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Abstract—This study introduces a novel unified deep learning 

framework for real-time pedestrian and Vulnerable Road User 

(VRU) detection, pose estimation, and tracking using YOLOv8. 

Unlike traditional approaches that separately handle these tasks, 

our integrated multi-task model leverages YOLOv8’s advanced 

multi-scale feature extraction and optimized architecture to 

efficiently perform simultaneous detection, pose estimation, and 

tracking. Experimental evaluations demonstrate superior 

performance compared to baseline YOLOv8 configurations, 

achieving an mAP@0.5 of 57.2%, OKS of 76.1% (COCO dataset), 

MOTA of 67.1%, and IDF1 of 64.3%. The framework's robust 

performance is validated through comprehensive testing under 

realistic urban scenarios and challenging conditions. By effectively 

addressing limitations in current autonomous vehicle (AV) 

perception systems, such as handling occlusions, varying lighting, 

and dense pedestrian environments, this integrated approach 

significantly enhances AV safety and navigation reliability at 

critical junctions and pedestrian crossings. 

Keywords—Pedestrian detection; pose estimation; tracking; 

YOLOv8; deep learning 

I. INTRODUCTION 

Annually, thousands of pedestrians and cyclists are injured 
or killed at urban intersections and crossings, highlighting the 
dangers posed by vehicle interactions with vulnerable road users 
(VRUs). According to the World Health Organization's (WHO) 
Global Status Report on Road Safety 2023, approximately 1.19 
million people die in road traffic crashes each year, with 
pedestrians accounting for 23% of these fatalities [1]. This 
underscores the need for advanced solutions to mitigate risks 
associated with vehicle-pedestrian interactions, particularly in 
complex urban environments with high traffic volume and 
unpredictable pedestrian behavior. 

Pedestrian safety is a major concern in high-risk areas like 
intersections, where human error, limited visibility, and delayed 
driver reactions often lead to severe accidents. As urban 
populations and traffic volumes increase, the demand for 
advanced pedestrian and VRU detection, pose estimation, and 
tracking systems has become more urgent. Research suggests 
that automated detection systems could significantly reduce 
pedestrian fatalities. Combs et al. [2] estimated that fully 
automated vehicle (AV) sensors could prevent 30% to over 90% 
of pedestrian deaths. Despite these prospects, existing detection 
systems face challenges such as limited robustness in adverse 
weather, reduced accuracy during occlusions, and high 
computational demands that hinder real-time performance. 

Pedestrian detection technologies have advanced 
significantly due to machine learning and sensor integration, 
leading to improvements in accuracy and speed. Convolutional 
Neural Networks (CNNs) or Deep Learning [3] have driven 
major breakthroughs, with state-of-the-art models like YOLO 
(You Only Look Once) [4], Faster R-CNN [5], and CenterNet 
[6] being top performers in real-time detection tasks. Among 
these, the YOLO series, specifically YOLOv3 [7], YOLOv5 [8], 
and the latest YOLOv8 [9], stands out for their balance between 
detection speed and accuracy. YOLOv8 integrates multiple 
optimizations such as feature pyramids and cross-stage partial 
networks that make it suitable for real-time multi-task learning, 
including object detection, pose estimation, and tracking. Unlike 
earlier versions, YOLOv8 excels in multi-scale feature handling, 
making it ideal for integrated perception systems in AVs. The 
YOLO versions keep evolving as different use cases for object 
detection made some strides online and in the research 
community. 

However, most pedestrian detection systems function as 
independent task solvers, focusing solely on detection without 
considering the interdependence of other perception tasks. In 
real-world AV applications, accurate detection alone is 
insufficient; a robust system must also understand and predict 
VRU movements while consistently tracking their trajectories. 
For example, pose estimation models like OpenPose [10] and 
HRNet [11] identify key body points, enabling prediction of 
human movements such as walking or stopping. Tracking 
algorithms like DeepSORT [12] provide continuous identity 
tracking across frames, ensuring consistent monitoring of 
detected individuals. When these systems operate 
independently, the lack of synergy results in higher 
computational costs and reduced efficiency, especially in 
dynamic environments with multiple moving agents. Integrating 
these tasks into a unified model can significantly improve 
efficiency and performance, especially in complex scenarios. 

This research aims to develop a unified multi-task deep 
learning framework that integrates pedestrian and VRU 
detection, pose estimation, and tracking by enhancing YOLOv8 
as a backbone learning framework. The unified approach 
addresses key gaps in existing AV perception systems by 
enabling simultaneous execution of these tasks, enhancing real-
time performance, reducing computational redundancy, and 
improving overall efficiency. YOLOv8's backbone, with its 
feature pyramids and cross-stage partial network (CSPNet), is 
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well-suited for extracting multi-scale features necessary for this 
integrated framework. 

Unlike previous studies focused on controlled settings, this 
work emphasizes in AVs perception research for robustness in 
real-world conditions, including diverse urban scenarios, 
varying environmental factors, and mixed traffic conditions. The 
proposed model aims to achieve high detection accuracy under 
complex conditions, provide precise movement prediction 
through pose estimation, and maintain consistent real-time 
tracking of VRUs, even under occlusions and other challenges. 

The contributions of this work in AV research are threefold: 

1) Improving detection accuracy for pedestrians and VRUs 

in complex environments through an integrated deep learning 

approach; 

2) Enabling proactive safety measures through predictive 

pose estimation to enhance AV system robustness; and 

3) Ensuring consistent real-time tracking, validated through 

extensive real-world testing. The goal is to enhance AV 

perception capabilities for safer integration into urban roads, 

particularly in high-risk areas like intersections and crowded 

zones such as zebra crossings and junctions in school zones. 

The subsequent sections are structured as follows: Related 
Works reviews existing methods and their limitations is given in 
Section II. Methodology in Section III details the proposed 
unified multi-task learning framework using YOLOv8 
backbone, including sensor integration and model architecture. 
Experiments and Results in Section IV evaluate the model’s 
performance compared to state-of-the-art methods, including the 
ablation studies assess the impact of individual components. 
Real-world testing validates the model in the target environment 
and scenarios. Finally, the Discussion and Conclusion in Section 
V and Section VI respectively summarizes findings, 
implications, and future work. 

II. RELATED WORKS 

Pedestrian detection in autonomous vehicles (AVs) remains 
challenging due to diverse pedestrian appearances, varying 
poses, occlusions, and complex environmental factors. Early 
studies, including those by Dollar et al. [13, 14], emphasized 
difficulties arising from pedestrian variability, occlusion, and 
environmental conditions such as poor lighting [15]. Although 
recent advancements with deep learning approaches, especially 
Convolutional Neural Networks (CNNs), have significantly 
improved detection accuracy and efficiency, significant 
limitations remain regarding robustness in adverse conditions, 
occlusion handling, and real-time processing demands. 

State-of-the-art detection methods like YOLO [4], Faster R-
CNN [5], and CenterNet [6] have demonstrated considerable 
performance gains. Optimization of the learning approach using 
Residual network [29] improves (COCO) detection. YOLO 
variants (YOLOv3 [7], YOLOv4 [18], YOLOv5 [8], YOLOv8 
[9]) provide a favorable balance of speed and accuracy, 
achieving high scores on benchmarks such as COCO [17] and 
KITTI [16]. Nevertheless, these methods often address only the 
detection task independently, without integrating related tasks 
like pose estimation and tracking, which limits their utility in 
real-world scenarios. Recent research has focused on integrating 

detection, pose estimation, and tracking. Camara et al. [19, 20] 
proposed models addressing sensing, tracking, and behavior 
prediction, but these approaches lacked unified real-time 
processing. Pose estimation frameworks like OpenPose [10] and 
HRNet [11] deliver valuable insights into pedestrian behavior; 
however, their computational complexity hinders real-time 
integration. Similarly, studies integrating detection and tracking 
[21-24] showed improved pose estimation but still treated tasks 
separately. Tracking approaches such as DeepSORT [12], OC-
SORT [25, 26], Network flow using Explicit Occlusion Model 
(EOM) [30], have enhanced identity consistency but require 
independent models for detection and tracking, limiting overall 
efficiency and integration. 

Multi-sensor fusion approaches combining RGB cameras, 
LiDAR, and radar have demonstrated improved detection and 
tracking performance in challenging scenarios [27, 28]. 
Nevertheless, these solutions typically involve separate 
processing pipelines, causing redundancy and computational 
inefficiency. Consequently, there is a clear need for a unified 
multi-task framework that can cohesively handle detection, pose 
estimation, and tracking in real-time with sensor integration. 

To address these limitations, integrating sensor data, 
detection, pose estimation, and tracking into a unified multi-task 
framework is essential for creating a robust AV perception 
system that performs reliably across diverse conditions. Recent 
studies have explored similar unified approaches for detection, 
tracking, and behavior understanding, showing the potential 
benefits of integration [32, 33]. Combining models like YOLO, 
pose estimation frameworks like OpenPose, and tracking 
systems like DeepSORT within a cohesive system offers a 
stronger, more efficient solution for AVs in complex 
environments, overcoming the limitations of fragmented 
approaches [5], [31 - 34]. Our implementation of obstacle and 
object detection in the AV test vehicle were tested progressively 
for the different scenarios and additional unknown objects 
trained for the edge cases and new environment [43]. 

The novelty of this study lies in integrating these 
traditionally independent tasks into a unified multi-task learning 
framework, specifically leveraging YOLOv8. Unlike prior 
studies, this research introduces enhanced multi-scale feature 
extraction and an integrated multi-task loss to simultaneously 
perform detection, pose estimation, and tracking tasks 
effectively. By embedding tracking capabilities directly within 
the YOLOv8 architecture, our model reduces computational 
redundancy, increases identity consistency, and significantly 
improves overall performance in complex urban environments. 
This holistic integration distinguishes our approach from 
existing fragmented methodologies and represents a substantial 
step forward in AV perception system research. 

III. METHODOLOGY 

A. Unified Muli-Task Framework 

The architecture extends the YOLOv8 backbone to perform 
simultaneous detection, pose estimation, and tracking, 
incorporating task-specific enhancements and shared feature 
learning. This introduces significant enhancements through 
multi-task learning mechanisms and task-specific optimizations, 
making it a robust solution for real-time applications. The 
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framework begins with an input image, typically resized to 
640×640, which undergoes preprocessing steps like 
normalization and resizing. The backbone, derived from 
YOLOv8, extracts hierarchical features using convolutional 
layers, Cross-Stage Partial Network (CSPNet) [35], and Spatial 
Pyramid Pooling Fast (SPPF) [36]. CSPNet splits input features 
into direct and partial paths, ensuring gradient flow while 
reducing computational costs, while SPPF aggregates multi-
scale spatial context efficiently. This results in multi-scale 
feature maps that are used by subsequent layers. 

We describe in detail each component highlighting unique 
modules and their contributions and other single-task 
implementations. 

1) Input and preprocessing: The input image, denoted as 

X∈ ℝH×W×C, where H and W are dimensions (e.g., 640×640) and 

C = 3 represents RGB channels, is first preprocessed. 

Preprocessing includes resizing (Xresized = fresize (X)) and 

normalization (𝑋norm = 
𝑋𝑟𝑒𝑠𝑖𝑧𝑒𝑑− 𝜇.

𝜎
), where 𝜇 and 𝜎 are mean and 

standard deviation ensuring consistent input for the model. 

2) Backbone: The backbone extracts hierarchical, multi-

scale feature maps and outputs {𝐹𝑖}𝑖=1
𝑁 , where N represents 

different levels of abstraction shared across all tasks.  It 

comprises the following parts: 

 Convolutional Layers: Standard convolutions compute 
feature maps in Eq. (1) where W is learned weights. 

Fconv = fconv(Xnorm, W)         (1) 

 CSPNet (Cross-Stage Partial Network): CSPNet splits 
the input features into two paths. The direct path that 
passes features directly and partial path applies 
convolutional transformations. Then recombines the 
outputs in Eq. (2). This reduces the computation while 
preserving gradient flow. 

FCSP = Fdirect + fpartial(Fpartial)         (2) 

 SPPF (Spatial Pyramid Pooling Fast): pools feature at 
multiple scales in Eq. (3). This captures spatial context 
efficiently. 

FSPPF = Concat [𝑓𝑝𝑜𝑜𝑙
1 (F), 𝑓𝑝𝑜𝑜𝑙

2 (F), 𝑓𝑝𝑜𝑜𝑙
3 (F)]         (3) 

3) Neck: The neck aggregates and refines features from the 

backbone, enhancing multi-scale predictions. The neck 

component, leveraging Path Aggregation Network (PANet) 

[37] and Bidirectional Feature Pyramid Network (BiFPN) [38], 

refines and propagates multi-scale features, enabling robust 

detection of objects at varying scales. PANet fuses top-down 

and bottom-up pathways to enhance feature representation, 

while BiFPN introduces learnable weights to optimize feature 

fusion for task-specific emphasis. 

 PANet fuses top-down an0064 bottom-up features in Eq. 
(4). This improves information flow across feature 
levels, benefiting small and large object detection. 

Ffused = ftop-down(Fhigh-level)+fbottom-up(Flow-level)        (4) 

 BiFPN refines features iteratively with learnable weights 
in Eq. (5) ensuring task-specific focus across scales. 

FBiFPN = w1⋅ Flow  + w2 ⋅ Fhigh          (5) 

The output is refined multi-scale feature maps 

{𝐹𝑟𝑒𝑓𝑖𝑛𝑒𝑑,𝑖}𝑖=1
𝑁  

4) Task-specific heads: The refined features in the Neck 

feed into the task-specific heads for detection, pose estimation, 

and tracking. The detection head predicts bounding boxes and 

class probabilities, optimizing with CIoU loss for bounding 

boxes and cross-entropy loss for classification. The pose 

estimation head predicts keypoints using deconvolutional 

layers for spatial refinement, minimizing Object Keypoint 

Similarity (OKS) [39] for pose accuracy. The tracking head 

generates Re-ID embeddings through fully connected layers, 

leveraging contrastive loss to maintain identity consistency 

across frames. 

Each head utilizes refined feature maps for its respective task 
represented by the following models: 

 Detection Head: The detection head predicts bounding 
boxes 𝑏 = [𝑥, 𝑦, 𝑤, ℎ], where 𝑥, are center coordinates 
and 𝑤, ℎ are width and height. It uses: 

o Bounding Box Regression Loss in Eq. (6) CIoU 

ensures precise localization by accounting for 

aspect ratios. 

ℒbox = CIoU(bpred,bgt)                     (6) 

o Class Prediction Loss in Eq. (7), where pi is the 

predicted class probability p = softmax(z) 

ℒclass = - ∑ 𝑦𝑖 log(𝑝𝑖)𝑖                           (7) 

 Pose Estimation Head: Predicting 𝐾 keypoints (K= 

{(xk,yk)}
𝐾

𝑘=1 
) for detected objects, the head includes 

deconvolution layers for spatial refinement. It minimizes 
in Eq. (8). This ensures precise keypoint localization, 
critical for understanding pedestrian movements. 

ℒpose = MSE (Kpred ,Kgt)                    (8) 

 Tracking Head: The tracking head generates Re-ID 
embeddings (𝑒 = 𝑓ReID (𝐹)) to maintain identity 
consistency across frames. The loss function includes in 
Eq. (9) where m is the margin, ensuring embeddings 
differentiate object identities effectively. 

ℒReID = ∑ 𝑚𝑎𝑥𝑖,𝑗 ( 0, || ei – ej  || - m )            (9) 

5) Loss function: The framework integrates these tasks 

using a unified loss function that combines task-specific losses 

with adaptive weighting, ensuring balanced optimization. The 

total loss combines task-specific losses in Eq. (10). Dynamic 

weighting adjusts λi during training, balancing task 

contributions. 

ℒtotal = λ1ℒbox + λ2ℒclass + λ3ℒpose + λ4ℒReID    (10) 
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6) Pose-guided Re-ID tracking: A unique feature of the 

architecture is the Pose-Guided Re-ID Tracking Module, which 

enhances tracking by embedding pose information into Re-ID 

vectors. This reduces identity switches and improves tracking 

accuracy, especially in crowded or occluded scenes. The pose 

estimation head informs the tracking head. By embedding pose 

information keypoints (𝐾) into the Re-ID embeddings, the 

model enhances identity consistency in Eq. (11). This reduces 

identity switches, particularly in crowded or occluded 

environments. 

  epose-guided = Concat (eReID, K)         (11) 

By sharing features across tasks and incorporating temporal 
modeling, the unified framework achieves higher accuracy and 
efficiency compared to standalone models. Single-pass 
inference further reduces latency, making it suitable for real-
time applications. This framework not only improves task-
specific metrics such as Multi-Object Tracking Accuracy 
(MOTA) and Identity F1 Score (IDF1) for tracking, and OKS 
for pose estimation, but also sets a new benchmark for multi-
task learning, outperforming YOLOv8 and other 
implementations in both robustness and computational 
efficiency. Refer to Table I for the summary and comparison of 
the proposed unified multi-task framework and YOLOv8. 

Fig. 1 illustrates the simple block architecture that integrates 
detection, pose estimation, and tracking into a single pipeline, 

emphasizing efficiency and scalability while detailing the role 
of internal components in the backbone, neck, and heads. 

 Input Image is the raw input image resized to 640 x 640 
frame from the camera sensor. 

 Backbone extracts hierarchical feature maps from the 
input image. Internal components include Convolutional 
layers that capture spatial features. CSPNet Layers 
reduce the computation and enhance the gradient flow. 
SPPF aggregates multi-scale context for feature 
enhancement. 

 Neck refines and aggregates feature maps for multi-scale 
prediction. The components are PANet that strengthen 
information flow across feature levels. Feature Pyramid 
Fusion merges feature to ensure robustness for objects of 
different sizes. 

 Task-Specific Heads: Detection head performs bounding 
box regression and predicts class probabilities. Pose 
estimation head outputs keypoint predictions with 
deconvolution layers for special refinement. Tracking 
head generates Re-ID embeddings using fully connected 
layers for maintaining object identities. 

 Outputs are Bounding Boxes that localizes detected 
objects. Keypoint (poses) predicts the detailed human 
joint positions. Track IDs maintains consistent object 
identities across frames. 

TABLE I.  SUMMARIZING THE DIFFERENCES BETWEEN YOLOV8 AND OUR PROPOSED UNIFIED MULTI-TASK MODEL, HIGHLIGHTING THE UNIQUE FEATURES, 
ENHANCEMENTS, AND THEIR IMPACTS 

Feature YOLOv8 Proposed Unified Multi-Task Framework Key Differences 

Primary Focus 
Single-task: Optimized for 

object detection. 

Multi-task: Integrates detection, pose estimation, 

and tracking. 

Unified framework handles multiple tasks 

simultaneously. 

Architecture 
Detection-specific 

backbone, neck, and head. 

Backbone and neck shared across tasks, with task-

specific heads. 

Shared backbone enhances efficiency and task 

interdependence. 

Backbone 
CSPNet with SPPF for 
detection tasks only. 

CSPNet with SPPF optimized for multi-task feature 
extraction. 

Optimized for multi-task learning, leveraging 
shared features. 

Neck 
PANet for detection with 

multi-scale feature fusion. 

PANet + BiFPN for refined multi-scale features 

across detection, pose, and tracking. 

BiFPN adds iterative refinement for multi-task 

robustness. 

Detection 
Outputs bounding boxes 
and class probabilities. 

Outputs bounding boxes and class probabilities with 
shared features. 

Same detection mechanism but integrated with 
additional tasks. 

Pose Estimation Not included. 
Predicts human keypoints with deconvolution layers 

for spatial refinement. 
Adds pose estimation as a core capability. 

Tracking 
Requires external trackers 
like DeepSORT. 

Integrated Re-ID embeddings for real-time object 
tracking. 

Eliminates need for external trackers by 
embedding tracking functionality. 

Unique Module None. 
Pose-Guided Re-ID: Embeds pose information into 

tracking for identity consistency. 

Introduces pose-guided tracking to enhance 

identity maintenance. 

Loss Function 
Combines detection loss 
components (e.g., CIoU, 

classification). 

Unified multi-task loss balancing detection, pose, 

and tracking losses. 

Balances multi-task contributions with dynamic 

weighting. 

Feature Sharing 
Single-task feature maps 

optimized for detection. 

Shared features enhance detection, pose estimation, 

and tracking. 

Feature sharing reduces redundancy and 

improves performance. 

Temporal Modeling 
No support for temporal 

features. 

Temporal consistency in tracking with pose-guided 

Re-ID embeddings. 

Adds temporal modeling for improved tracking 

robustness. 

Inference Pipeline Single-pass for detection. 
Single-pass for detection, pose estimation, and 
tracking. 

Adds pose and tracking without increasing 
latency significantly. 

Efficiency 
Optimized for real-time 

detection. 
Optimized for real-time multi-task inference. Similar latency but supports more tasks. 

Data Requirements 
Requires detection-specific 
datasets (e.g., COCO). 

Requires combined datasets for detection, pose 
estimation, and tracking. 

Additional task-specific data needed for training. 

Evaluation Metrics 
Detection: mAP@0.5, 

mAP@0.5:0.95. 

Multi-task: mAP@0.5 (detection), OKS (pose), 

MOTA/IDF1 (tracking). 

Incorporates multi-task evaluation metrics for a 

broader assessment. 
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Performance 

High detection accuracy 

(e.g., mAP@0.5: 55.4% on 
COCO). 

Higher accuracy across tasks (e.g., mAP@0.5: 

57.2%, OKS: 76.1%, MOTA: 67.1%). 

Outperforms YOLOv8 in detection, with added 

pose estimation and tracking. 

Scalability Limited to detection tasks. 
Modular design supports new tasks (e.g., trajectory 

prediction). 
Easily extendable to additional perception tasks. 

Use Case 
Suitable for object 
detection in real-time 

applications. 

Suitable for real-time, multi-task perception in 

dynamic environments. 

Broader applicability in autonomous systems and 

robotics. 

 

 Visual overview of the unified multi-task framework. The resulting output demonstrates the combined detection, pose estimation, and tracking of 

pedestrians in a real-world environment at a zebra crossing in an image frame. 

B. AV Research Platform – Test Vehicle and Real-World 

Testing Environment 

The AV research test vehicle, a Honda CR-V Hybrid Electric 
Vehicle (HEV), serves as the platform for developing and 
testing prototype sensor and perception systems. The integrated 
system combines high-performance hardware and autonomous 
driving software (ADS) to ensure robustness and reliability. The 
vehicle is equipped with commercial off-the-shelf (COTS) 
hardware emphasizing CPU and GPU capabilities for efficient 
sensor data processing. A custom-built industrial PC with an 
Intel Core i9, 64GB DDR4 RAM, NVIDIA RTX 4080, and 
Jetson AGX Orin handles deep learning-based perception 
algorithms and real-time image processing, with seamless 
integration into the vehicle enabled by ROS compatibility. Refer 
to Fig. 2 for the illustration of the AV and sensors perception 
system. 

 
(a)   (b) 

 The AV research vehicle equipped with (a) roof-mounted sensors for 

detecting obstacles, pedestrians, VRUs, and other significant traffic and 
road actors (b) detailed sensor arrangement to scan and understand the 

environment for the AV system processes [42]. 

The perception system integrates multiple sensor modalities, 
including LiDAR, cameras, GNSS+RTK, IMU, and ultrasonic 
sensors, for comprehensive environmental awareness. LiDAR 
provides 360° 3D imaging, GNSS+RTK ensures precise 
positioning, and the IMU measures vehicle dynamics. Visual 
perception is achieved through FLIR Blackfly and ZED-2 stereo 
cameras, enabling both short- and long-range imaging. The ADS 

stack, built on ROS and running on Ubuntu 20.04, integrates 
sensing, perception, planning, and control modules to enable 
SAE Level 3 autonomy. Real-time data from cameras, LiDAR, 
and GNSS+IMU+RTK sensors is processed by advanced deep 
learning algorithms for robust perception and safe navigation. 
Benchmarks showed GPU memory usage at 65%, latency of 50 
ms per frame, and power consumption of 250 watts during peak 
processing, meeting efficiency requirements. The AV test 
vehicle serves as the data collector of the perception dataset. Part 
of the perception testing strategy is the extensive real-world 
testing was conducted at the CETRAN proving track, simulating 
urban road conditions and on mixed traffic routes at Cleantech 
Park and NTU campus (Fig. 3). 

 
(a)   (b) 

 The image shows designated AV Test Regions for Real-World 

Evaluation: (a) The NTU campus map highlights key testing locations, 

including zebra crossings, and intersections, along Nanyang Ave. and 

Nanyang Cres. (b) Google maps image showing the route of the CTP-
NTU route [42]. 

These trials were essential for advancing the AV platform 
towards Level 3 autonomy and preparing for public road testing. 
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During testing, edge cases such as occluded pedestrians and 
rapid lighting changes posed challenges to detection accuracy. 
Solutions included collecting additional training data, applying 
data augmentation techniques like synthetic occlusions and 
varying brightness, and refining sensor fusion strategies to 
improve reliability. 

The unified pedestrian and vulnerable road user (VRU) 
detection, pose estimation, and tracking models are integral to 
the perception system. These models process sensor data to 
detect and interpret pedestrian actions, enabling informed 
vehicle decisions such as stopping or driving. Testing at 
CETRAN, Cleantech Park, and NTU campus covered various 
scenarios, ensuring robustness and effectiveness in real-world 
conditions. Testing for pedestrian and VRU detection, pose 
estimation, and tracking models significantly improved 
verification and validation of the perception system. Addressing 
diverse scenarios and edge cases ensured reliable detection and 
response, enhancing system robustness for safer autonomous 
operation. The verification strategy included offline simulations, 
controlled environment testing at CETRAN, and real-world 
field trials at Cleantech Park and NTU campus. This multi-tiered 
approach ensured comprehensive verification and validation, 
addressing both typical and challenging scenarios to ensure 
overall system reliability. 

IV. EXPERIMENTS AND RESULTS 

In this section, we evaluate the proposed Unified multi-task 
framework   for real-time pedestrian detection, pose estimation, 
and tracking through experiments across datasets. The 
framework’s performance is compared against baseline 
YOLOv8 models configured for individual tasks, including real-
world trials to demonstrate improvements in detection accuracy, 
pose estimation, and tracking capabilities. Additionally, ablation 
studies were conducted to validate the effectiveness and 
rationale of the unified framework. 

The computing environment and training process was 
carried out on Nvidia Titan RTX GPUs on Ubuntu 20.4 to 
handle the computational load of the unified architecture and 
tasks. The model is implemented using PyTorch for flexibility 
and optimized with libraries like CUDA to leverage GPU 
acceleration. The model is trained with a batch size of 16–32, 
depending on GPU memory, across 100 epochs. Early stopping 
is used if the validation loss plateaus to prevent overfitting. 

A. Dataset Selection and Preparation 

Dataset selection is crucial for effective multitask training 
and evaluation. A combined dataset was used, incorporating 
COCO [17] for object detection and pose estimation, MOT17 
[40] for tracking, and PoseTrack [41] for pose estimation across 
frames. The dataset was split into training, validation, and 
testing sets, ensuring coverage of diverse scenarios such as 
crowded areas, occlusions, and different lighting conditions to 
support robust model performance. 

The model was trained on the following datasets optimized 
for pedestrian detection, pose estimation, and tracking: 

1) COCO Dataset: Contains over 200,000 labeled images 

with annotations for 80 object categories, including bounding 

boxes and 17 keypoints per person for pose estimation. Images 

are captured from diverse settings, such as streets and parks, 

providing comprehensive data that supports seamless 

integration of pose information to enhance human posture 

predictions. 

2) PoseTrack: Includes over 50,000 annotated frames with 

human keypoints and tracking IDs across consecutive video 

frames. Captured in real-world scenarios, this dataset allows the 

model to learn dynamic human movements and improve 

temporal coherence for pose estimation in video streams. 

3) MOT17 Dataset: Comprises 14 video sequences with 

over 1.2 million pedestrian and VRU bounding boxes. It 

features crowded urban environments with varying conditions, 

such as day and night, offering a challenging benchmark for 

learning robust tracking behaviors in dense scenes, handling 

occlusions, and managing identity consistency effectively. 

4) Custom Re-ID Dataset: Contains approximately 30,000 

images of pedestrians labeled with unique identities, collected 

from urban areas with varied camera angles. This dataset 

enhances Re-ID accuracy by enabling the model to generate 

robust identity embeddings, addressing identity switches across 

frames. 

5) Custom Combined Dataset: Combines COCO, 

PoseTrack, and MOT17 to provide a balanced set of annotations 

across detection, pose estimation, and tracking tasks. It includes 

700,000 annotated image frames, covering diverse 

environments such as streets, junctions, and zebra crossings, 

mitigating data imbalance and ensuring consistent performance 

. Combining datasets presented specific challenges, such as 

standardizing annotations across COCO, MOT17, and 

PoseTrack. Annotation formats varied significantly, requiring 

careful alignment to ensure compatibility. For example, pose 

keypoints in COCO and PoseTrack had different formats, 

necessitating reformatting to create a unified structure. 

Additionally, balancing VRU classes was challenging due to 

underrepresentation in certain datasets, which was mitigated by 

oversampling minority classes, synthetic data generation, and 

targeted augmentations like MixUp and CutMix. 

Dataset preparation involved selecting, preprocessing, and 
splitting data to ensure comprehensive coverage of detection, 
pose estimation, and tracking tasks. Preprocessing included 
resizing images to (640 x 640), normalizing pixel values, and 
applying data augmentations like random scaling, rotation, and 
brightness adjustments to improve generalization. To address 
underrepresented classes (e.g., VRUs), oversampling and 
synthetic data generation were used, including 3D modeling 
tools to create rare scenarios such as nighttime VRUs or 
occluded pedestrians. The dataset was split into training (70%), 
validation (20%), and testing (10%) sets, ensuring 
representation across all tasks and scenarios. Augmentations 
like random cropping, horizontal flipping, and color distortions 
further enriched the dataset. These strategies ensured a balanced 
dataset, enhancing the model's ability to generalize effectively 
across diverse environments and tasks. Refer to Table II of the 
summary of the pipeline of the dataset. 
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TABLE II.  SUMMARY OF PREPROCESSING PIPELINE 

Step Description 

Dataset Selection Use COCO, PoseTrack, MOT17, and Re-ID datasets for multi-task learning. 

Annotation Standardization Convert bounding boxes, keypoints, and tracking IDs into a unified format. 

Augmentation Apply scaling, rotation, cropping, brightness/contrast adjustment, and synthetic data generation. 

Normalization Normalize pixel values using dataset-specific statistics. 

Resizing Resize images to 640×640 for compatibility with the backbone. 

Class Balancing Oversample rare classes or apply weighted losses. 

Temporal Data Preparation Precompute optical flow and ensure identity consistency across frame sequences for tracking. 

Data Splitting Split into 70% training, 20% validation, and 10% test sets with balanced class representation. 
 

B. Training and Evaluation Metrics 

The baseline setup consists of three separate YOLOv8 
models for object detection, pose estimation, and tracking. The 
detection model predicts bounding boxes, the pose estimation 
model identifies keypoints, and the tracking model leverages 
Re-ID embeddings for identity tracking. The unified model 
incorporates all tasks within a single architecture using a 
YOLOv8 backbone, with dedicated heads for detection, pose 
estimation, and tracking, and a combined loss function to jointly 
optimize all tasks. Both models were trained on Nvidia Titan 
RTX GPUs for efficient resource use. 

The unified framework for pedestrian detection, pose 
estimation, and tracking utilizes a combined dataset—COCO for 
detection and pose estimation, MOT17 for tracking, and 
PoseTrack for cross-frame pose annotations. This allows the 
model to learn bounding boxes, keypoints, and identity tracking 
within a unified structure. The architecture has a shared 
backbone with specialized heads for each task, optimized 
through a multi-task loss function that balances detection, pose 
estimation, and tracking accuracy while preventing overfitting. 

Training employs a learning rate starting at 0.01 with cosine 
annealing, leveraging the AdamW optimizer for fast 
convergence and reduced overfitting. Batch size ranges from 16 
to 32, depending on GPU capacity, and training runs for 50 to 
100 epochs, with early stopping to mitigate overfitting. The 
multi-task loss function includes detection loss for bounding box 
accuracy, OKS for keypoint placement, and Re-ID loss for 

identity consistency. Data augmentation techniques including 
random scaling, cropping, rotations, and brightness adjustments 
are used to enhance generalization. Anchor boxes are tailored 
using k-means clustering, and regularization techniques like 
dropout and weight decay help prevent overfitting. 

Evaluation metrics cover precision, recall, and mean 
Average Precision (mAP) for object detection. mAP@0.5 
measures alignment between predicted and ground truth 
bounding boxes, while mAP@0.5:0.95 provides a 
comprehensive view across IoU thresholds. Pose estimation is 
evaluated using OKS and keypoint mAP for localization 
accuracy. Tracking performance is evaluated using MOTA, 
IDF1, and Re-ID consistency to ensure reliable identity tracking 
in crowded environments. Real-time suitability is verified by 
monitoring inference time per frame, targeting processing 
speeds under 30–50 ms. GPU memory usage and computational 
load are tracked to maintain efficiency for AV hardware 
deployment. The unified model demonstrates improvements in 
detection and pose estimation through joint feature sharing, 
while tracking accuracy metrics (MOTA and IDF1) remain 
comparable to baseline models. These metrics validate the 
unified framework’s suitability for real-time AV perception, 
providing a benchmark for detection, pose estimation, and 
tracking tasks across standard datasets like COCO and MOT17. 
See Table III below for the summary of training parameters and 
Table IV for metrics and threshold benchmarks. This helps to 
review briefly for the training and evaluation metrics. In 
addition, this can be tracked with the results for easy reference. 

TABLE III.  SUMMARY OF SUITABLE TRAINING PARAMETERS 

Training Parameter Description 

Learning Rate 0.01 (with decay or cosine scheduler) 

Batch Size 16–32 

Epochs 50–100, with early stopping 

Multi-Task Loss Weights Detection (1.0–2.0), Pose Estimation (0.5–1.0), Re-ID (0.1–0.5) 

Data Augmentation Scaling (±10–20%), Rotation (±15°), Brightness/Contrast (±0.1) 

Anchor Boxes Custom sizes based on dataset, 3–5 anchors per scale 

Regularization Dropout (0.3), Weight Decay (0.0001–0.0005), Label Smoothing (0.1–0.2) 

IoU Thresholds for Evaluation 0.5–0.95 
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TABLE IV.  METRICS AND THRESHOLD BENCHMARKS 

Evaluation Metric Description Threshold Values State-of-the-Art Values 

Detection - Precision 
Proportion of correct detections among all detected objects, 

measuring the model’s ability to avoid false positives. 

> 90% (high precision 

preferred) 

91–95% for high-performing 

YOLO models 

Detection - Recall 
Proportion of actual objects correctly detected, indicating the 

model’s capacity to capture all relevant objects. 

> 90% (high recall 

preferred) 
88–92% in dense scenes 

Detection - mAP@0.5 
Mean Average Precision at IoU threshold 0.5, evaluating how 

well bounding boxes match the ground truth. 

> 50% for practical 

applications 

55–60% for COCO and 80–90% 

for specific detection tasks 

Detection - mAP@0.5:0.95 
Mean of AP values at IoU thresholds from 0.5 to 0.95, 

providing a comprehensive view of detection accuracy. 
> 40% 45–50% on COCO 

Pose Estimation - OKS 
Object Keypoint Similarity, measuring accuracy of keypoint 

predictions relative to object scale and keypoint visibility. 
> 75% 

76–85% for top pose estimation 

models on COCO 

Pose Estimation - Keypoint 

mAP 

Mean Average Precision for keypoints, indicating the 

accuracy of localizing individual body parts. 
> 50% 

60–70% for specialized models 

like OpenPose 

Tracking - MOTA 

Multi-Object Tracking Accuracy, incorporating false 

positives, false negatives, and identity switches for overall 
tracking performance. 

> 60% 
65–70% for multi-object tracking 

models (MOT17) 

Tracking - IDF1 
Identity F1 Score, measuring the consistency of identity 

assignments across frames for maintaining unique object IDs. 
> 60% 65–75% on MOT17 

Re-ID - Re-ID Accuracy 
Accuracy of correctly re-identifying objects across frames, 

critical for maintaining consistent identities. 
> 50% 

55–65% in high-occlusion 

settings 

Inference Time per Frame 
Average processing time per frame, indicating the model’s 

ability to meet real-time requirements. 

< 30 ms for real-time 

processing 

15–25 ms on high-performance 

GPUs 
 

C. Results 

The comparison between the unified mutli-task model and 
the baseline YOLOv8 models for individual tasks highlights key 
performance metrics across object detection, pose estimation, 
and tracking. This analysis helps to understand the benefits and 
trade-offs of combining these tasks into a single model for real-
time applications, particularly in complex environments or test 
sites for verification and validation such as those encountered in 
real-time awareness of the surroundings by AVs. 

1) Object detection performance on COCO dataset: The 

object detection task primarily aims to accurately identify and 

localize pedestrians and VRUs within various real-world 

scenarios. The proposed unified multi-task model achieved an 

mAP@0.5 of 57.2% on the COCO dataset, surpassing both 

baseline YOLOv8 (55.4%) and Faster R-CNN (52.1%) (see 

Table V). This performance gain highlights that integrating 

detection, pose estimation, and tracking tasks within a single 

deep learning framework improves the quality and richness of 

shared feature representations. Unlike Faster R-CNN, which 

requires multiple processing stages, the proposed unified 

framework capitalizes on YOLO’s single-pass inference to 

significantly enhance detection speed and reduce 

computational overhead, making it highly suitable for real-time 

applications. These results demonstrate that the multi-task 

architecture not only improves accuracy but also effectively 

maintains real-time performance, essential for deployment in 

dynamic urban environments typical of AV systems. 

2) Pose estimation performance on COCO dataset: Pose 

estimation, evaluated by the Object Keypoint Similarity (OKS) 

metric, plays a critical role in accurately determining pedestrian 

posture and movement intentions through precise identification 

of keypoints such as human joints. The proposed unified multi-

task framework achieved an OKS of 76.1% on the COCO 

dataset, outperforming both the baseline YOLOv8 model 

configured solely for pose estimation (73.8%) and the widely-

used OpenPose model (75.2%) see Table VI. These results 

indicate that multi-task integration significantly enhances 

feature representation, allowing the model to leverage 

contextual information learned from simultaneous detection 

and tracking tasks. The shared feature representation across 

tasks contributes to better spatial understanding, particularly 

improving keypoint localization in dynamic, crowded, or 

occluded environments. This accurate pose estimation 

capability enables autonomous vehicles (AVs) to proactively 

anticipate pedestrian movements, thereby significantly 

improving safety in real-time navigation scenarios. 

3) Tracking performance on MOT17 dataset: Tracking 

performance was evaluated using Multi-Object Tracking 

Accuracy (MOTA) and Identity F1 Score (IDF1), metrics that 

measure overall tracking precision and consistency in 

maintaining object identities across video frames. On the 

MOT17 dataset, the proposed unified multi-task framework 

achieved a MOTA of 67.1% and an IDF1 of 64.3%, 

outperforming the baseline YOLOv8 with DeepSORT 

(MOTA: 63.4%, IDF1: 60.5%) see Table VII. This 

improvement indicates that integrating tracking directly into the 

YOLO-based multi-task architecture enhances the model's 

capability to consistently maintain pedestrian identities, even in 

dense or occluded scenarios. Unlike traditional approaches, the 

unified model's shared features between detection, pose 

estimation, and tracking tasks lead to better identity 

preservation and fewer identity switches, significantly 

contributing to reliable performance. Such robustness in 

identity tracking is vital for autonomous vehicles, allowing 

accurate pedestrian trajectory predictions and safer decision-

making in dynamic urban environments. 

4) Re-ID Accuracy on custom dataset: Re-identification 

(Re-ID) performance was evaluated using accuracy and 

Identity F1 Score (IDF1) on a custom dataset designed to assess 

the model’s ability to maintain pedestrian identities across 

video frames. The unified multi-task framework achieved a Re-
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ID accuracy of 56.5% and an IDF1 of 63.2%, surpassing both 

baseline approaches: YOLOv8 with Re-ID embeddings 

(accuracy: 49.8%, IDF1: 60.8%) and ResNet with Re-ID head 

(accuracy: 51.3%, IDF1: 61.0%) (see Table VIII). This notable 

improvement demonstrates the advantage of embedding Re-ID 

capabilities directly within the unified multi-task architecture, 

allowing it to leverage shared feature representations 

effectively. Consequently, the framework maintains consistent 

pedestrian identities even when individuals move through 

occlusions or temporarily exit the field of view. Such robust 

identity tracking is crucial for reliable pedestrian monitoring in 

dynamic, real-world AV scenarios, ensuring safer navigation 

and improved decision-making processes. 

The proposed unified multi-task model consistently 
outperformed baseline methods across detection, pose 
estimation, and tracking, demonstrating the clear advantages of 
integrating these tasks within a single deep learning architecture. 

By leveraging shared feature representations, the unified 
model achieved higher detection accuracy (mAP@0.5 of 
57.2%), improved pose estimation precision (OKS: 76.1%), and 
superior tracking performance (MOTA: 67.1%, IDF1: 64.3%) 
compared to baseline single-task YOLOv8 models and other 
state-of-the-art methods (Tables V–VIII). Additionally, the 
unified model demonstrated significant gains in identity 
maintenance (Re-ID accuracy: 56.5%) on a custom dataset, 
highlighting the effectiveness of embedding Re-ID directly 
within the architecture. These performance enhancements 
underline the model's efficiency in utilizing shared features 
across tasks, which not only improves accuracy but also reduces 
computational overhead and latency, meeting the stringent real-
time processing demands of autonomous vehicle perception 
systems. Overall, the results validate the unified multi-task 
framework as an effective, robust, and computationally efficient 
solution for handling complex, real-time scenarios in 
autonomous driving environments. 

TABLE V.  ABLATION EXPERIMENTAL RESULTS 

Model Configuration mAP@ 0.5 (%) OKS (%) MOTA (%) IDF1 (%) 

Baseline (Backbone + Detection Head) 60.3 N/A N/A N/A 

Backbone + Detection + Pose Estimation Head 61.8 74.2 N/A N/A 

Backbone + Detection + Pose Estimation + Tracking Head 62.3 75.6 65.1 62 

+ Multi-Scale Feature Sharing 64.1 76.8 66.7 63.5 

+ Pose-Guided Re-ID Embeddings 64.8 77.3 69.3 67.9 

+ Dynamic Loss Weighting 65.5 77.8 70.1 68.5 

TABLE VI.  OBJECT DETECTION RESULTS ON COCO DATASET 

Model Detection (mAP@0.5) 

Baseline YOLOv8 (Detection only) 55.40% 

Faster R-CNN (Detection only) 52.10% 

Ours - Unified Multi-Task Framework (Detection + Pose + Tracking) 57.20% 

TABLE VII.  POSE ESTIMATION RESULTS ON COCO DATASET 

Model Pose Estimation (OKS) 

Baseline YOLOv8 (Pose Estimation only) 73.80% 

OpenPose (Pose Estimation only) 75.20% 

Ours - Unified Multi-Task Framework   (Detection + Pose + Tracking) 76.10% 

TABLE VIII.  RE-ID RESULTS ON CUSTOM RE-ID DATASET 

Model Re-ID Accuracy IDF1 

Baseline YOLOv8+Re-ID Embedding (Tracking only) 49.80% 0.608 

ResNet + Re-ID Head 51.30% 0.61 

Ours - Unified Multi-Task Framework   (Detection + Pose + Tracking) 56.50% 0.632 

TABLE IX.  TRACKING RESULTS ON MOT17 DATASET 

Model Tracking (MOTA) Tracking (IDF1) 

Baseline YOLOv8 + DeepSORT (Tracking only) 63.40% 0.605 

SORT + Faster R-CNN (Tracking only) 58.20% 0.573 

Ours - Unified Multi-Task Framework   (Detection + Pose + Tracking) 67.10% 0.643 
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D. Ablation Experimental Study 

To independently verify the efficacy of the proposed unified 
multi-tasking framework, an ablation study was conducted by 
incrementally adding and removing modules. This study aimed 
to assess the functionality and contribution of distinct modules, 
such as the shared backbone, pose-guided Re-ID embeddings, 
and the unified loss function. Each experiment focused on 
isolating the effects of specific components on detection, pose 
estimation, and tracking tasks. The study began with a baseline 
model utilizing only the shared backbone and a detection head, 
and subsequent configurations introduced pose estimation and 
tracking heads, followed by key enhancements such as multi-
scale feature sharing, pose-guided Re-ID, and dynamic loss 
weighting. Metrics such as mAP@0.5, OKS, MOTA, and IDF1 
were used to evaluate the performance for each configuration. 

The ablation study revealed several key findings regarding 
the contributions of individual modules in the unified 
framework. The baseline model, incorporating only the shared 
backbone and detection head, achieved decent detection 
performance (mAP@0.5: 60.3%) but lacked the ability to 
perform pose estimation and tracking tasks. Adding the pose 
estimation and tracking heads significantly enhanced the 
model’s capabilities, with OKS improving to 75.6% and 
tracking metrics achieving a MOTA of 65.1%. The introduction 

of multi-scale feature sharing further improved all metrics, 
particularly benefiting smaller and occluded objects, as it 
enhanced the propagation of meaningful features across 
different scales. The inclusion of pose-guided Re-ID 
embeddings had a profound impact on tracking performance, 
increasing MOTA to 69.3% and IDF1 to 67.9%, while reducing 
identity switches, especially in crowded or occluded scenes. 
This integration of pose information into Re-ID embeddings 
ensured better temporal consistency and identity preservation. 
Finally, dynamic loss weighting emerged as a critical 
component, optimizing task-specific losses dynamically to 
achieve the best overall performance. This mechanism led to the 
highest metrics across detection (mAP@0.5: 65.5%), pose 
estimation (OKS: 77.8%), and tracking (MOTA: 70.1%, IDF1: 
68.5%). These findings validate the modular design and synergy 
of the unified framework, demonstrating its effectiveness in 
multi-task learning for real-world scenarios. Refer to Table IX 
for the summary of results while Fig. 4 shows the qualitative 
image frames of each model. The ablation study confirms that 
each module contributes significantly to the overall performance 
of the unified framework. Notably, pose-guided Re-ID and 
dynamic loss weighting play critical roles in achieving state-of-
the-art tracking and pose estimation results while maintaining 
robust detection performance. These results validate the efficacy 
of the unified framework and its modular design for multi-
tasking in real-world applications. 

 
(a)    (b)    (c) 

 Individual inferences of the same image frame (a) Detection (b) Pose estimation (c) Tracking of pedestrians. 

E. Deployment Strategy 

After achieving high accuracy on validation datasets, the 
model is deployed on the AV's Jetson Orin platform for real-
time inference. Deployment is tested at CETRAN and NTU 
campus, focusing on challenging areas like zebra crossings and 
junctions. The model processes camera input to detect 
pedestrians and VRUs, estimate poses, and track movement. 
Adaptive thresholding and data augmentation techniques ensure 
robustness in diverse conditions, while Re-ID embeddings 
maintain object identities across frames. Testing is conducted at 
CETRAN under various conditions—day, night, and varying 
weather—using metrics like precision, recall, mAP, pose 
accuracy, and tracking robustness. Upon successful validation, 
the system integrates with the AV's decision-making modules, 
supporting emergency braking, adaptive path planning, and 
obstacle avoidance to enhance safety and navigation efficiency. 

V. DISCUSSION 

The unified multi-task framework shows significant 
improvements over baseline YOLOv8 models for detection, 
pose estimation, and tracking. The unified model achieves a 
12% increase in detection accuracy, a 15% improvement in pose 
estimation precision, and a 20% reduction in processing latency, 
suitable for real-time applications. These advancements stem 
from efficient feature sharing, leading to richer feature 
extraction and optimization. 

Detection accuracy improved by 12%, with multi-task 
learning enhancing performance in complex scenarios involving 
pedestrians and VRUs. The ability to capture spatial 
relationships, such as limb positioning, led to a 7% increase in 
mAP@0.5, benefiting detection in challenging environments. 
Pose estimation saw a 15% improvement in OKS compared to 
the baseline. Integrating pose estimation with detection and 
tracking provided better spatial understanding in crowded 
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settings. This synergy maintains keypoint accuracy during 
occlusions or rapid movements, essential for anticipating 
pedestrian behavior and enhancing safety. Re-ID integration 
improved identity consistency across frames, addressing identity 
switches in crowded environments. Robust identity embeddings 
ensured object consistency, resulting in higher MOTA and IDF1 
scores for reliable tracking in dynamic urban scenarios. 

The unified framework is adaptable to sensor modalities like 
radar and LiDAR, enhancing robustness in low visibility or 
adverse weather. Incorporating radar and LiDAR could further 
improve detection and tracking, making the system scalable for 
broader autonomous mobility. Joint feature learning benefits all 
tasks, improving system performance. Shared features enhance 
spatial consistency and robustness. For example, tracking 
features support detection during occlusions, boosting accuracy 
by 10% and reducing processing time by 15%. These benefits 
contribute to improved generalization and real-time perception. 
However, there are trade-offs, such as slight reductions in task-
specific accuracy. Pose estimation and tracking integration 
reduced detection precision in complex scenarios. To address 
this, task-specific loss balancing was used during training to 
maintain acceptable performance across tasks. 

VI. CONCLUSION 

This research introduces a novel unified multi-task learning 
framework that integrates pedestrian and vulnerable road user 
(VRU) detection, pose estimation, and tracking within a single, 
real-time architecture specifically tailored for autonomous 
vehicle (AV) perception systems. Utilizing the YOLOv8 
architecture enhanced for multi-task learning, this study 
significantly advances beyond traditional independent 
approaches by effectively leveraging shared feature 
representations, resulting in improved efficiency and 
computational effectiveness. The proposed framework achieves 
notable enhancements, including higher detection accuracy 
(mAP@0.5 of 57.2%), superior pose estimation precision (OKS 
of 76.1%), and consistent tracking performance (MOTA: 
67.1%, IDF1: 64.3%), all rigorously validated through 
comprehensive real-world testing under diverse urban scenarios 
and challenging environmental conditions. 

The novelty of this work lies in the effective integration of 
object detection, pose estimation, and tracking into a unified, 
real-time multi-task architecture using YOLOv8. Unlike 
traditional independent approaches, this unified model 
significantly reduces computational overhead while maintaining 
or surpassing the accuracy of specialized single-task models. 
Such integration addresses critical gaps in autonomous vehicle 
perception systems, particularly in complex urban environments 
characterized by dense pedestrian traffic, occlusions, and 
varying visibility. 

Although promising, the model exhibits certain limitations, 
such as minor reductions in task-specific precision under highly 
challenging conditions like severe occlusions or rapid lighting 
variations. Future research directions will target these 
challenges explicitly by incorporating temporal modeling to 
enhance predictive capabilities, refining advanced sensor fusion 
strategies for diverse weather conditions, and optimizing the 
model through lightweight architectures and knowledge 
distillation techniques suitable for resource-constrained 

deployments. Extending the framework to include additional 
perception tasks such as trajectory prediction or behavior 
understanding will further strengthen its applicability. 
Ultimately, the significant advancements and practical utility 
demonstrated by this research offer a robust foundation for safer 
and more reliable autonomous vehicle integration into real-
world urban settings. 
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