’ model is normalized, and the
Calculation of Quantization Threshold is calculated, Weight
Quantized, and Layer-wise Implemented. Then, this quantized
model is uploaded, aggregated, and re-quantized.

Hongda [19] proposed FedAdp, a Fast-Convergent Feder-
ated Learning with Adaptive Weighting. FedAdp smoothly cal-
culates the angle θi(t) = arccos

(
⟨∇F (w(t)),∇Fi(w(t))⟩

∥∇F (w(t))∥∥∇Fi(w(t))∥

)
between

the local gradient vector and the global gradient vector to
observe where the local shift is directing; a small value means
the model is converging correctly. This model is different from
FedAvg, which assigns the weight to all participants based on
data size.

Ye et al. introduced FedDisco, [20] introduced FedDisco
a federated learning with discrepancy-aware collaboration.
FedDisco addresses the federated learning heterogeneity in
the dataset category. The algorithm calculates the discrepancy
between local and global models to measure the level of
heterogeneity in optimization. as hey proved that data size
alone is not the optimal solution for fair aggregation. The
aggregation weights for each client k are calculated using
the formula pk = ReLU(nk−a·dk+b)∑K

m=1 ReLU(nm−a·dm+b)
, where ReLU(·)

is the ReLU function to take care of negative values, a is
a hyper-parameter to balance nk and dk, and b is another
hyper-parameter to adjust the weight. They prove that data size
independently is not the optimal solution for fair aggregation.

FedNova, proposed by Wang et al., addresses the chal-
lenges of non-i.i.d data by normalizing client updates based
on the number of local training steps taken by each client
[12]. In federated learning, clients often perform different
amounts of work in each round due to varying computational
resources or local data sizes. Without normalization, clients
with more updates can disproportionately influence the global
model, amplifying bias in non-i.i.d settings. FedNova’s nor-
malization balances the contribution of each client’s update
during aggregation, making the global model more robust to
data heterogeneity.

MOON, introduced by Li et al., reduces client-specific
biases by using a contrastive loss function during training [13].
In MOON, each client’s model is encouraged to align with the
global model, while diverging from outdated versions of its
own previous local models. This contrastive approach improves
consistency between local and global models, thus addressing
the data heterogeneity issue by reducing the influence of
individual client biases. MOON’s strategy of using contrastive
learning leads to a more stable global model, particularly
in cases with non-i.i.d data, by encouraging clients to learn
representations that generalize better across all clients.

Many existing aggregation methods in federated learning
try to handle non-IID data, but they usually treat all client
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updates the same or just adjust based on data size or gradient
values. They don’t really look at how important each parameter
update is. Also, most of these methods still need a lot of
communication between clients and the server, which isn’t
ideal in settings where privacy or bandwidth is a concern.

III. PRELIMINARIES

The global server in federated learning coordinates the
aggregation and optimization of a large pool of clients, rep-
resented by N . Each client i holds its own local dataset Di,
where i = 1, 2, . . . , N , and trains a local model, represented
by the parameter set θi, on this dataset.

In federated learning, clients participate in the optimization
process to ensure that their data never leaves their network,
preserving data privacy. The clients engage in a number of
rounds, and at each round, each client trains its local model on
its dataset. Then, the clients share their trained models with the
global server for aggregation, enhancing or creating a robust
global model θG.

The primary goal of federated learning is to optimize a
global model that minimizes the aggregate client loss function:

min
θG

N∑
i=1

|Di|∑N
j=1 |Dj |

Li(θi),

where Li(θi) represents the local loss for each client i. By
aggregating these client losses, the global model aims to
learn from the distributed data without centralizing it, thereby
enhancing privacy while enabling large-scale model training.

This setup allows federated learning to use the collective
information from each client’s data to build a comprehensive
model while keeping data decentralized on client devices. Later
in this paper, notations such as zik and wi will be introduced
to represent the statistical significance of each parameter k
for a client i and the adaptive weight assigned to client i,
respectively, based on this significance.

A. Non-i.i.d Data in Federated Learning

The non-independent and identically distributed (non-i.i.d)
data problem is a well-known challenge in federated learning.
Each client holds a dataset Di, often containing images that
mostly represent its environment, behavior, or pattern. These
representations can produce different distributions in the sta-
tistical properties of datasets across clients.

The non-i.i.d nature in this environment can lead to
different issues. For instance, when clients hold different
distributions, the global server might shift towards certain
clients, where this client might dominate in size or distribution,
leading the global server to ignore other clients. The global
server model starts becoming biased towards incorrect learning
round by round, which makes the convergence slower. Other
issues, such as overhead in communication, might occur if
convergence is slow and requires a large number of rounds.

To formally represent the non-i.i.d challenge, the global
model’s objective becomes difficult to optimize across all
clients, as each client distribution P (Di) varies, leading to
an inconsistency in the global loss function:

Ezi∼Di
[F (wi; zi)] ̸= Ezj∼Dj

[F (wj ; zj)], ∀i ̸= j,

where F (wi; zi) represents the local loss function for sample
zi from client i’s data distribution. This disparity highlights
that there is no uniformly optimal global model, as each client
has a unique distribution.

IV. PROPOSED MODEL

In this section, we introduce our approach, SSFed. SSFed
is an aggregation algorithm that aims to address non-i.i.d in
federated learning. In SSFed, the aggregation analyzes each
client’s parameters to assess their statistical contribution to
the global model. The aggregation prioritizes client parameters
that are close to the statistical distribution of other parameters
towards the global model. The goal is to create a robust global
model that balances the client distributions.

A. Local Model Training and Update Transmission

In the first stage, each client trains a local model on its
private dataset. This learning and optimization stage happens
on the client side, where clients do not share their underlying
data with the global server or other clients, preserving data
privacy. After completing local training, each client shares its
model parameters and sends these parameters to the global
server for aggregation.

Each client optimizes its local model according to its own
objective function:

θ∗i = argmin
θi

Li(θi),

where Li is the local loss based on client i’s dataset Di, and θi
is the locally optimized model. This approach ensures that each
client’s model aligns closely with its own data characteristics.

B. Statistical Evaluation of Model Updates

Now, at the global server stage, after receiving all updated
models from clients, the statistical contribution of each client
parameter is evaluated using a z-score. This z-score measures
each parameter’s deviation from the aggregated global param-
eter value, thus indicating the significance of each parameter
update. The z-score for each parameter k in θ is calculated as
follows:

zik =
|θ̃ik − θGk|

σGk
,

where σGk represents the standard deviation of parameter k
across all clients’ updates, and θ̃ik is the parameter k from
client i.

An update is considered statistically significant if the
maximum z-score among all parameters exceeds a predefined
threshold T :

Update condition: max(zik) > T.

This thresholding helps identify out less significant updates,
ensuring that only the most impactful client contributions are
aggregated in the global model.
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C. Weighted Global Model Update

After identifying significant updates, the global server ap-
plies adaptive weighting to the updates. Rather than uniformly
averaging all updates, our model assigns weights to each
client’s update based on its calculated significance, allowing
more influential updates to have a stronger impact on the global
model. The update for each parameter θGk in the global model
is then calculated as follows:

θGk ←
1

N

N∑
i=1

wi · θ̃ik,

where wi is a weighting factor that is inversely proportional
to the average z-score of the updates from client i, prioritizing
infrequent but more impactful updates:

wi =
1

avg(zik)
.

This weighted aggregation helps manage client variability,
reducing the bias in global model updates and improving the
convergence rate.

D. Global Model Aggregation and Update

After weighting the client updates, the global model aggre-
gates these weighted updates to create a new global parameter
set. This aggregation process effectively balances contributions
from diverse client data distributions, reducing the risk of
bias introduced by non-i.i.d data. The final global model
update reflects the most statistically significant contributions,
enhancing the model’s robustness and generalization across
heterogeneous client datasets.

E. Convergence Analysis

In this section, we discuss a convergence analysis of SSFed,
where it assigns adaptive weights to client updates based on
statistical significance.

We assume that each client i has a local loss function fi(θ),
where θ represents the model parameters, and that the global
objective is defined as F (θ) = 1

K

∑K
i=1 fi(θ). For simplicity,

we assume the following conditions:

• Smoothness: Each local loss function fi is β-smooth,
i.e.,

∥∇fi(θ)−∇fi(θ′)∥ ≤ β∥θ − θ′∥, ∀θ, θ′.
• Bounded Variance: The variance of the gradients

across clients is bounded, meaning there exists a
constant σ2 such that

E∥∇fi(θ)−∇F (θ)∥2 ≤ σ2.

Let θ(t) denote the global model parameters at round t and
θ
(t)
i the parameters after local updates by client i. The goal

is to show that SSFed converges to the optimal solution when
weights are assigned based on the statistical significance of the
parameters.

Theorem 1. Under the assumptions of smoothness and
bounded variance, SSFed converges to a neighborhood of the
global optimum. Specifically, after T rounds, we have

E
[
F (θ(T ))− F (θ∗)

]
≤ O

(
βσ2

KT

)
,

Algorithm 1 Enhanced Federated Learning with Statistical
Significance Testing (SSFed)

1: Input: Set of clients C, global model MG, significance
threshold T

2: Output: Updated global model MG

3: procedure FEDERATEDUPDATE
4: for each client c ∈ C do
5: Train local model Mc on local data Dc

6: θc ← parameters of Mc

7: Send θc to server
8: end for
9: Initialize updates ← empty list, weights ← empty

list
10: for each client c ∈ C do
11: Receive parameters θc
12: Calculate zik for each parameter k in θc
13: if max(zik) > T then
14: Append θc to updates
15: Calculate wc ← 1

avg(zik)
▷ Adaptive weight

based on z-score
16: Append wc to weights
17: end if
18: end for
19: if updates is not empty then
20: Normalize weights: wc ← wc∑

wc
for each wc ∈

weights
21: θG ← weighted sum of updates using weights
22: end if
23: MG ← LoadParameters(θG)
24: return MG

25: end procedure

where θ∗ is the optimal parameter set.

Proof: The core of SSFed lies in adjusting the weights
w

(t)
i for each client i based on the statistical impact of their

updates, as measured by a z-score:

w
(t)
i =

1

1 + avg(z(t)ik )
,

where z
(t)
ik =

|θ̃(t)
ik −θ

(t)
G |

σ
(t)
Gk

.

Following the convergence analysis in [9], [16], the key
insight is that adaptive weights w

(t)
i reduce the variance in the

aggregated model updates. We decompose the expected error
as:

E
[
F (θ(t+1))− F (θ∗)

]
≈ 1

K

K∑
i=1

E
[
fi(θ

(t))− fi(θ
∗)
]
,

where the statistical significance-based weights ensure that
only impactful updates significantly contribute to θ(t+1).

Using the assumptions of smoothness and bounded vari-
ance, and applying results similar to those in [9], [10], we
conclude that our method achieves a convergence rate of
O
(

βσ2

KT

)
, where T is the total number of rounds.
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V. EXPERIMENT

A. Experimental Setup

We utilize the well-known MNIST dataset [21], which is
widely used in the federated learning community. The MNIST
dataset contains 60,000 training images and 10,000 testing
images of handwritten digits ranging from 0 to 9. For our
model architecture, we use a fully connected neural network
with three layers, designed for image classification. The 28×28
pixel images are first flattened into a 784-dimensional vector
by the input layer. The first hidden layer has 128 neurons
with a ReLU activation function applied. The second hidden
layer consists of 64 neurons, and the final layer produces the
log probabilities for the 10 digit classes (0-9) using a log-
softmax activation function. To train the model, we employ
the Stochastic Gradient Descent (SGD) optimizer with a fixed
learning rate, minimizing the negative log-likelihood loss for
classification (Table I).

TABLE I. COMPARISON OF FEDERATED LEARNING ALGORITHMS: FIRST
AND LAST ROUND ACCURACY

Algorithm (Round 1) (Round 20) Final Accuracy Change
SSFed 46.06% 88.71% +42.65%

SCAFFOLD 34.03% 69.86% +35.83%
Q-FFL 11.75% 9.08% -2.67%
FedOpt 11.73% 70.64% +58.91%

B. Results

The experiment evaluates the performance of four feder-
ated learning algorithms—SSFed, SCAFFOLD, Q-FFL, and
FedOpt—over 20 rounds of training on a federated dataset
with non-i.i.d data (α = 0.5). The choice of (α = 0.5)
reflects a high degree of data diversity, which is the primary
focus of SSFed. The experiment is designed to demonstrate
SSFed’s ability to achieve fast convergence and high accuracy
with fewer rounds, optimizing communication overhead while
handling diverse client data effectively. The z-score threshold
T helps decide which updates to keep. A low T keeps more
updates (even noisy ones), while a high T is more selective.
We chose it based on what gave the best balance between speed
and accuracy. The adaptive weights, based on average z-scores,
control how much each client influences the final model. This
reduces the impact of clients with unusual or noisy updates.

SSFed performs the best among all the algorithms. It starts
with an accuracy of 46.06% in round 1 and improves steadily
over the rounds. By round 4, SSFed reaches 82.82%, and after
some small changes in later rounds, it stabilizes at 88.71%
by round 20. This shows that SSFed converges quickly and
achieves high accuracy, even with the challenges of non-i.i.d
data. SSFed is the most efficient and effective method for
federated learning in this experiment. It uses a thresholding
technique to identify and remove less important updates,
ensuring that only the most significant client contributions are
used to update the global model. This approach speeds up
convergence, improves performance, and reduces the need for
frequent communication.

In contrast, SCAFFOLD shows a lot of fluctuation during
training. It starts with a reasonable accuracy of 34.03% in
round 1 but then drops significantly, especially in rounds 4
(27.05%) and 5 (24.60%). Although the accuracy improves

in later rounds, the final accuracy of 69.86% is much lower
than SSFed’s. These fluctuations indicate that SCAFFOLD’s
aggregation process has trouble stabilizing the model in non-
i.i.d settings, leading to slower convergence and lower overall
performance.

Q-FFL, on the other hand, shows poor performance with
low accuracy throughout the rounds. It starts at 11.75% in
round 1 and makes little progress, with frequent drops in
accuracy. It never goes above 25.92%. This weak performance
may be due to problems in how updates are combined or poor
choices of settings, resulting in an inefficient federated learning
process.

FedOpt shows steady progress with a more consistent
improvement across rounds, reaching 70.64% in round 20.
While it demonstrates better stability than SCAFFOLD and
Q-FFL, it converges slower and achieves lower final accuracy
compared to SSFed. The slower convergence rate observed
with FedOpt indicates that, although it offers stable updates, it
does not leverage the same level of efficiency in aggregating
client updates as SSFed.

In summary, SSFed performs better than the other algo-
rithms in both speed and accuracy, reaching high accuracy
in just 20 rounds while reducing communication needs in
highly diverse data. This shows that SSFed, especially with
the SCAFFOLD algorithm, is ideal for federated learning tasks
that need fewer rounds and faster convergence. Meanwhile,
SCAFFOLD is unstable, Q-FFL struggles to converge, and
FedOpt converges more slowly but steadily.

C. Discussion

Our results show that SSFed performs well when client
data is highly diverse. It reaches high accuracy faster than
other methods like SCAFFOLD and FedOpt, which is helpful
when reducing communication is important. The way SSFed
filters updates based on statistical significance seems to help
avoid including noisy or less useful updates. This makes the
global model more stable and effective. In real-world settings
like healthcare, where privacy and communication are both
concerns, this approach could be especially useful. That said,
the method still depends on a few parameter choices, like
the z-score threshold, which may need tuning depending on
the dataset. We found it worked well in our tests, but this
could vary in other setups. Overall, these results suggest that
using simple statistical checks during aggregation can make
federated learning more reliable in challenging settings (Fig.
1).

VI. LIMITATION AND FUTURE WORK

In this research, SSFed aims to address the high diversity of
client datasets while reducing communication between clients
and the global server. Testing SSFed on different distributions
and over long training periods is not within the scope of this
study. In real-world scenarios, such as in hospitals and financial
institutions, reducing external communication is critical for
security reasons, which motivated this work. In future work,
we plan to test SSFed on different data distributions and over
longer training periods to make it more adaptable to various
real-world applications. The method uses parameters like the
z-score threshold and adaptive weights, which were set based
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Fig. 1. Accuracy comparison of SSFed, SCAFFOLD, Q-FFL, and FedOpt
across 20 communication rounds on a non-i.i.d MNIST dataset.

on testing. Thus, we plan to study their impact more closely
and explore ways to tune them automatically.

VII. CONCLUSION

In this paper, we introduced SSFed, a federated learning
aggrgation algorithm that uses statistical significance testing
to improve the aggregation of client updates. SSFed rely on
focusing on only the most important updates, SSFed helps cre-
ate a more stable and effective global model. The experiments
show that SSFed achieves an accuracy of 88.71%, significantly
outperforming other methods like SCAFFOLD and Q-FFL,
which showed lower accuracy and slower convergence. This
demonstrates that SSFed is a more efficient and effective
approach for high diversity of data in federated learning.
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APPENDIX: FULL PROOF OF CONVERGENCE FOR SSFED
AGGREGATION USING LYAPUNOV FUNCTION METHOD

In this appendix, we present a detailed proof of conver-
gence for the proposed SSFed aggregation method using the
Lyapunov function technique. The goal is to show that the
adaptive weighting approach used by SSFed ensures conver-
gence to a neighborhood of the global optimum.

A. Lyapunov Function Setup

To analyze convergence, we define a Lyapunov function
V (t) that captures the error dynamics of the model at each
round t. Specifically, let

V (t) = E
[
F (θ(t))− F (θ∗)

]
,

where θ(t) is the model parameter vector at round t, and
θ∗ is the optimal parameter vector that minimizes the global
objective F (θ) = 1

K

∑K
i=1 fi(θ).

B. Assumptions

We make the following assumptions, consistent with the
federated learning literature:

1. **Smoothness**: Each client’s local objective fi(θ) is
β-smooth, meaning

∥∇fi(θ)−∇fi(θ′)∥ ≤ β∥θ − θ′∥, ∀θ, θ′.
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2. **Bounded Variance**: The gradient variance across clients
is bounded. Specifically, there exists a constant σ2 such that

E∥∇fi(θ)−∇F (θ)∥2 ≤ σ2.

3. **Statistical Significance-Based Weighting**: The weights
w

(t)
i are determined based on statistical significance using z-

scores, with w
(t)
i satisfying 0 ≤ w

(t)
i ≤ 1 and normalizing

across clients.

C. Main Result

Theorem 2. Under the smoothness and bounded variance
assumptions, SSFed converges to a neighborhood of the global
optimum. Specifically, after T rounds, we have

E
[
F (θ(T ))− F (θ∗)

]
≤ O

(
βσ2

KT

)
,

where K is the number of clients and T is the total number
of communication rounds.

Proof:

To establish convergence, we show that the expected de-
crease in the Lyapunov function V (t) over each round t is
bounded, ensuring that the model converges toward the global
minimum.

Bounding the Expected Error

Using the β-smoothness of fi, we have:

fi(θ
(t+1)) ≤ fi(θ

(t))+⟨∇fi(θ(t)), θ(t+1)−θ(t)⟩+β

2
∥θ(t+1)−θ(t)∥2.

Taking the expectation and summing over clients, we obtain:

E[F (θ(t+1))] ≤ E[F (θ(t))] +
β

2
E∥θ(t+1) − θ(t)∥2.

Error Due to Weighted Updates

The SSFed aggregation method applies weights w(t)
i based

on the statistical significance of each client’s update, leading
to the weighted update θ(t+1) = θ(t)+

∑K
i=1 w

(t)
i (θ

(t)
i − θ(t)).

Expanding this, we get:

θ(t+1) = θ(t) +

K∑
i=1

w
(t)
i ∇fi(θ

(t)) + ϵ(t),

where ϵ(t) denotes the accumulated error due to weighted
averaging and gradient variance. By the bounded variance
assumption, E[∥ϵ(t)∥2] ≤ σ2

K .

Lyapunov Function Decrease

Define the Lyapunov function difference as ∆V (t) =
V (t+1) − V (t). From the smoothness and weighted update
bounds, we have:

E[∆V (t)] ≤ −η
K∑
i=1

w
(t)
i ∥∇fi(θ

(t))∥2 + βη2σ2

2K
.

Since w
(t)
i are adaptive and emphasize updates with signif-

icant gradients, we further bound ∥∇fi(θ(t))∥2 by the global
gradient ∇F (θ(t)), giving:

E[∆V (t)] ≤ −η∥∇F (θ(t))∥2 + βη2σ2

2K
.

Summing Over Rounds

Summing E[∆V (t)] from t = 1 to T and using telescoping,
we obtain:

E[V (T )]− E[V (0)] ≤ −η
T∑

t=1

∥∇F (θ(t))∥2 + βη2σ2T

2K
.

Rearranging terms, we find:

1

T

T∑
t=1

E∥∇F (θ(t))∥2 ≤ V (0) − V (T )

ηT
+

βησ2

2K
.

Convergence to a Neighborhood of the Optimum

By setting η = O
(

1
β

)
, we achieve:

1

T

T∑
t=1

E∥∇F (θ(t))∥2 = O

(
βσ2

KT

)
.

Thus, after T rounds, the model converges to a neighbor-
hood of the global optimum, completing the proof.
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