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Himer Avila-George∗5, Wilson Castro6

Facultad de Ingenierı́a de Industrias, Alimentarias y Biotecnologı́a, Universidad Nacional de Frontera, Sullana, Perú1,2,6
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Abstract—In the sustainable packaging industry, multiple
parameters require regulation to achieve a high-quality final
product that meets contemporary demands. In bioplastic manu-
facturing, the control of the film thickness is critical because it in-
fluences the mechanical properties and other key characteristics.
Terahertz time-domain spectroscopy (THz-TDS) has emerged as
a promising technology for the non-invasive characterization of
polymeric materials. The present study evaluates the integration
of THz-TDS with chemometric techniques and machine learning
models to predict the thickness of bioplastic samples fabricated
from potato and maize starch. Three distinct thickness levels
were produced by solution casting, and a spectral analysis was
performed in the range of 0.5 to 1.2 THz. Four regression models
were developed, including partial least squares regression, sup-
port vector regression, binary regression tree, and a feedforward
neural network. The performance of the model was assessed using
the coefficient of determination (R2), root mean square error
(RMSE) and the ratio of performance to deviation (RPD). R2

values ranged from 0.8379 to 0.9757, the RMSE values ranged
from 0.1259 to 0.3368, and the RPD values ranged from 2.4399 to
6.8106. These findings underscore the potential of THz-TDS and
machine learning for non-invasive analysis of thin polymeric films
and lay the groundwork for future research aimed at enhancing
reliability and functionality.

Keywords—Terahertz spectroscopy; machine learning; chemo-
metrics; thickness; bioplastic

I. INTRODUCTION

The preservation of the environment for future generations
has become a growing necessity in contemporary society,
which requires the pursuit of sustainable solutions, as high-
lighted by [1]. Among the most urgent environmental chal-
lenges is the widespread pollution caused by the widespread
reliance on petroleum-derived plastics, which, according to [2]
and [3], inflicts profound and measurable damage on ecosys-
tems. Inadequate management of plastic waste in numerous
regions exacerbates this issue, leading to significant amounts
of pollutants entering marine ecosystems, where they persist
for centuries [4], [5].

Simultaneously, as noted by [6], global population growth
has driven an unprecedented rise in the demand for poly-
meric materials, further amplifying concerns regarding the
environmental footprint of plastic waste. In response, circular
bioeconomy strategies, described by [7], have gained trac-
tion, leveraging renewable biological resources to mitigate the
negative impacts associated with conventional plastics. This
shift has spurred the development of biodegradable polymeric

materials as viable alternatives to petroleum-based plastics [8],
[9]. The agro-industrial sectors, as demonstrated by [10], gen-
erate considerable amounts of by-products that offer promising
feedstocks for the production of bioplastics. However, the
commercialization of bioplastics still faces technical barriers,
including insufficient mechanical and barrier properties as well
as elevated hydrophilicity [11], [12].

Various analytical techniques have been employed to char-
acterize biopolymeric materials. Invasive methods such as X-
ray fluorescence, energy dispersive spectroscopy, and ther-
mogravimetric analysis have been used to assess structural
composition and biodegradability [13], while non-invasive
approaches such as Fourier transform infrared spectroscopy,
X-ray diffraction, and scanning electron microscopy have
contributed to understanding material properties [14], [15].
More recently, terahertz time-domain spectroscopy (THz-TDS)
has emerged as a promising tool for evaluating the crystallinity
and structural characteristics of complex starch and fatty acid
composites [16].

Among the physical parameters that determine bioplastic
quality, film thickness is of paramount importance, as de-
scribed by [17] and [18]. Thickness plays a crucial role
in modulating key properties such as elongation, water va-
por transmission rates, tensile strength, and light-blocking
capacity [19], [20]. Furthermore, as noted by [21] and [22],
thickness influences degradation rates, where a lower surface-
to-volume ratio may accelerate biodegradation, and also serves
as an indicator of load-bearing capacity and the onset of
embrittlement. Control over thickness during fabrication is
closely related to the volume of plasticizers and suspended
solids used, as well as the quantity of material introduced into
the molds [23], [24].

Terahertz time-domain spectroscopy operates within the
frequency range of 0.1 to 10 THz, bridging the spectral gap
between microwaves and far-infrared radiation, and offering
simultaneous insights into both the internal structure and chem-
ical composition of the samples, as described by [25] and [26].
In addition, the integration of chemometric techniques, which
leverage mathematical and statistical tools to improve the
interpretability of complex spectral data, significantly improves
the robustness and reliability of analytical results, as reported
by [27].

In this context, THz-TDS has gained attention as a non-
invasive tool for characterizing polymeric materials, but its
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combination with machine learning for bioplastic analysis
is still underdeveloped. In this study, we introduce a novel
approach that integrates THz-TDS with four machine learn-
ing models—partial least squares regression (PLSR), support
vector regression (SVR), binary regression tree (BRT), and a
feedforward neural network (FFNN)—to predict the thickness
of bioplastic films made from agro-industrial by-products,
specifically maize and potato starch. Although previous re-
search has explored chemometric models and THz-TDS inde-
pendently, the use of FFNN in this application is, to the best
of our knowledge, unprecedented. In addition, we applied a
model optimization process to improve predictive accuracy and
robustness. This integrated methodology offers a new pathway
for advancing non-invasive quality control in the production
of sustainable packaging materials.

II. MATERIALS AND METHODS

This section outlines the methodology for the fabrication,
analysis, and modeling of bioplastic samples derived from
maize and potato starch. The procedure is organized into
three subsections: sample fabrication, THz spectroscopy, and
regression analysis; see Fig. 1. Each subsection details the
experimental steps and provides a rationale for the chosen
methods.

Fig. 1. Workflow of the experimental methodology for bioplastic film
thickness estimation. The process includes sample fabrication from potato
and maize starch, non-invasive spectral acquisition using THz-TDS, and
machine learning-based regression modeling to predict film thickness.

A. Sample Preparation

Bioplastic samples were prepared using an adapted solution
casting method based on established protocols [28] and [29].
Raw materials were obtained from a high-purity reagent sup-
plier in Piura, Peru. The formulation consisted of potato starch

(PS), maize starch (MS), laboratory-grade polyvinyl alcohol
(PVA) (98% purity), technical-grade glycerin (97% purity), and
distilled water.

The following procedure details the standardized protocol
implemented to ensure uniform experimental conditions and
reproducibility of results:

1) Gelatinizaton: Initially, 12 g of starch was gelatinized
by dissolving it in 400 ml of distilled water at 70◦C
for 45 minutes with continuous stirring using a glass
rod, ensuring complete dispersion, as indicated by
[30].

2) Plasticization: Next, 7 ml of glycerin and 8 g of
PVA (pre-diluted in 100 ml of distilled water) were
added to plasticize the mixture. The mixture was
stirred at 80◦C for 45 minutes to enhance mechanical
properties [31].

3) Molding: The plastified mixture was then poured into
9-cm-diameter Petri dishes in volumes of 12, 15, and
18 ml.

4) Oven drying: The mixture was dried in an oven at
45°C for 22 hours.

5) Room-temperature drying: An additional drying step
was performed at room temperature (24◦C in Sullana,
Piura) within a desiccator containing blue indicator
silica gel for 24 hours.

6) Demolding: Finally, the samples were removed from
the Petri dishes and cut into sheets of 1.5 cm ×
4.5 cm. Their thickness was determined by averaging
measurements from 10 different points using a digital
micrometer (range: 0 to 25 mm, resolution: 0.001
mm) [32], [33].

This fabrication process ensured uniform bioplastic films
with controlled thickness, setting the stage for subsequent
spectral analysis.

B. THz Spectroscopy

The fabricated samples were analyzed using a THz TeraS-
mart Compact Industry-Proven spectrometer (Germany), see
the scheme in Fig. 2a. This device operates in transmission
mode under conditions of ambient temperature and relative
humidity 50%. The system had a scan range of 850 ps, a
resolution of 1.2 GHz, and a spectral range of 6 THz. Each
sample was placed in a polylactic acid sample holder mounted
on a displacement tower; likewise, data acquisition and con-
version to a MATLAB compatible format were managed using
software provided by Menlo Systems.

Subsequently, spectral profiles were extracted from inten-
sity images obtained by the spectrometer. The intensity images
acquired from the spectrometer were processed in MATLAB
(version R2024a, The MathWorks, Inc., USA) to distinguish
the sample region from the reference (air), see Fig. 2(b). The
images were segmented into nine homogeneous regions of
interest (ROIs), and the average spectral pulse was extracted
from each ROI, see Fig. 3(a); obtaining 162 THz pulses which
were recorded in the time domain.

Finally, these spectral profiles were pre-processed by crop-
ping to isolate the primary signal and eliminate Fabry-Perot
(FP) interference (as illustrated in Fig. 3). Fig. 3(a) shows the
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(a)

(b)

Fig. 2. Experimental setup for THz-TDS analysis of bioplastic films. (a)
Schematic of the THz-TDS system operating in transmission mode under
ambient conditions. (b) Representative transmittance image showing the

contrast between the bioplastic sample area and the reference.

complete THz spectra in the time domain within the range of
5 to 9 ps. In contrast, Fig. 3(b) illustrates the cropped spectra,
capturing only the primary pulse signal and eliminating FP
effects and interference. Finally, the cropped signals were
transformed into the frequency domain via a fast Fourier
transform (FFT) according to the Eq. 1.

E(ω) =
1√
2π

∫ ∞

−∞
E(t)e−iωt dt, (1)

where E(t) denotes the time-domain pulse and E(ω) its
frequency-domain counterpart.

C. Regression Analysis

Four regression models were used to predict the thickness
of the film from the frequency-domain data. The selected

5 5.5 6 6.5 7 7.5 8 8.5 9

Time (ps)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

A
m

p
lit

u
d
e
 (

m
V

)

Sample

Fabry-Perot effect (Sample)

Reference

Fabry-Perot effect (Reference)

(a) Time-domain profile with FP reflections
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Fig. 3. Removal of Fabry-Perot interference from THz time-domain profiles.
(a) Time-domain spectra of bioplastic samples and reference, showing
multiple internal reflections that distort the primary pulse, visible as

secondary oscillations following the main signal peak. (b) Cropped spectra
after isolating the primary pulse and removing Fabry-Perot reflections,

enhancing signal clarity for subsequent frequency-domain analysis via FFT.
The horizontal axis shows time in picoseconds and the vertical axis shows

signal amplitude in millivolts.

models are commented on below: include partial least squares
regression (PLSR), binary regression tree (BRT), support
vector regression (SVR), and a feedforward neural network
(FFNN). Each model was chosen for its ability to manage the
complex, multidimensional nature of the spectral data.

• Partial Least Squares Regression: This chemometric
method reduces the dimensionality of the data by
identifying latent variables that maximize the covari-
ance between the predictors and the response variable
[34]. PLSR was implemented using the plsregress
function with five latent components.
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• Binary Regression Tree: BRT is effective for modeling
non-linear relationships and complex dependencies
between variables [35]. The model was constructed
using the fitrtree function, with a maximum of
20 node splits and a minimum of one observation per
leaf, without pruning.

• Support Vector Regression: SVR adapts the principles
of support vector machines for regression tasks [36]. It
was implemented using the fitrsvm function with a
radial basis function (RBF) kernel to capture intricate
patterns in the data. Manual hyperparameter tuning
was not performed.

• Feedforward Neural Network: This model is widely
used to analyze relationships between input and output
variables in non-linear datasets [37]. This artificial
neural network was constructed with a hidden layer
comprising 10 neurons (using a sigmoid activation
function) and one output neuron with a linear acti-
vation function. The network was developed using the
feedforwardnet function.

Optimization was carried out using the beta coefficient
technique, following the approach described by [38]. Subse-
quently, these optimized models were applied in all regression
analyzes.

Finally, to facilitate comparison of model performance met-
rics, a five-fold cross-validation procedure was used, repeated
30 times, to assess the generalizability of each model. The
performance of the model was evaluated using the coefficient
of determination (R2), root mean square error (RMSE) and
the ratio of performance to deviation (RPD). These metrics
are further described in [39].

III. RESULTS

This section presents the experimental findings, beginning
with a detailed analysis of the spectral responses in the
time and frequency domains. Then comes a comprehensive
evaluation of the regression models developed to predict film
thickness.

A. THz Spectral Analysis

1) Time-Domain Profiles: Fig. 4 illustrates the time-domain
profiles, where the wave amplitudes (in microvolts) are plotted
as a function of time (in picoseconds) for three distinct thick-
ness levels of samples fabricated from potato starch, maize
starch and an equal proportion mixture (EPM).

In all cases, the reference signal (air) exhibited a shorter
arrival time and higher amplitude compared to the sample
signals. In particular, for PS and MS samples, an increase in
thickness resulted in a decrease in amplitude and a slight delay
in pulse arrival. In contrast, the EPM samples did not exhibit a
consistent trend. These observations suggest that the thickness
of the film significantly influences the transmittance and signal
timing. In summary, the time-domain analysis confirms that
thickness variations lead to discernible changes in the THz
pulse characteristics.
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Fig. 4. Time-domain terahertz pulse profiles for films with three different
thickness levels (T1, T2, T3) fabricated from PS, EPM, and MS.
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2) Frequency-Domain Profiles: Fig. 5 displays the corre-
sponding frequency-domain profiles obtained using FFT of the
time-domain signals. A semilogarithmic scale was utilized to
highlight the onset of spectral noise.

The analysis revealed that thinner samples exhibit higher
signal intensity, while thicker samples demonstrate greater
absorption, particularly within the 0.5 to 1.2 THz range.
This range was identified as the most sensitive to thickness
variations and was therefore selected for subsequent regression
modeling. Additionally, noise beyond 1.4 THz was consistently
observed across all measurements, likely due to ambient hu-
midity absorption. In general, the frequency domain analysis
reinforces the influence of sample thickness on spectral re-
sponse and provides the basis for predictive modeling of film
thickness.

B. THz Profile Modeling and Comparison of Statistical Met-
rics

The predictive performance of four regression mod-
els—partial least squares regression, binary regression tree,
support vector regression, and a feedforward neural net-
work—was evaluated using the frequency-domain data. Tables
I and II present plots comparing the actual versus predicted
thickness values for both the full and optimized versions of
the models.

Table III summarizes the performance metrics for full and
optimized models in each type of sample. Regarding R2,
FFNN and PLSR generally achieved the highest values. In
PS samples, FFNN reached 0.9757 ± 0.0104 and 0.9625 ±
0.0157 for the full and optimized versions, respectively. In
EPM, both FFNN and BRT showed a lower initial performance
but improved slightly after optimization. In MS, the optimized
PLSR model reached the best R2 value of 0.9504 ± 0.0048.
For RMSE, the lowest value in PS appeared in the full FFNN
model (0.1259 ± 0.0263), while in EPM, the RMSE values
were relatively high in all models. In MS, the optimized PLSR
model showed a marked improvement from 0.2351 ± 0.0039
(full) to 0.1819 ± 0.0141 (optimized). Regarding RPD, the
highest PS value was observed in the full FFNN model, while
the EPM values remained between 2.4 and 2.8, indicating
the need for further refinement. In MS, the optimized PLSR
model increased RPD from 3.4723 ± 0.0583 (full) to 4.4899
± 0.1326, improving robustness.

In general, higher R2 values corresponded to lower RMSE.
In PS, FFNN offered the best balance of R2 and RMSE,
while in EPM, some models achieved relatively high R2 but
retained substantial RMSE. In MS, optimized models improved
predictive accuracy without sacrificing generalization capacity.
Optimization had a positive effect in most cases, although EPM
showed variable improvement, particularly in BRT and FFNN.
PLSR in MS presented a substantial gain in R2 and a decrease
in RMSE.

Differences in performance metrics were found for dif-
ferent sample types. PS showed the best results, whereas
EPM presented greater predictive challenges. MS offered in-
termediate performance, which improved considerably with
optimization. The best models identified for each sample were
FFNN for PS, optimized BRT and FFNN for EPM, and
optimized PLSR for MS.
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Fig. 5. Frequency-domain terahertz spectra of bioplastic films with three
thickness levels (T1, T2, T3) fabricated from PS, EPM, and MS.
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TABLE I. REAL VS. PREDICTED THICKNESS USING NON-OPTIMIZED MODELS. SCATTER PLOTS FOR SVR, BRT, PLSR, AND FFNN APPLIED TO PS,
EPM, AND MS FILMS. THE 45° LINE REPRESENTS IDEAL PREDICTIONS; TREND LINES SHOW MODEL FIT
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TABLE II. REAL VS. PREDICTED THICKNESS USING OPTIMIZED MODELS. SCATTER PLOTS FOR SVR, BRT, PLSR, AND FFNN AFTER MODEL
OPTIMIZATION, APPLIED TO PS, EPM, AND MS FILMS. THE 45° LINE SHOWS IDEAL PREDICTIONS; TREND LINES INDICATE MODEL PERFORMANCE

IMPROVEMENTS
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TABLE III. PERFORMANCE METRICS OF REGRESSION MODELS FOR THICKNESS PREDICTION. COEFFICIENT OF DETERMINATION, ROOT MEAN SQUARE
ERROR, AND RATIO OF PERFORMANCE TO DEVIATION FOR PLSR, SVR, BRT, AND FFNN MODELS (FULL AND OPTIMIZED) ACROSS PS, EPM, AND MS

SAMPLES. VALUES ARE PRESENTED AS MEAN ± STANDARD DEVIATION

Starch Model Type R2 RMSE RPD

PS

PLSR Full 0.9490 ± 0.0460 0.1843 ± 0.0028 4.4301 ± 0.3271
Optimized 0.9645 ± 0.0117 0.1537 ± 0.0316 5.3129 ± 0.0412

SVR Full 0.9350 ± 0.0030 0.2097 ± 0.0049 3.9205 ± 0.0907
Optimized 0.9237 ± 0.0030 0.2291 ± 0.0044 3.5881 ± 0.0687

BRT Full 0.8606 ± 0.0198 0.3100 ± 0.0219 2.6629 ± 0.1901
Optimized 0.9303 ± 0.0247 0.2173 ± 0.0349 3.8552 ± 0.4904

FFNN Full 0.9757 ± 0.0104 0.1259 ± 0.0263 6.8106 ± 1.4711
Optimized 0.9625 ± 0.0157 0.1573 ± 0.0335 5.4438 ± 1.1147

EPM

PLSR Full 0.8599 ± 0.0210 0.3058 ± 0.0386 2.6704 ± 0.0249
Optimized 0.8594 ± 0.0952 0.3063 ± 0.0611 2.6660 ± 0.1652

SVR Full 0.8425 ± 0.0046 0.3278 ± 0.0048 2.5066 ± 0.0366
Optimized 0.8379 ± 0.0040 0.3368 ± 0.0037 2.4399 ± 0.0267

BRT Full 0.8425 ± 0.0046 0.3278 ± 0.0048 2.5066 ± 0.0366
Optimized 0.8771 ± 0.0207 0.2874 ± 0.0246 2.8781 ± 0.2384

FFNN Full 0.8631 ± 0.0314 0.3032 ± 0.0361 2.7474 ± 0.3263
Optimized 0.8712 ± 0.0172 0.2946 ± 0.0204 2.8015 ± 0.1849

MS

PLSR Full 0.9171 ± 0.0635 0.2351 ± 0.0039 3.4723 ± 0.0583
Optimized 0.9504 ± 0.0048 0.1819 ± 0.0141 4.4899 ± 0.1326

SVR Full 0.8915 ± 0.0056 0.2701 ± 0.0074 3.0439 ± 0.0827
Optimized 0.8623 ± 0.0028 0.3038 ± 0.0029 2.7044 ± 0.0260

BRT Full 0.9002 ± 0.0154 0.2602 ± 0.0201 3.1751 ± 0.2395
Optimized 0.9211 ± 0.0119 0.2306 ± 0.0174 3.5817 ± 0.2695

FFNN Full 0.9305 ± 0.0216 0.2154 ± 0.0333 3.8984 ± 0.5758
Optimized 0.9422 ± 0.0113 0.1964 ± 0.0192 4.2218 ± 0.4152

All four models demonstrated solid outcomes, aligning
with the limited research on polymer analysis via THz spec-
troscopy and regression modeling. In particular, [40] evaluated
polyethylene mixed with carbendazim, obtaining strong results
for SVR (R = 0.9972, RMSEP = 0.02) and PLSR (R = 0.9957,
RMSEP = 0.0255). Likewise, [41] predicted antioxidant con-
tent in low-density polyethylene films through PLSR (R2 =
0.999), and [42] investigated 2-mercaptobenzimidazole (MB)
content in mixtures of MB, zinc oxide, silica, N, N’-Diphenyl-
p-phenylenediamine, and nitrile-butadiene using PLSR (R =
0.9269, RMSEC = 2.9108) and SVR (R = 0.9760, RMSEC =
1.6899). No recent research has adopted FFNN or BRT with
THz-TDS for polymer analysis. BRT has been used for other
sample types with promising results, and FFNN may represent
the first instance of combining this model with THz-TDS for
polymer analysis.

C. Summary of Results

In summary, the spectral analysis confirms that the thick-
ness of the film substantially influences the characteristics of
the THz signal in both the time and the frequency domain.
Furthermore, the regression models, particularly PLSR and
FFNN, demonstrated strong predictive capabilities, thereby
validating the feasibility of using THz-TDS in conjunction
with advanced machine learning techniques for the non-
invasive determination of bioplastic film thickness.

D. Limitations

This research presents certain limitations that should be
considered in future studies. Among these, the following
stand out:

• Sample composition variability: Variability in sample
composition may have influenced spectral response,
particularly since factors such as plasticizer type or
residual moisture content were not evaluated.

• THz spectral range: Only the 0.5 to 1.2 THz range was
analyzed, selected due to its sensitivity to thickness
changes. Noise levels at frequencies above 1.4 THz
limited the full utilization of the available spectral
range (0.1 to 10 THz).

• Modeling approaches: Although PLSR and FFNN
demonstrated good performance, the SVR and BRT
models exhibited higher variability, especially for
EPM. This variability suggests that model selection
should consider the specific type of samples being
analyzed.

• Device operation conditions: Ambient humidity repre-
sents another limitation, as it negatively affects signals
at high frequencies and can introduce additional vari-
ability in the measurements.

• Sample shape uniformity: While THz-TDS success-
fully identified patterns related to variations in thick-
ness in starch-based bioplastics, its performance may
be affected by factors such as sample homogeneity and
surface roughness, highlighting the need for comple-
mentary analyzes to enhance sample characterization.
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IV. CONCLUSION

This study evaluated the feasibility of integrating THz-
TDS with advanced machine learning techniques for the non-
invasive prediction of bioplastic film thickness. The experi-
mental results demonstrated that variations in film thickness
induce significant changes in both time- and frequency-domain
spectral responses. Among the regression models applied,
PLSR, SVR, and FFNN provided robust predictions with coef-
ficients of determination exceeding 82%, while the BRT model
exhibited greater prediction dispersion and compensation bias.

The findings confirm that the thickness of the film is a
critical parameter that influences the mechanical and physical
properties of bioplastic materials. The combined approach -
using THz-TDS, chemometric analysis, and machine learning
- offers a promising, non-invasive quality control method for
producing sustainable packaging materials. Model optimiza-
tion improved predictive performance, particularly for maize
starch-based samples, emphasizing the importance of advanced
feature selection and parameter tuning.

Future research should focus on refining feature extraction
techniques and exploring additional machine learning models
to improve predictive accuracy. The application of this inte-
grated methodology may also be extended to other sustainable
materials, broadening its impact on environmental preservation
and advancing environmentally friendly technologies.
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[10] M. Alonso-González, M. Felix, A. Guerrero, and A. Romero, “Rice
bran-based bioplastics: Effects of the mixing temperature on starch
plastification and final properties,” International Journal of Biological
Macromolecules, vol. 188, pp. 932–940, 2021, http://doi.org/10.1016/j.
ijbiomac.2021.08.043.

[11] C. M. Granados-Carrera, D. Castro-Criado, M. Jiménez-Rosado,
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