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Abstract—Air pollution poses significant threats to human
health and the environment, making effective monitoring in-
creasingly essential. Traditional methods using fixed monitoring
stations have challenges related to high costs and limited coverage.
This paper proposes a new approach using convolutional neural
networks with genetic algorithms for estimating air quality
directly from images. The convolutional neural network is op-
timized using genetic algorithms, which dynamically tune hyper-
parameters such as learning rate, batch size, and momentum
to improve performance and generalizability across diverse envi-
ronmental conditions. Our approach improves performance and
reduces the risk of overfitting, thus ensuring balanced and robust
results. To mitigate overfitting, we implemented dropout layers,
batch normalization, and early stopping, significantly enhancing
the model’s generalization capability. Specifically, three different
open-access datasets were combined into a single training dataset,
capturing extensive temporal, spatial, and environmental variabil-
ity. Extensive testing of the model performance was conducted
with a broad set of metrics, including precision, recall, and F1
score. The results demonstrate that our model not only achieves
high accuracy but also maintains well-balanced performance
across all metrics, ensuring robust classification of different air
quality levels. For instance, the model achieved a precision of
0.97, a recall of 0.97, and an overall accuracy of 0.9544 percent,
outperforming baseline methods significantly in all metrics. These
improvements underscore the effectiveness of Genetic Algorithms
in optimizing the model.
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I. INTRODUCTION

Air pollution is a major environmental risk that has increas-
ingly become a critical issue, posing significant health threats
and adverse effects on the environment [1]. The main group
of air pollutants includes particulate matter (PM), specifically
classified as PM10 (particles with aerodynamic diameters less
than 10 um) and PM2.5 (particles with aerodynamic diameters
less than 2.5 pm), nitrogen dioxide (NO3), sulfur dioxide
(S03), oxides of nitrogen (NO,), and carbon monoxide (CO)
[2]. The World Health Organization (WHO) estimates that
air pollution contributed to approximately 4.2 million prema-
ture deaths worldwide in 2016 [3]. Estimating air pollution
emissions is crucial to controlling air pollution [4]. However,
many traditional methods developed for this purpose are now
outdated and rely on expensive, region-specific fixed stations
that often fail to provide comprehensive real-time data.

Recent advances in computer vision and deep learning
offer a promising alternative to these conventional methods.
The increasing presence of cameras in public spaces, vehicles,
and personal devices presents an opportunity to leverage
image data for air quality estimation. Convolutional Neural
Networks (CNNs), which excel in extracting and analyzing
complex visual features, are powerful tools for tasks such as
image recognition [5]. They have been increasingly applied
in environmental monitoring [6]. In recent years, image-based
methods have been proposed to detect air quality, which have
demonstrated good accuracy in specific scenarios [7]. How-
ever, despite their potential, CNNs often struggle to generalize
in diverse environmental conditions due to limited data set
diversity and static hyperparameter configurations. Previous
studies, such as those conducted by Zhang et al. [8] and
Song et al. [9], have successfully demonstrated the feasibility
of using CNNs to estimate air pollution levels from images.
Recently, numerous articles have been published on estimating
air quality from image datasets. However, these approaches
often face limitations due to the narrow scope of datasets and
challenges in optimizing hyperparameters, which can constrain
their broader applicability.

This paper addresses these gaps by presenting a novel
approach to air quality estimation that combines the power of
CNNs with Genetic Algorithms (GA) to dynamically optimize
hyperparameters and enhance model performance. By integrat-
ing three diverse open-source datasets, covering a wide range
of temporal and spatial variations, our model can perform well
under different environmental conditions. This comprehensive
dataset includes images captured at different times of the
day, in various weather conditions, and in multiple geographic
locations, providing a solid foundation for accurate air quality
prediction.

A key innovation of our approach shown in Fig. 1 lies in
the integration of GA with the CNN framework. The GA com-
ponent dynamically optimizes CNN’s hyperparameter, such as
learning rate, batch size, and momentum, to achieve optimal
performance. This evolutionary technique allows the model to
adapt to various environmental scenarios, significantly improv-
ing its accuracy and generalization capabilities. By leveraging
this hybrid approach, our model not only achieves high accu-
racy but also maintains balanced performance across multiple
evaluation metrics, making it a powerful tool for real-time air
quality monitoring.
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The remainder of this paper is structured as follows:
Section II reviews related works on air quality estimation,
highlighting not only the limitations of traditional methods
but also the recent advancements in image-based approaches.
Section IIT details the proposed method, including data col-
lection, preprocessing, and the CNN-GA framework. Section
IV presents the experimental setup and the performance eval-
uation, followed by a discussion of the results obtained in
Section V. Finally, Section VI concludes the paper and suggests
directions for future research.

II. RELATED WORK

This section reviews both traditional and modern image-
based methods used for air pollution estimation.

A. Traditional Methods

Various traditional methods have been developed over
the past few decades to estimate air quality. These can be
further divided into two major groups, namely, ground-based
monitoring and modeling techniques.

In ground-based monitoring, air pollutants are generally
monitored using fixed stations installed by environmental or
government institutions [10]. Common types of air pollutants
monitored include PM2.5, PM10, NO2, SO2, CO, O3, and
VOCs [11]. However, this sparse network of regulatory moni-
toring stations is usually not sufficient for mapping out spatial
variations in air pollutants among a considerable population
in urban areas. These networks cannot provide high-resolution
data for the efficient management of air quality and exposure
[11], [12]. Besides, conventional methods of monitoring are
costly and cannot capture the temporal-spatial heterogeneity
of urban pollution, which restricts their ability to find hotspots
of pollution and further management thereof [12].

Common modeling techniques include deterministic and
statistical models. Deterministic models use known, based,
and expressed mathematical relationships concerning processes
underlying CTMs in order to model the emission, transport,
transformation, and removal by deposition from the atmo-
sphere [13].Their principal strength is that for sufficiently
small scale and homogeneity, they are capable of predicting,
with a high spatial resolution, very detailed quantitative data
regarding the different complex atmospheric flow phenomena
transporting various constituents with pollutants. However,
these models presuppose considerable a prior knowledge in the
form of reliable and extensive data with respect to atmospheric
conditions and sources of pollutants [14]. The use of idealized
assumptions and detailed input often makes these models inap-
plicable and less accurate, especially in regions where small-
scale atmospheric data is not available. Besides, deterministic
models are computationally intensive, hence unsuitable for
real-time applications.

They do not use detailed representations of physical and
chemical processes. They rather attempt to find the factorial
relationship that exists between a set of factors influencing
air pollutant concentrations using statistical techniques. These
methods are usually divided into two broad methods: classical
methods or traditional machine learning. The important repre-
sentative classical methods include the ARIMA model [15]-
[17]. Among the machine learning methods, ANN is widely
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used as it simulates the human brain’s system for nonlinear se-
quence modeling. After years of research and application, more
advanced versions have evolved for air pollution prediction,
such as the Backpropagation Neural Network (BPNN) [18],
the Generalized Regression Neural Network (GRNN) [19], and
the ensemble ANN approach [20].

Despite their advancements in improving prediction accu-
racy, statistical methods often struggle to capture complex,
nonlinear spatio-temporal correlations and tend to learn only
shallow features [14]. Additionally, these models generally per-
form well only on small-scale datasets, making them less effec-
tive for large-scale and dynamically changing air pollutant data
that require more sophisticated modeling of spatio-temporal
relationships [21], [22]. This limitation also contributes to
generalization gaps, where models trained on specific datasets
may not perform adequately when applied to new or unseen
environments, reducing their overall effectiveness in broad,
real-world applications.

B. Image-Based Air Pollution Estimation Methods

Recent advancements in image-based air pollution estima-
tion have leveraged the capabilities of deep learning tech-
niques, particularly Convolutional Neural Networks (CNNs),
to significantly enhance the accuracy and efficiency of air
quality assessments. These methods provide a scalable, cost-
effective alternative to traditional air quality monitoring sys-
tems, which are often constrained by high costs and limited
spatial coverage.

One prominent approach involves the use of a Double-
Channel Weighted Convolutional Neural Network (DCWCN),
which processes different parts of an image, such as the sky
and buildings, to extract relevant features separately. This
technique enhances the accuracy of air quality estimation by
focusing on distinct components of the environment, thereby
addressing variability in image content due to factors like
lighting and weather conditions. The DCWCN architecture
includes two separate feature extraction networks for both
channels, followed by a feature weights self-learning method
that performs weighted feature fusion, combining the extracted
features before classification [23].

Zhang et al. [8] developed a convolutional neural network
(CNN) and improved both the convolutional layer and classi-
fication layer activation functions. They proposed a new acti-
vation function, EPAPL, and replaced the traditional SoftMax
classifier with a Negative Log-Log Ordinal Classifier in the
classification layer. This network was trained using environ-
mental images to predict classifications, and it successfully
performed the task of measuring PM2.5 and PMI10 levels
across six different grades.

One approach integrates Convolutional Neural Networks
(CNNs) with regression classifiers to create a hybrid model
(CNN-RC) that processes images and HSV (Hue, Satura-
tion, Value) statistics to estimate PM2.5, PM10, and AQI
levels. This multi-input multi-output (MIMO) framework has
demonstrated significant improvements in estimation accuracy,
particularly when handling both daytime and nighttime images.
The model’s effectiveness is attributed to its ability to deeply
learn from high-dimensional datasets and the incorporation
of HSV statistics, which play a crucial role in enhancing
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the estimation reliability by correlating current images with
baseline images [24].

The AQC-Net framework, as proposed by Zhang et al.
[25], integrates a Convolutional Neural Network (CNN) with
a Spatial and Context Attention (SCA) module to create a
model that processes images captured by mobile devices to
estimate air quality levels such as PM2.5, PM10, and AQL
This deep learning framework leverages ResNet18 for feature
extraction, while the SCA module enhances the model’s ability
to capture global contextual information and inter-channel de-
pendencies. The model has demonstrated significant improve-
ments in classification accuracy, particularly by focusing on
the spatial and contextual relationships within images, making
it highly effective across various environmental conditions and
locations. The model’s effectiveness is attributed to its ability
to deeply learn from scene images and the integration of the
SCA module, which recalibrates feature maps for improved air
quality estimation reliability.

This paper presents an innovative method for air qual-
ity estimation by integrating Convolutional Neural Networks
(CNNs) with Genetic Algorithms (GAs) to dynamically op-
timize hyperparameters. The CNN is utilized for its robust
feature extraction capabilities, enabling it to process images
and estimate air quality indicators such as PM2.5, PM10,
and the Air Quality Index (AQI). The approach is further
strengthened by the amalgamation of three distinct open-source
datasets into a single, comprehensive data set, which provides
a broad spectrum of temporal and spatial variations for model
training.

A significant contribution of this work is the application
of GAs to optimize critical CNN hyperparameters, including
learning rate and batch size, allowing the model to adapt
effectively to diverse environmental conditions. This hybrid
CNN-GA approach not only enhances the model’s accuracy but
also improves its generalization capabilities, making it particu-
larly suitable for real-time air quality monitoring. The model’s
effectiveness was thoroughly assessed using key performance
metrics such as Precision, Recall, F1-Score, and ROC-AUC,
where it consistently demonstrated superior accuracy and a
well-balanced performance across various environmental sce-
narios.

III. PROPOSED METHOD

This section details the methodology employed in this
study, covering data collection, preprocessing, and the CNN-
GA proposed model used for air quality estimation.

A. Data Collection and Preprocessing

To develop a robust and generalized CNN model for air
quality estimation, we utilized three diverse, publicly available,
open-source datasets. The selected datasets represent a diverse
array of environmental conditions, including variations in ge-
ographical location, weather patterns, and lighting conditions.
This diversity is crucial for training a model that can generalize
well across different regions and times, making it adaptable for
global application. In total, 12,902 images were collected from
these datasets. The dataset was split into 80% for training and
20% for validation, ensuring a balanced distribution for model
evaluation.

Vol. 16, No. 3, 2025

TABLE 1. AQI CATEGORY IMAGE COUNT ACROSS DIFFERENT DATASETS

AQI Category Dataset-A | Dataset-B | Dataset-C
Good 1541 135 58
Moderate 1573 188 52
Unhealthy for Sensitive Groups 2863 29 8
Unhealthy 2622 78 50
Very Unhealthy 2194 26 22
Hazardous 1447 0 16

1) Dataset A [26]: Combined Air Quality Dataset from
India and Nepal : includes 12,240 pictures that depict different
aspects of air quality in Indian and Nepali cities [26]. All
images maintain the same resolution of 224 x 224 each. The
images are divided into two categories: the combined dataset
and country wise dataset. In this dataset, the folder named”
Combined Dataset” focused on categorizing air quality into
six categories based on the AQI, namely, Good, Moderate,
Unhealthy for Sensitive Groups, Unhealthy, Very Unhealthy,
and Hazardous/Severe. This detailed classification offers an
extended framework for analyzing air quality in diverse envi-
ronmental conditions.

2) Dataset B [27]: Smartphone-Based Air Pollution Image
Dataset (SAPID) was retrieved from Mendeley Data and
is identified as the Smartphone-Based Air Pollution Image
Dataset, SAPID [27]. The dataset consists of 456 images
displaying various air pollution levels in accordance with the
United States Environmental Protection Agency categorization.
Images are divided into five AQI classes. This dataset is a very
important source for developing and testing computer vision
algorithms with the purpose of air quality assessment based
on visual data represented by images taken from smartphones,
where structured categorization enables detailed analysis and
modeling.

3) Dataset C [28]: PM2.5 Image Dataset from Kaggle is
provided by Kaggle; the material is entitled “Pictures and Air
Quality.” It contains images pre-classified into their respective
conditions according to the PM2.5 values represented in their
PM2.5data.csv file [28]. The 2.5 data have exact concentrations
with corresponding images, making it suitable to classify
images into normal and polluted classes according to the
conventional standard for air. Table I presents the distribution
of all images of “Pictures and Air Quality Dataset” that have
been prepared according to their corresponding level of PM2.5
concentration.

B. Data Preprocessing

Preparing a dataset for the training of a deep learning model
in air quality estimation involves images from different sources
and varying dimensions and resolutions. To ensure consistency
and quality in the dataset, we implemented a preprocessing
pipeline that includes image resizing and quality filtering. The
algorithm used for this process is outlined below.

Algorithm 1 is used to preprocess the dataset by standard-
izing image dimensions and filtering low-quality images. All
images were resized to 224 x 224 pixels to ensure uniformity
in input data for the deep learning model. The algorithm
first iterates through the dataset, verifying file formats and
extracting image dimensions before resizing. Next, it applies
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two quality checks: a uniformity check, which removes nearly
blank images using standard deviation analysis, and a sharp-
ness check, which filters out blurry images based on the
variance of the Laplacian filter. Only high-quality images that
pass both checks are retained and saved in the output directory.
This preprocessing step ensures that the dataset contains clear,
informative images, improving the accuracy of air quality
estimation.

Algorithm 1 Image Resizing and Filtering of Images

1: Input: A set of images to be resized.

2: Output: A set of resized and filtered images.

3: Initialization:

4: Set desired_size + (224,224) pixels

5: Set uni form_threshold <— 5—10 (filters almost uniform
images)

6: Set blur_threshold <+ 50 — 100 (filters very blurry
images)

7: Prepare output_dir for saving cropped images

8: Initialize  counters:
filtered_count < 0

9: for each file f; in f where i > 0 do

10:  Check File Type: If f; has extension .png, .jpg, or .jpeg,
proceed

11:  Load Image: Import the image

12:  Determine Dimensions: Extract image width W and
height H

13:  Set resize_width +— desired_size[0] and
resize_height < desired_sizell]

14 Resize image to (resize_width,resize_height)

15: end for

16: Quality Filtering:

17: Uniformity Check:

18: Convert image to grayscale using cv2.cvtColor

19: Compute standard deviation: stddev < np.std(image)

20: if stddev < uniform_threshold then

21:  Return True (filter out the image)

22: else

23:  Return False

24: end if

25: Sharpness Check:

26: Apply Laplacian filter using cv2.Laplacian

27: Compute variance: variance < laplacian.var()

28: if variance < blur_threshold then

29:  Return True (filter out the image)

30: else

31:  Return False

32: end if

33: Save resized and filtered image to output_dir

resize_count — 0,

C. Generalized Convolutional Neural Network (CNN)

CNN is a type of feed-forward Artificial Neural Network
(ANN) that is structured using a deep learning algorithm. It has
been extensively applied in various domains, including image
processing, video recognition, and time series forecasting [29]—
[39]. Empirically, CNNs are widely recognized for their robust
feature extraction capabilities from images, making them suit-
able for tasks involving image-based data. This structure is
well-suited for the problem of air quality estimation, where
extracting complex visual patterns (e.g. particulate matter,
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pollution indicators in environmental images) is key to classi-
fication. The architecture of our CNN is summarized in Table
II. The CNN architecture is divided into two primary phases
as CNN part: feature extraction and classification, comprising
convolutional, pooling, and fully connected layers.

1) Feature Extraction: The feature extraction phase begins
with the input image of size 224x224x3 through several
convolutional and max-pooling layers. The first convolutional
layer applies A set of 96 filters of size 11x11 with a stride of
4 is applied, resulting in an output size of 224x224x96. This
operation is mathematically defined as. The operation for each
filter is defined as:

O1 = f(Wyx1I+by)

where W1 represent the weights represent the output, bl
represents the bias of the first convolutional layer, I is the input
image, and f is the ReLU activation function. A 3x3 max-
pooling operation with a stride of 2 reduces the dimensions to
112x112x96. The output is represented as:

P; = max pool(O1)

The second convolutional layer employs a set of 256 filters
of size 5x5 with a stride of 1, resulting in an output of
112x112%256 represented by P.

Oz = f(Wy x Py + bo)

This output is further sampled to 56x56x256 via a 3x3 max-
pooling operation.

Py = max pool(O2)

Three more convolutional layers follow, with varying filter
sizes and counts. Each layer applies ReLU activation and
batch normalization to stabilize and improve learning. The final
feature map is obtained after pooling:

P; = max pool(O5)

where OS5 is the output from the last convolution layer
(56%56x256), and P3 is the result of the third pooling layer,
reducing it to 28x28x256.

2) Classification: In the classification phase, the output
from the last pooling layer is flattened into a vector of size
50176:

F = Flatten(Ps)

This vector is passed through a fully connected layer of 4096
units:

Ofc=f(Wysco F +bye)

Subsequently, two dropout layers (with a rate of 0.6) are
applied to prevent overfitting. Finally, the output is fed into
another fully connected layer with a softmax activation func-
tion, providing class probability:

P = softmax(Woyut ® Ofc + bout)

This CNN architecture effectively extracts hierarchical features
from the input image and performs classification, making it
well-suited for complex image recognition tasks.
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Fig. 1. Proposed model for air quality estimation from images using CNN with GA for hyperparameter optimization.

3) Hyperparameter tuning using GA: Hyperparameters
may be defined as the very important parameters set prior
to training either a machine learning or deep learning model.
Speaking broadly, there exists a division into two types of
hyperparameters. One group involves identifying the network
structure, where the kernel size and type, stride and padding,
number of hidden layers, and activation function determine the
hyperparameters. These parameters define the architecture and
the complexity of the model. The latter group includes such
hyperparameters as how to train the network: a learning rate,
momentum, number of epochs, batch size. Hyperparameters
responsible for the training process supervise the efficiency
and effectiveness of the whole learning process; therefore, this
is relevant for convergence and generalization of this model
regarding new data. Both model and algorithmic hyperpa-
rameters are very important for the optimization of model
performance and need to be tuned carefully to derive the
best results. Optimization techniques make much difference
in the performance of hyperparameter tuning in deep learning
by bringing improvements in model accuracy, reduction in
computational cost, and enhancing efficiency [40], [41].

The GA is used to carry out the automation of the opti-
mization of hyperparameters related to the training: learning
rate, batch size, and momentum. It is an evolutionary technique
for hyperparameter tuning, which explores a wide range to
find those that allow the maximum CNN performance on
the validation dataset. The process begins by initializing an

initial population, where each one represents a combination of
hyperparameters with the following ranges as shown in Table
III:

Fitness evaluation is performed by training the CNN for
30 epochs, using the validation accuracy as the fitness score,
calculated as:

N
1
fitness = N Z Wy = ui)

i=1

where N is the number of validation samples, y; is the true
label, and g; is the predicted label. After evaluating fitness, ge-
netic operators are applied. Then, tournament selection is used
to choose individuals based on their fitness scores, followed
by a two-point crossover to combine parents and generate
offspring. The mutation would be done with a probability
of 0.2 so as not to lose the diversity in the population. The
generated population will evolve over successive generations,
ensuring at each step in selection that the best of these formed
generations increases the performance of the model at each
step.

IV. RESULTS

This section presents the experimental results of our ap-
proach. The performance is evaluated on a validation set using
evaluation metrics such as precision, recall, and F1-score.
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TABLE II. PROPOSED ARCHITECTURE OF CONVOLUTIONAL NEURAL NETWORK

Layer Output Shape Filter Size Number of Filters Stride Padding Activation
Input Layer 224x224x3 - - - - -
Conv Layer 1 224x224x96 11x11 96 4 Same ReLU
Max Pooling 1 112x112x96 3x3 - 2 - -
Conv Layer 2 112x112x256 5%5 256 1 Same ReLU
Max Pooling 2 56x56x256 3x3 - 2 - -
Conv Layer 3 56x56x384 3x3 384 1 Same ReLU
Conv Layer 4 56x56x384 3x3 384 1 Same ReLU
Conv Layer 5 56x56x256 3x3 256 1 Same ReLU
Max Pooling 3 28%28x256 3x3 - 2 - -
Flatten 50176 - - - - -
Fully Connected 4096 - - - - ReLU
Dropout 4096 - - - - -
Fully Connected 4096 - - - - ReLU
Dropout 4096 - - - - -
Fully Connected num_classes - - - - Softmax
TABLE III. HYPERPARAMETER RANGES
Hyperparameter | Abbreviation Range Good
Learning Rate learning_rates [0.001, 0.0005, 0.0001]
Batch Size batch_sizes [32, 64, 128, 256]
Momentum momentum [0.9, 0.95, 0.99]
Moderate
A. Experimental Setup
The model was trained in a combination of three open-
source datasets, as detailed in the Data Collection and Prepro-
cessing section. The dataset was split into 80% for training Unhealthy

and 20% for validation. A set of samples from both training
and validation is shown in Fig. 2.

To optimize performance, the GA fine-tuned key hyper-
parameters such as learning rate, batch size, and momentum
based on a range of values selected from prior research. The
optimization process ran over 50 generations, with a population
size of 20 individuals. The training process was conducted
using the TensorFlow and Keras frameworks, and the model
was trained on an NVIDIA RTX 3070 GPU for accelerated
performance.

B. Model Performance

The performance of the proposed CNN, optimized with
GA, was thoroughly evaluated on the test set using a variety
of performance metrics, including precision, recall, and F1
score. These results are compared with baseline models, and
the learning process is further visualized through training and
validation loss and training and validation accuracy graphs.

The model demonstrated strong performance across all
pollution categories. The macro-average and weighted-average
F1-Scores were both 0.97, indicating balanced performance
across different air quality levels. The detailed results are
summarized in Table IV.

The overall model accuracy was 95.44%, reflecting a
significant improvement compared to the baseline CNN models
without GA optimization. The results shown in Table V
demonstrate that the proposed CNN-GA model significantly
outperformed the baseline CNN model without the GA-based
optimizer across all performance metrics, achieving a 17.44%

Very_Unhealthy

Sensitive_Groups

Hazardous

Fig. 2. A set of samples from training and validation.

increase in accuracy, a 21.00% increase in precision, and a
21.00% increase in recall.

V. DISCUSSION

A. Training and Validation Curves

The training and validation loss and accuracy curves further
demonstrate the robustness of our model. As shown in Fig. 3,
both loss and accuracy stabilized after around five epochs, in-
dicating that the model converged quickly without overfitting.
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Fig. 3. Proposed model training and validation loss (a), Accuracy (b); Base model training and validation loss (c), Accuracy (d)

TABLE IV. CLASSIFICATION REPORT FOR POLLUTION LEVELS

Pollution Level Precision Recall F1-Score Support
Good 0.97 0.96 0.97 348
Moderate 0.97 0.95 0.96 364
Unhealthy 0.95 0.98 0.97 551
Sensitive Groups 0.98 0.95 0.97 581
Very Unhealthy 0.96 0.96 0.96 450
Hazardous 0.97 0.99 0.98 294
Macro Average 0.97 0.97 0.97 2588
Weighted Average 0.97 0.97 0.97 2588
Overall Model Accuracy: 0.9544

TABLE V. PERFORMANCE COMPARISON OF DIFFERENT MODELS

Model Accuracy Precision Recall F1-Score
Baseline CNN 0.78 0.76 0.76 0.76
CNN-GA 0.9544 0.97 0.97 0.97

The training accuracy approached near-perfect levels ( 99%),
while the validation accuracy consistently ranged between
95% and 99%, confirming strong generalization capability. In
contrast, the base model exhibited noticeable fluctuations in
validation accuracy and loss as shown in Fig. 3, with clear
signs of overfitting after several epochs, particularly during the
later stages of training. Validation loss spiked in certain epochs,
while training accuracy continued to improve, indicating that
the base model overfit the training data and struggled to
generalize to the validation set. This comparison emphasizes
the superior generalization ability of the proposed CNN-GA
model, as it maintained stable validation performance without
significant degradation or divergence from training metrics.

B. Oveffitting Prevention and Generalization

Several techniques were employed to prevent overfitting
and ensure the model generalized well on unseen data. These
included a dropout rate of 0.6 to reduce reliance on spe-
cific neurons, batch normalization to stabilize training, early
stopping to prevent overtraining, and learning rate reduction
when validation loss plateaued for finer adjustments. These
techniques contributed to the CNN-GA model’s ability to
maintain a high level of performance across various environ-
mental conditions. The incorporation of GA led to a significant
enhancement in the model’s performance. The CNN-GA model
indeed represented the real improvement to the baseline by
several folds along all key performance indicator metrics.
Accuracy was increased in CNN-GA by a maximum of 17.44%
compared to that proposed by CNN, or, to say precisely,
78% was increased to 95.44%. Precision of the CNN-GA
improved by +21 points from that provided by CNN: 0.76 to
0.97; it experienced the very same increase also for recall—by
0.76 to 0.97, also for the F1-Score. The improvement in the
results underlines the potential of the proposed GA-based
hyperparameter optimization to increase the performance and
robustness of air quality estimation from image data, offering
a higher generalization ability compared with state-of-the-art
methods working with traditional CNN.

VI. CONCLUSION

This paper presents a new air quality estimation approach
using CNN optimized by GA, significantly enhancing predic-
tive accuracy and improving the generalization of the model
for a wide range of environmental contexts. The integration of
GA within the CNN model allows for dynamic optimization
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of hyperparameters, which, apart from enhancing performance,
may ensure adaptability to diverse spatial, temporal, and envi-
ronmental conditions. The approach provides a series of limi-
tations with traditional air quality monitoring systems, offering
restricted geographic coverage and very high operational costs
that cannot provide real-time data.

This work has been done using three different open-source
datasets, proving that the model will generalize well for any
kind of air quality scenario. These results have been verified
using different metrics such as precision, recall, and F1-score,
which is considerably better compared to baseline methods;
hence, the CNN-GA model is sound and reliable regarding
the classification of air quality levels. The scalability of the
model at low cost opens a different direction in conducting
large-scale monitoring of air quality, which is all-important
for protecting public health and the environment.

In future work, we will extend our dataset to more diverse
scenes and integrate additional data sources, such as satellite
imagery and real-time sensor data, to improve generalization
to unseen data.
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