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Abstract—Food preservation and safety require advanced
detection methods to ensure transparency in supply chains.
Terahertz (THz) spectroscopy has emerged as a powerful, non-
invasive tool for material characterization. This study explores
the integration of THz spectroscopy and machine learning for
accurately quantifying maize starch adulteration in bioplastics
derived from potato starch. Bioplastic samples with varying
concentrations of maize starch were prepared, molded into three
different thicknesses, and subjected to a two-stage drying process,
resulting in 81 samples (27 treatments with three replicates each).
The spectral profiles at THz (0.5 to 2 THz) were recorded
and analyzed using three regression models: support vector
regression, partial least squares regression, and multiple linear
regression. The models were evaluated using the coefficient of
determination (R2), Root Mean Square Error (RMSE), and the
Residual Predictive Deviation (RPD). The results showed R2

values ranging from 0.7283 to 0.9495, RMSE between 0.0594
and 0.1393, and RPD values from 1.8753 to 4.4479, demonstrating
strong predictive performance. These findings highlight the poten-
tial of THz spectroscopy and machine learning in the noninvasive
detection of starch adulterants in bioplastics, paving the way for
future research to enhance model robustness and applicability.

Keywords—Terahertz spectroscopy; machine learning; chemo-
metrics; starch detection; biofilms

I. INTRODUCTION

Every year, approximately 1.3 billion tons of by-products
from the global agri-food industry pile up, creating substantial
economic and environmental pressures [1]. Many of these by-
products hold untapped potential, containing valuable bioactive
compounds such as starch—a carbohydrate recognized by [2]
and [3] as essential for human and animal nutrition. The
versatility of starch, mainly composed of amylose and amy-
lopectin, significantly influences its industrial applications due
to distinct functional properties highlighted in studies by [4],
[5], and [6]. Yet, despite its promise, starch faces inherent
limitations, including low thermal stability and pronounced
hydrophilicity, restricting its broader industrial adoption [7].

Responding to escalating environmental concerns, starch-
based bioplastics have surfaced as compelling alternatives to
traditional petroleum-derived plastics. These innovative ma-
terials, praised by researchers like [8], [9], and [10] for
their biodegradability and compostability, offer practical, eco-
friendly solutions particularly suited for food packaging.

*Corresponding authors.

Nonetheless, maintaining high-performance standards in bio-
plastics is complex, as accurate assessments of their composi-
tion [11] and structural integrity [12] are critical.

Traditional methods for starch characterization are often
invasive and labor-intensive, risking alteration or damage to
sample integrity. Terahertz (THz) spectroscopy, as presented in
works by [13], [14], and [15], emerges as a promising alterna-
tive, operating in the unique 0.1–10 THz frequency range and
providing insightful, non-destructive material characterization.
Specifically, Time-Domain Terahertz Spectroscopy (THz-TDS)
has garnered attention within food science, enabling detailed
biopolymer analysis without sample degradation, as shown
by [16] and [17]. Chemometric techniques, integrating statis-
tical and machine learning methods, significantly improve the
interpretation of complex spectral data, thereby dramatically
enhancing starch identification and quantification in bioplastics
[18].

Complementing traditional chemometric approaches, re-
cent breakthroughs in deep learning are revolutionizing anal-
ysis across various sectors. Intelligent methods have signif-
icantly improved waste management by optimizing material
classification [19]. Likewise, advancements in agricultural
practices have been achieved through sophisticated algorithms
and IoT integration [20]. Metaheuristic approaches have ac-
celerated neural network hyperparameter tuning [21], and
innovative machine learning techniques have enhanced cy-
bersecurity through efficient data filtering [22]. Additionally,
machine learning advancements continue refining the precision
of GPS positioning [23]. While our current study employs
traditional machine learning frameworks, future integration
of advanced AI methods could further refine THz spectral
analyses, optimizing feature selection and enhancing predictive
accuracy.

Considering this context, THz-TDS spectroscopy integrated
with chemometric methods has proven effective in the non-
invasive characterization of polymers, though its application to
starch-based biopolymers remains limited. To our knowledge,
this research represents the first effort to combine THz spec-
troscopy with machine learning to predict potato and maize
starch concentrations in bioplastics. Here, we propose an ap-
proach integrating spectral analysis of THz signals with three
machine learning models: Support Vector Regression (SVR),
Partial Least Squares Regression (PLSR), and Multiple Linear
Regression (MLR). Furthermore, a feature selection method
was employed to optimize these models, aiming to enhance

www.ijacsa.thesai.org 182 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

predictive accuracy. This new approach expects to improve
quality assessment in sustainable packaging, contributing to
advancements in environmentally friendly industrial materials.

The remainder of this paper is organized as follows: Section
II details the methodology for the preparation of bioplastic
samples and the application of THz spectroscopy. Section III
presents the experimental results, including the performance of
the regression models used for starch concentration prediction.
Finally, Section IV provides concluding remarks on the impli-
cations of this study for sustainable bioplastic development.

II. MATERIAL AND METHODS

This section describes the methodology employed for
preparing and characterizing bioplastics, primarily using starch
and polyvinyl alcohol as foundational materials. The bioplas-
tics were synthesized through the solution casting method,
adapting protocols previously detailed by [24], [25], and [26].
An overview of the methodological steps is illustrated in Fig. 1,
with each stage further detailed in subsequent subsections.

Fig. 1. Flow Diagram of the experimental methodology used for the
preparation and analysis of starch-based bioplastics.

A. Sample Preparation

The inputs used to prepare the samples were high-purity
potato starch and maize starch, purchased online from Peruvian
suppliers through the Mercado Libre platform. Additionally,
distilled water, technical grade glycerin (97% purity), and
laboratory-grade polyvinyl alcohol (98% purity) were used,
all purchased from a laboratory supply store located in the
district of Sullana, province of Sullana, department of Piura.
All activities of the experimental scheme were carried out in
the food safety research laboratory of the National University
of the Frontier.

For the preparation of the bioplastics, 12 grams of starch
were used in each formulation. In this study, a base bioplastic
with potato starch was formulated (control sample), and eight
additional bioplastics were made, in which potato starch was
partially substituted with maize starch in proportions ranging
from 10% to 80% in increments of 10%. These starch mixtures
were manually and meticulously prepared to ensure a uniform

distribution of the components, thus guaranteeing consistent
and reproducible results in subsequent experiments [27].

The initial chemical process for sample preparation in-
volved gelatinization. In this step, 12 grams of the starch
mixture were dissolved in 400 ml of distilled water and heated
to 100°C for 45 minutes. According to the methodology de-
scribed by [28], these conditions are optimal for breaking down
starch granules without causing their denaturation, thereby
enabling them to swell and rupture to form a gelatinous
paste. Subsequently, for plasticization, the temperature was
lowered to 80°C for an additional 15 minutes. At this stage,
7 ml of glycerin and 8 grams of polyvinyl alcohol, previously
dissolved in 100 ml of water, were added. This combination,
as highlighted by [29] and [30], effectively reduces material
fragility, enhances flexibility, and improves tensile strength.
The mixture was stirred to distribute the plasticizers evenly.

Subsequently, the molding process followed, where the
plasticized mixture was poured into Petri dishes with a di-
ameter of 9 cm in amounts of 12 ml, 15 ml, and 18 ml.
The precision in the molding is crucial to obtain comparable
samples and avoid unwanted variations in experimental results
[31]. The samples were dried in an oven at 45°C for 22
hours to reduce the water content. This step is important
to prevent cracking or rapid deformation [32]. Subsequently,
they were subjected to a second drying at room temperature
(24°C) for 48 hours in a silica gel desiccator to remove
residual moisture, ensuring dimensional stability and suitable
mechanical properties for analysis [33].

After the second drying process, the samples were carefully
demolded using a scalpel, tweezers, and surgical gloves to
avoid damage or deformation, resulting in smooth and defect-
free samples ready for evaluation. A total of 81 bioplastic
sheets were produced (27 treatments with three replicas each).
Each sheet was cut into rectangles of 15 mm x 45 mm,
and their thickness was measured using a Dasqua digital
micrometer with a range of 0-25 mm and a resolution of 0.001
mm. Five measurements were taken at different points on each
sheet, and the values were averaged.

B. THz Spectroscopy

The bioplastic sheets were placed on a polylactic acid
(PLA) sample holder for analysis. A TeraSmart Compact
Industry-Proven THz spectrometer of German origin was used
in transmission mode. This system has a scanning range of 850
ps and includes a compact spectrometer with a spectral range
of 6 THz and a resolution of 1.2 GHz; it is equipped with an
ultrafast laser that emits femtosecond pulses, and the signal is
directed through a system of nonlinear cyclic optical mirrors
(Fig. 2), connected to the spectrometer via a fiber optic cable.
A tower with vertical and horizontal displacement capabilities
was used to move the sample. Image acquisition was controlled
using TeraImage and Scam Control software, which allows
defining and adjusting the appropriate scanning range. Menlo
Systems provides both the equipment and the software.

The experimental phase was conducted under normal at-
mospheric conditions, which generated many peaks due to
the strong absorption characteristics of water vapor in the
THz range, which can interfere with measurements [34]. It
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Fig. 2. Schematic representation of the transmission-mode THz-TDS system
used in this study.

Fig. 3. Representative transmittance image showing the contrast between the
bioplastic sample area and the reference.

is important to note that the signals obtained were measured
with a relative humidity close to 50%.

Initially, the THz spectrometer generated files in the
IGTIFF format, which were converted to the MAT format
using Epina ImageLab software. The resulting files were
loaded into Matlab (version R2024a, The MathWorks, Inc.,
USA), where high-contrast images were generated (Fig. 3) to
distinguish the sample, the sample holder, and the air. This
facilitated the acquisition of profiles for the sample (bioplastic
film) and reference (air). To obtain the profiles of interest,
the THz image was divided into nine equal-sized subareas
(ROIs), from which the average profile was extracted for
further processing. A total of 729 profiles were generated in the
time domain, which was then transformed into the frequency
domain using a Fourier transform, employing Eq. 1. These
profiles in the frequency domain were used for the regression
analysis.

E(t) → FFT → 1√
2π

∫ ∞

−∞
E(t)e−iωt dt = E(ω), (1)

where E(t) represents the signal function in the time
domain, e−iωt is the kernel of the transform, and E(ω) denotes
the signal function in the frequency domain.

C. Regression Analysis

The THz profiles in the frequency domain (predictor vari-
able: X) and the maize starch concentration values (response
variable: Y ) were used to train three regression models: MLR,
SVR, and PLSR. The models used are detailed below.

1) MLR: It is a statistical technique that estimates the
relationship between a dependent variable and several indepen-
dent variables using a linear equation [35]. This multivariate
statistical method restructures the original dataset into linear
combinations of the variables, creating independent new vari-
ables known as principal components that capture most of the
variability [36]. This model is based on Eq. 2.

Y = β0 +

n∑
i=1

βiXi + ϵ, (2)

where Y represents the starch percentage, β0 is the
constant term, β1, β2, . . . , βn are the regression coefficients,
X1, X2, . . . , Xn correspond to the THz profiles in the fre-
quency domain, and ϵ denotes the error term.

2) SVR: The Support Vector Machine for Regression ex-
amines the relationship between variables using a subset of
data, balancing the complexity of the model with the precision
of prediction in complex scenarios [37]. Unlike conventional
machine learning approaches, the SVR model effectively han-
dles issues related to small sample sizes, high dimensionality,
and local minima and is noted for its remarkable ability to
generalize [38].

3) PLSR: This technique, common in multivariate anal-
ysis, simplifies the relationship between multiple variables
by projecting them onto orthogonal vectors, thus facilitating
understanding [39]. It is used primarily in chemometrics to
investigate how spectral data correlate with reference indicators
[40]. PLSR transforms predictor variables (X) into response
variables (Y ). It decomposes X and Y and projects them
into new directions to capture joint variability [41]. Then, a
regression is performed with these decomposed variables, as
shown in the model of Eq. 3.

Y = βX + e, (3)

where Y represents the starch concentration in the bio-
plastics, X is the intensity data matrix (n observations × m
frequencies), β is the coefficient matrix, and e denotes the
error term.

It is essential to eliminate irrelevant spectral information,
as this complicates the development of simple and effective
models [42]. For this reason, the method of feature selection
using beta coefficients (β) was chosen, which are associated
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with frequency values and absolute loadings in regression
models. These coefficients were selected for their ability to
adequately represent the dependent variable, contributing to
improved model accuracy [41].

The performance of the MLR, SVR, and PLSR models was
evaluated using the metrics R2, RMSE, and RPD (see Eq. 4,
5, and 6).

R2 = 1−
∑N

i=1(Ŷi − Yi)
2∑N

i=1(Yi − Y )2
, (4)

RMSE =

√√√√ 1

N

N∑
i=1

(Ŷi − Yi)2, (5)

RPD =
S

RMSE
, (6)

where Yi represents the reference concentration of the i-th
instance, Y is the mean value of the reference concentrations,
Ŷi denotes the predicted concentration of the i-th instance, N
is the number of instances, and S corresponds to the standard
deviation of the reference values.

Finally, cross-validation was implemented using a five-fold
strategy with 30 iterations. In each iteration, the dataset was
partitioned into five subsets: one used for testing and the re-
maining four for training. Performance metrics were calculated
for each iteration, following the procedure described in [42],
[43]. This validation approach is essential for assessing model
performance, as it ensures robustness and generalization by
training and evaluating the models across different data splits
[44]. Using multiple partitions reduces the risk of overfitting
and prevents dependency on a specific training–validation divi-
sion [45]. Additionally, this strategy increases the consistency
and reliability of the predictive results in diverse scenarios [46].

III. RESULTS

A. Bioplastic Obtention

Fig. 4 shows the control bioplastic and its variants with
different levels of maize starch adulteration (10% — 80%)
and thicknesses (E1 = 0.12 mm, E2 = 0.15 mm, E3 = 0.18
mm). Visually, the samples appear similar, although this uni-
form appearance does not necessarily reflect their differences
in biodegradability. Previous studies indicate that bioplastics
made solely with maize starch tend to degrade more slowly
than those made with other types of starch [47]. Furthermore,
the choice of starch and plasticizers can significantly affect
the physicochemical properties of bioplastics [48]. This is
consistent with similar research that also used potato starch
and found variations in physical properties based on the
formulation [49]. Therefore, while the appearance may be
uniform, the properties and degradation can vary depending
on the composition and plasticizers used.

Fig. 4. Bioplastic sheets formulated with varying maize starch concentrations
and molded at three different thicknesses.

B. THz Spectral Analysis

1) Profiles in the time domain: Fig. 5 presents the av-
erage profiles in the time domain of bioplastics with nine
concentrations and three thicknesses in the range of 5 to 10
picoseconds. These graphs show how starch concentrations
affect the amplitude and arrival time of THz pulses. The
echoes generated by multiple and internal reflections within
the sample were removed to analyze the main signal free of
interference. These reflections are related to the Fabry-Pérot
effect [50]. After removing echoes from multiple reflections,
it was observed that as the thickness increases, the absorption
of the THz signal rises along with the attenuation, indicating a
more effective interaction between the THz signal and starch.
The length of the THz signals obtained in the experiments
ranged between five and nine picoseconds, with each signal
averaged from three measurements to improve the signal-to-
noise ratio.

2) Profiles in the frequency domain: Fig. 6 presents the
average frequency domain profiles of bioplastics with nine
different concentrations and three thicknesses, covering the
range from 0.5 to 2 Terahertz. These profiles were obtained
by removing the Fabry-Pérot term from the time-domain data,
as noted by [51], where reflection signals can merge in thin
samples, and the main reflection echoes may be lost. The
greater differentiation observed in the 0.5 to 2 THz range aligns
with previous reports on sensitivity in thin samples, ranging
from 0.5 to 1.5 THz [52], as well as with studies on organic
samples reporting sensitivity to THz between 0.1 and 1.4 THz
[53]. This frequency range was also chosen in similar studies
such as [54], which analyzed bacterial cellulose films from
0.3 to 2.8 THz, and [55], which evaluated food-grade oils
from 0.5 to 3 THz. However, other studies have used different
ranges, such as [56], which measured the elasticity of poly-l-
proline helices from 0.6 to 4.5 THz, and [57], which classified
inorganic pigments in 0.1 to 1.2 THz. This indicates that while
the 0.5 to 2 THz range is typical, the choice of frequency range
is tailored to the specific characteristics of the material and the
objectives of the study.
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Fig. 5. Average time-domain THz profiles of bioplastic samples with varying
maize starch concentrations and three film thicknesses.
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Fig. 6. Average frequency-domain THz profiles of bioplastic samples with
varying maize starch concentrations and three film thicknesses.
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C. THz Profile Modeling

Table I presents the plots of the actual vs. predicted values
for the full and optimized models for each thickness. For
SVR, the R2 values are 0.9158 ± 0.0041 (full model) and
0.8149 ± 0.0024 (optimized model) for E1, 0.9028 ± 0.0032
and 0.8041 ± 0.0022 for E2, and 0.8733 ± 0.0042 and
0.7283±0.0016 for E3. Similarly, for MLR, the R2 values are
0.9495± 0.0041 (full model) and 0.8245± 0.0025 (optimized
model) for E1, 0.9191± 0.0066 and 0.8528± 0.0030 for E2,
and 0.8841 ± 0.0160 and 0.7807 ± 0.0033 for E3. Likewise,
for PLSR, the R2 values are 0.8503±0.0005 (full model) and
0.8213 ± 0.0004 (optimized model) for E1, 0.8379 ± 0.0007
and 0.8517 ± 0.0003 for E2, and 0.8342 ± 0.0007 and
0.7768± 0.0004 for E3.

All three models demonstrated good performance in pre-
dicting the maize starch concentration in bioplastic samples,
particularly in the lower thicknesses. These models, combined
with THz spectroscopy, have been widely applied in various
studies of functional and organic material characterization.
For instance, in the work of [58], SVR (R2 = 0.9793) was
used to predict bovine serum albumin concentration in thin
films. Similarly, in [59], PLSR and SVR (R2 = 0.994 for
both models) were applied to analyze the amount of α-lactose
in a lotus root starch mixture. Furthermore, [60] evaluated
the microstructural characteristics of thermal coatings (MLR,
R2 = 0.97). On the other hand, [61] used SVR to analyze
porosity in fiberglass-reinforced polymers (R2 = 0.976), and
[62] employed MLR to measure the coating thickness in
nifedipine tablets (R2 = 0.99). Furthermore, [63] used MLR
to predict the density (R2 = 0.97) and moisture content
(R2 = 0.78) in wood, using refractive indices and absorption
coefficients. Finally, [64] applied PLSR to predict glycerol
concentration in liquid solutions (RPD = 6.095). In most cases,
the models demonstrated high performance, confirming the
feasibility of using chemometric models combined with THz
spectroscopy for material characterization.

The results demonstrate competitive performance com-
pared to previous studies that have used machine learning
models combined with THz spectroscopy for analyzing organic
samples, reinforcing both the applicability and robustness of
the proposed approach. While some prior studies reported
slightly superior outcomes, these differences can be primarily
attributed to lower variability in the composition of their
samples. Nevertheless, the high precision achieved in our
study for predicting starch concentrations in bioplastics clearly
illustrates the effectiveness of the proposed methodology. Re-
cent research by [65] indicates that integrating deep learning
methods can substantially enhance predictive accuracy and
improve interpretability by identifying informative spectral
bands. Furthermore, [66] highlights the capability of deep
learning to effectively model complex data structures, suggest-
ing promising potential for further improvements in predictive
precision in future THz spectroscopy applications.

D. Performance Metrics

Table II shows the average performance metrics (R2,
RMSE and RPD) with their standard deviations for the SVR,
MLR, and PLSR models, both in their complete and optimized
versions, applied to three different thicknesses of bioplastic

films. The complete SVR, MLR, and PLSR models accurately
predicted maize starch concentration. For thickness E1, R2

values ranged from 0.8503 ± 0.0005 to 0.9495 ± 0.0041,
RMSE values from 0.0594 ± 0.0025 to 0.0999 ± 0.0002, and
RPD values from 2.5847 ± 0.0044 to 4.4479 ± 0.1761. For E2,
R2 values ranged from 0.8379 ± 0.0007 to 0.9191 ± 0.0066,
RMSE values from 0.0754 ± 0.0032 to 0.1040 ± 0.0002, and
RPD values from 2.4835 ± 0.0053 to 3.5020 ± 0.1546. For E3,
R2 values ranged from 0.8342 ± 0.0007 to 0.8841 ± 0.0160,
RMSE values from 0.0891 ± 0.0057 to 0.1051 ± 0.0002, and
RPD values from 2.4556 ± 0.0050 to 3.1874 ± 0.1488. Among
these models, the complete MLR model performed the best in
all thicknesses.

For the optimized models, both PLSR and MLR showed
strong performance, with MLR performing slightly better in
most cases. For E1 (R2 = 0.8245 ± 0.0025, RMSE = 0.1091
± 0.0007, RPD = 2.4029 ± 0.0174); for E2 (R2 = 0.8528 ±
0.0030, RMSE = 0.0996 ± 0.0011, RPD = 2.6311 ± 0.0284);
and for E3 (R2 = 0.7807 ± 0.0033, RMSE = 0.1218 ± 0.0011,
RPD = 2.1491 ± 0.0157). Interestingly, optimizing the models
using beta coefficients sometimes led to slightly decreased
performance metrics. Although these coefficients are useful
for selecting important variables, as mentioned in [42], they
can slightly lower the performance of the model.

In general, the study highlights the impact of the se-
lection of features on the effectiveness of starch prediction
models in bioplastics. Although the MLR and PLSR models
showed promising results, the drop in performance metrics
after optimization suggests that exploring other feature selec-
tion methods could be beneficial. Trying different approaches
may improve the models and help them find broader use in
industrial applications, ultimately advancing bioplastic analysis
and production.

IV. CONCLUSION

This study demonstrates that integrating THz spectroscopy
with machine learning offers a promising, non-invasive ap-
proach for predicting bioplastic starch concentration. By ap-
plying regression models such as PLSR, SVR, and MLR,
we achieved high predictive accuracy—particularly with the
optimized MLR model, which performed well even with a
relatively small dataset. Nevertheless, due to the variability in
starch formulations and the precision required for industrial
applications, more extensive and diverse datasets will be
essential to enhance the generalizability of the models.

The use of beta coefficients in the spectral analysis proved
effective for identifying key frequency features in the THz
spectrum. This approach supports the potential development of
compact, cost-effective systems for real-time starch monitoring
during bioplastic production. Such feature selection methods
are especially useful in the packaging industry, where rapid
and accessible quality control tools are highly valuable. Fu-
ture work could involve implementing more advanced feature
selection strategies to improve model performance further.

Moreover, the proposed methodology can be extended to
other quality control applications involving bioplastics and
biodegradable materials, contributing to developing sustainable
and high-performance industrial solutions.
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TABLE I. COMPARING REAL VERSUS PREDICTED MAIZE STARCH CONCENTRATIONS IN BIOPLASTIC SAMPLES, USING SVR, MLR, AND PLSR MODELS
UNDER THREE THICKNESS CONDITIONS: E1 (0.12 MM), E2 (0.15 MM), AND E3 (0.18 MM)
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TABLE II. SUMMARY OF PERFORMANCE METRICS—R2 , RMSE, AND RPD—FOR THE SVR, MLR, AND PLSR MODELS APPLIED TO PREDICT MAIZE
STARCH CONCENTRATION IN BIOPLASTIC SAMPLES OF THREE DIFFERENT THICKNESSES

Thickness Model Type R2 RMSE RPD

E1

PLSR Full 0.8503 ± 0.0005 0.0999 ± 0.0002 2.5847 ± 0.0044
Optimized 0.8213 ± 0.0004 0.1092 ± 0.0001 2.3654 ± 0.0028

SVR Full 0.9158 ± 0.0041 0.0761 ± 0.0019 3.4498 ± 0.0881
Optimized 0.8149 ± 0.0024 0.1126 ± 0.0006 2.3228 ± 0.0137

MLR Full 0.9495 ± 0.0041 0.0594 ± 0.0025 4.4479 ± 0.1761
Optimized 0.8245 ± 0.0025 0.1091 ± 0.0007 2.4029 ± 0.0174

E2

PLSR Full 0.8379 ± 0.0007 0.1040 ± 0.0002 2.4835 ± 0.0053
Optimized 0.8517 ± 0.0003 0.0994 ± 0.0001 2.5969 ± 0.0029

SVR Full 0.9028 ± 0.0032 0.0828 ± 0.0013 3.1705 ± 0.0509
Optimized 0.8041 ± 0.0022 0.1185 ± 0.0006 2.2075 ± 0.0117

MLR Full 0.9191 ± 0.0066 0.0754 ± 0.0032 3.5020 ± 0.1546
Optimized 0.8528 ± 0.0030 0.0996 ± 0.0011 2.6311 ± 0.0284

E3

PLSR Full 0.8342 ± 0.0007 0.1051 ± 0.0002 2.4556 ± 0.0050
Optimized 0.7768 ± 0.0004 0.1220 ± 0.0001 2.1161 ± 0.0020

SVR Full 0.8733 ± 0.0042 0.0942 ± 0.0015 2.7838 ± 0.0446
Optimized 0.7283 ± 0.0016 0.1393 ± 0.0004 1.8753 ± 0.0056

MLR Full 0.8841 ± 0.0160 0.0891 ± 0.0057 3.1874 ± 0.1488
Optimized 0.7807 ± 0.0033 0.1218 ± 0.0011 2.1491 ± 0.0157

Finally, while this study prioritized traditional regression
models for their interpretability and robustness, future research
will explore using more sophisticated techniques, such as
artificial neural networks and ensemble methods like XGBoost,
to better capture non-linear patterns in THz spectral data and
potentially boost predictive power.
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