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Abstract—This paper addresses the distributed consensus 

tracking problem for nonlinear multi-agent systems subject to 

unknown but bounded external disturbances by leveraging a 

super-twisting sliding mode (STSM) control framework. Two 

STSM-based consensus algorithms are proposed—one for first-

order and another for second-order multi-agent systems—to 

achieve finite-time convergence despite disturbances. A 

disturbance observer is integrated into the consensus control 

protocols to estimate and compensate for these disturbances, 

ensuring robust tracking without requiring time-derivative sliding 

variables or smoothing algorithms. The proposed consensus 

protocols build upon the concepts of finite-time stability, 

Lipschitz-bounded functions, relative degree analysis of input-

output dynamics, and positive-definite matrix properties. Stability 

and finite-time convergence are rigorously established using 

Lyapunov-based proofs, Rayleigh’s inequality, and finite-time 

settling results. Unstructured disturbances are modelled as zero-

mean Gaussian noise and structured disturbances are expressed 

via a regressor formulation. Numerical simulations confirm that 

the integrated STSM-based consensus approach and disturbance 

observer ensure high tracking accuracy, robustness, and smooth 

control performance under diverse disturbance conditions. 
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I. INTRODUCTION 

Distributed consensus control has emerged as a 
fundamental approach for coordinating multi-agent systems 
(MAS), enabling agents to achieve a common goal through 
local interactions [1]. This decentralized control paradigm has 
been widely applied in robotics, unmanned aerial vehicles 
(UAVs), distributed sensor networks, and intelligent 
transportation systems due to its scalability and robustness 
against single-point failures [2]. Traditional consensus 
algorithms rely on linear or adaptive control techniques to 
ensure convergence; however, external disturbances, model 
uncertainties, and time-varying perturbations significantly 
complicate the consensus process [3]. To address these 
challenges, sliding mode control (SMC) has been extensively 
adopted for MAS coordination due to its inherent robustness 
against disturbances and uncertainties [4]. First-order sliding-
mode (FOSM) control has been widely implemented to 
counteract local interaction uncertainties and external 
perturbations [5]. However, a well-known drawback of FOSM 
is the chattering phenomenon, which can lead to excessive 

energy consumption, actuator degradation, and performance 
deterioration in practical applications [6]. Various mitigation 
strategies, such as boundary layers [7], saturation control [8], 
and adaptive filtering techniques [9], have been proposed to 
alleviate chattering, but these methods often introduce a 
tradeoff between robustness and precision. 

Recent advancements in high-order sliding-mode control 
(HOSM) have significantly improved the performance of SMC-
based consensus algorithms. Among these, super-twisting 
sliding-mode control (STSMC) has gained substantial attention 
due to its ability to suppress chattering while preserving finite-
time convergence and disturbance rejection capabilities [10]. 
STSMC introduces a continuous control law that effectively 
reduces oscillations near the sliding manifold while 
maintaining the robustness of conventional sliding-mode 
strategies. Numerous studies have explored the application of 
STSMC in MAS, demonstrating its effectiveness in various 
scenarios. For instance, Song, Yu, and Zheng [11] developed 
an STSMC-based consensus tracking algorithm that guarantees 
finite-time convergence under bounded disturbances. Similarly, 
Li, Wang, and Zhang [12] extended STSMC to distributed 
control frameworks, explicitly addressing time-varying 
uncertainties and ensuring robust coordination in uncertain 
environments. Additionally, Wang, Chou, and Liu [13] 
proposed adaptive STSMC strategies to handle leader-follower 
MAS with parametric uncertainties. Zhang, Liu, and Song [14] 
implemented STSMC-based formation control techniques for 
UAVs subjected to aerodynamic disturbances and dynamic 
payload variations. 

Beyond traditional consensus tracking, researchers have 
proposed observer-based STSMC approaches to accommodate 
cases where state measurements are unavailable or incomplete. 
Authors in [15] introduced an observer-based STSMC method 
to estimate unmeasured states in uncertain MAS, enhancing the 
robustness of the control strategy. In [16] authors developed 
output-feedback STSMC techniques to handle stochastic 
disturbances and measurement noise, further improving the 
resilience of distributed consensus protocols. In addition, event-
triggered STSMC methodologies have been introduced to 
reduce communication overhead in resource-constrained MAS 
networks by ensuring that control updates are executed only 
when necessary [17]. Despite these advancements, the most 
existing STSMC-based consensus control strategies assume 
that disturbances are either fully known or follow a predefined 
model, which is rarely the case in real-world applications [18]. 
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In practical settings, disturbances often arise from 
unpredictable environmental changes, sensor noise, actuation 
delays, and communication constraints, making it imperative to 
develop control strategies capable of real-time disturbance 
estimation and rejection. 

The primary challenge addressed in this study is developing 
a robust STSMC-based consensus control framework that 
actively estimates and rejects unknown bounded external 
disturbances in MAS. Conventional STSMC techniques, while 
effective in suppressing chattering and enhancing robustness, 
do not inherently incorporate mechanisms for real-time 
disturbance adaptation [19]. This limitation necessitates 
conservative gain tuning, which can lead to sluggish transient 
responses and reduced disturbance rejection efficiency. By 
integrating structured disturbance observers into the STSMC 
framework, this work aims to achieve real-time estimation of 
unknown disturbances, thereby improving the controller’s 
adaptability and overall performance [20]. The proposed 
approach ensures that agents within the MAS can maintain 
finite-time consensus tracking despite external uncertainties 
while mitigating excessive control effort and minimizing 
chattering effects. 

This research addresses key questions regarding the design 
and implementation of distributed STSMC for nonlinear MAS 
under unknown bound disturbances. Specifically, it 
investigates how distributed STSMC can be structured to 
achieve robust finite-time consensus tracking under uncertain 
disturbances. Additionally, it explores which disturbance 
estimation techniques can be effectively integrated into the 
STSMC framework to enhance disturbance rejection without 
compromising chattering suppression. Furthermore, this study 
evaluates the proposed method’s performance relative to 
conventional FOSM, STSMC, and adaptive control strategies, 
considering convergence speed, robustness, and control effort 
metrics. 

To address these research challenges, this work presents 
two main contributions. First, it develops a novel STSMC-
based distributed consensus-tracking algorithm tailored for 
first-order and second-order nonlinear MAS. This algorithm 
ensures that consensus is reached in finite time while actively 
rejecting external disturbances through an embedded 
disturbance observer. Second, it establishes rigorous theoretical 
guarantees for stability and robustness, proving that the 
proposed approach maintains finite-time convergence under a 
general class of bounded disturbances. These advancements 
aim to bridge the gap in STSMC-based consensus control by 
enabling real-time disturbance adaptation without sacrificing 
robustness or performance. 

The effectiveness of the proposed method is validated 
through extensive numerical simulations, where its 
performance is compared against existing sliding-mode and 
adaptive consensus control techniques. The simulations analyze 
key performance indicators such as tracking error convergence, 
disturbance rejection efficiency, and chattering suppression. 
The results demonstrate that the proposed STSMC approach 
significantly improves disturbance handling and consensus 
tracking precision while reducing unnecessary control effort. 
These findings indicate that integrating structured disturbance 

observers into STSMC provides a practical and scalable 
solution for MAS applications operating in uncertain and 
dynamically evolving environments. 

In the context of MAS, recent studies have explored various 
control strategies to enhance coordination and performance. For 
instance, authors in [21] proposed a distributed cooperative 
control framework for multi-UAV flying formations, 
addressing challenges such as chattering effects and formation 
tracking in three-dimensional space. Their approach integrates 
smooth control protocols within a leader-following framework, 
ensuring robust formation maintenance despite external 
disturbances and communication constraints. Similarly, in the 
realm of multi-robot systems, authors in [22] developed a 
distributed cooperative control strategy for nonholonomic 
wheeled mobile robots, focusing on smooth consensus 
protocols to improve coordination and reduce chattering 
phenomena. In satellite formation flying, a distributed attitude 
synchronization control method for switched networked 
satellite formations was introduced in [23] ensuring finite-time 
convergence and robustness against switching topologies and 
external disturbances. These contributions collectively advance 
the field of distributed control in MAS, offering practical 
solutions for complex aerospace and robotic applications. 

The remainder of this paper is structured as follows: Section 
2 presents preliminaries of distributed consensus and 
coordinated control. The consensus tracking problem for first-
order and second-order dynamic MAS including disturbance 
observer is formulated and solved in section 3 and section 4, 
respectively.  Section 5 validates the effectiveness of the 
proposed approach through numerical simulations and 
comparative studies. Finally, Section 6 concludes the paper 
with key findings, potential limitations, and future research 
directions. 

II. PRELIMINARIES  

A. Graph Theory and Preliminaries 

Consider the case of MAS composed of 𝑛 agents connected 
under a communication graph 𝒢 = (𝒱, ℰ,𝒜) of order 𝑛, where 
𝒱 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) , ℰ ⊆ 𝒱 × 𝒱 , and 𝒜 = (𝑎𝑖𝑗) ∈ ℝ

𝑛×𝑛  are 

the node set, edge set, and weighted adjacency matrix, 
respectively. 

Assumption 1. A Laplacian matrix 𝓛 is associated with the 
graph 𝒢  such that 𝓛 = [𝑙𝑖𝑗]) ∈ ℝ

𝑛×𝑛  where 𝑙𝑖𝑗 = −𝑎𝑖𝑗  when 

𝑖 ≠ 𝑗 and 𝑙𝑖𝑖 = ∑ 𝑎𝑖𝑗
𝑛
𝑗=1,𝑗≠𝑖 . 

Assumption 2. The graph 𝒢  is connected and the 
eigenvalues 𝜆𝑖(𝓛) of the Laplacian matrix 𝓛 are defined such 
that 𝜆1(𝓛) = 0 < 𝜆2(𝓛)  <...< 𝜆𝑛(𝓛) . 𝜆1(𝓛) = 0  has an 
associated eigenvector 1. 

Assumption 3. There exists a symmetric positive definite 
matrix 𝑴 such that 𝑴 = 𝓛 + 𝒅𝒊𝒂𝒈(𝑎10, 𝑎20, … , 𝑎𝑛0). 

Lemma 1 (Rayleigh’s inequality, Horn and Johnson, 1986). 
If a matrix 𝑸 is symmetric 𝑸 = 𝑸𝑇, then for a given bounded 
vector 𝒗 

𝜆𝑚𝑖𝑛(𝑸)‖𝒗‖
2 ≤ 𝒗𝑇𝑸𝒗 ≤ 𝜆𝑚𝑎𝑥(𝑸)‖𝒗‖

2                     (1) 
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where 𝜆𝑚𝑖𝑛  and 𝜆𝑚𝑎𝑥  are the minimum and maximum 
eigenvalues of 𝑸, respectively. 

B. Second-Order Super-Twisting Sliding Mode 

Consider a m-order SISO nonlinear dynamic system 

𝒙̇ = 𝒇(𝒙) + 𝒈(𝒙)𝑢

𝜎 = 𝜎(𝒙)
                                (2) 

where 𝒙 ∈ ℝ𝑚 is the system state and  𝑢 ∈ ℝ is the control 
input; 𝒇 ∈ ℝ𝑚 and 𝒈 ∈ ℝ𝑚 are uncertain smooth functions; 𝜎 
is the tracking error (sliding variable). 

The control objective of the second-order STSM control is 
to exactly stabilize 𝜎(𝒙) and its first time derivative 𝜎̇(𝒙) in 
finite time without the use of 𝜎̇(𝒙) and without affecting the 
tracking performance. The control task is to drive the system 
trajectories to reach 𝜎(𝒙) = 𝜎̇(𝒙) = 0  in finite time. The 
STSM control law is designed under the following 
assumptions. 

Assumption 4. The relative degree of the input-output 
dynamics 𝑢 → 𝜎 is one and the internal dynamics are stable 

𝜎̇(𝒙) = 𝜂(𝒙) + 𝜁(𝒙)𝑢                            (3) 

with 𝜂(𝑥) = 𝜎̇(𝑥)|𝑢=0 and 𝜁(𝒙) = 𝜕𝜎(𝒙) 𝜕𝑢⁄ ≠ 0 

Definition 1. The system (2) is said to be a finite-time stable 
system in a compact 𝑿 ⊂ ℝ𝑚  if, ∀𝒙0 ∈ 𝑿 , the system is 
asymptotically stable with a finite time settling for any solution 
𝒙 (see Bhatt & Bernstein, 2000; Bacciotti & Rosier, 2005). 

Lemma 2 [17]: for any Lipschitz bounded function 𝒇, there 
exists a constant 𝑝 ≥ 2  and positive gains 𝐾1 and 𝐾2 for which 
a finite-time convergence 𝜎(𝒙), 𝜎̇(𝒙) → 0 can be provided by 
the following STSM control law without the usage of 𝜎̇(𝒙) 

𝑢(𝒙) = −𝐾1|𝜎(𝒙)|
𝑝−1
𝑝 𝑠𝑖𝑔𝑛(𝜎(𝒙)) + 𝑣(𝒙) 

𝑣̇(𝒙) = −𝐾2|𝜎(𝒙)|
𝑝−2

𝑝 𝑠𝑖𝑔𝑛(𝜎(𝒙))          (4) 

where 𝑣(𝒙) is the controller state. 

III. CONSENSUS-TRACKING FOR FIRST-ORDER DYNAMICS 

A. Problem Statement 

Consider a class of first-order MAS composed of one virtual 
leader (labelled as 0) and ‘n’ identical physical followers 
(labelled agent i with i = 1, n) described by the following first-
order nonlinear uncertain dynamics subject to unknown 
bounded disturbances. The leader’s dynamics are: 

𝒙̇0 = 𝒇0(𝒙0),  𝐲0 = 𝒉0(𝒙0)                         (5) 

where 𝒙0 ∈ ℝ
𝑚  and 𝒚0 ∈ ℝ

𝑞  are the leader’s state and 
output, respectively. The vector-valued functions 𝒇0 ∈ ℝ

𝑚 and 
𝒉0 ∈ ℝ

𝑞  are continuous functions that describe a leader’s 
dynamics and response, respectively. The followers’ dynamics 
are 

𝒙̇𝑖 = 𝒇𝑖(𝒙𝑖) + 𝑮𝑖(𝒙𝑖 , 𝒖𝑖)[𝒖𝑖(𝒙𝑖) + 𝒅𝑖(𝒙𝑖 , 𝑡)]𝒚𝑖 = 𝒉𝑖(𝒙𝑖) (6) 

where 𝒙𝑖 ∈ ℝ
𝑚, 𝒖𝑖 ∈ ℝ

𝑚, 𝒚𝑖 ∈ ℝ
𝑞, and 𝒅𝑖 ∈ ℝ

𝑚 are the ith 
follower’s state, control input, output, and disturbance vectors, 
respectively. The vector-valued functions 𝒇𝑖 ∈ ℝ

𝑚  and 𝒉𝑖 ∈

ℝ𝑞  are uncertain continuous functions that describe the 
follower’s dynamics and responses, respectively. In this study, 
we consider only the case of affine control inputs with 𝑮𝑖 ≡ 𝑰𝑚, 
𝒚𝑖 = 𝒙𝑖, and 𝒚0 = 𝒙0. 

Assumption 5. For each agent ‘𝑖’ , the 
uncertainties/disturbances 𝒅𝑖(𝒙𝑖 , 𝑡)  are Lipschitz-continuous 
functions growing in time and/or with state variables and are 
bounded such that 

𝑙𝑖𝑚
𝑡→∞

|𝒅𝑖(𝒙𝑖, 𝑡)| = 𝜻𝑖                            (7) 

where 𝜁𝑖 ∈ ℝ
+. 

The problem addressed in this section consists of finding 
smooth control inputs 𝒖𝑖(𝒙𝑖)  to enforce the followers’ 
kinematics (6) reaching the following consensus condition 
robustly 

𝑙𝑖𝑚
𝑡→𝑇

‖𝒙𝑖(𝑡) − 𝒙0(𝑡)‖∞ = 0        ∀𝑖 = 1,2, . . . , 𝑛          (8) 

To achieve the main results of robust distributed consensus 
protocols, we define a tracking variable 𝜎, for each follower 
‘i=1,n’ and along each motion direction ‘k=1,m’, as follows 

𝜎𝑖,𝑘(𝒙𝑖) = ∑ 𝑎𝑖𝑗(𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)
𝑛
𝑗=0                         (9) 

Assumption 6: The relative degree of the sliding variables 
𝜎𝑖,𝑘  concerning the control inputs 𝑢𝑖,𝑘  is one, for which the 

desired consensus (8) is achieved when 𝜎𝑖,𝑘 ≡ 0  and the 

associated internal dynamics are stable. 

The distributed consensus-tracking algorithm is designed 
such that the protocols 𝑢𝑖,𝑘  ensure that the kinematics of the 

follower ‘i’ robustly track the ones of the virtual leader with 
local interaction in the presence of matched disturbances. We 
propose a new variant of the Lyapunov-based STSM control 
law (4) 

𝑢𝑖,𝑘 = −𝐾1‖𝝈𝑘(𝒙𝑖)‖∞

𝑝−1
𝑝 𝑠𝑖𝑔𝑛 (𝜎𝑖,𝑘(𝒙𝑖)) + 𝑣𝑖,𝑘 + 𝑑̂𝑖,𝑘(𝒙𝑖) 

𝑣̇𝑖,𝑘 = −𝐾2‖𝝈𝑘(𝒙𝑖)‖∞

𝑝−2

𝑝 𝑠𝑖𝑔𝑛 (𝜎𝑖,𝑘(𝒙𝑖))      (10) 

where ‖𝝈𝑘(𝒙𝑖)‖∞ defines the infinity norm of the sliding 

vector 𝝈𝑘(𝒙) = [𝜎1,𝑘(𝒙𝑖), … , 𝜎𝑚,𝑘(𝒙𝑖) ]
𝑇

 along the motion 

direction ‘k’ and 𝑑̂𝑖,𝑘  are the estimated values of the 

disturbances 𝑑𝑖,𝑘, to be estimated through special observers to 

be developed further. 

B. Unperturbed Dynamics 

Consider the MAS (5)-(6) in its nominal form (i.e. without 
uncertainties and/or disturbances). Let 𝒙𝑖 = 𝒙𝑖 − 𝒙0 ∈ ℝ

𝑚 
being the consensus state error vector, we rewrite the dynamics 
(6), for the unperturbed case, as 

𝒙̇𝑖 = 𝒇𝑖(𝒙𝑖) − 𝒇0(𝒙0) + 𝒖𝑖(𝒙𝑖)                       (11) 

Using the STSMC law (10) with 𝒅𝑖 = 0 , the consensus 
dynamics (11) can be written in matrix form as  

𝒆̇ = 𝑭(𝒆) − 𝐾1‖𝝈‖∞

𝑝−1
𝑝 𝑠𝑖𝑔𝑛(𝝈) + 𝑽 
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𝑽̇ = −𝐾2‖𝝈‖∞

𝑝−2

𝑝 𝑠𝑖𝑔𝑛(𝝈)                  (12) 

with  𝒆 = 𝒄𝒍𝒎𝒏(𝒙𝒊) ∈ ℝ
𝑁 ,  𝑽 = 𝒄𝒍𝒎𝒏(𝒗𝒊) ∈ ℝ

𝑁 , 𝑭(𝒆) =

𝒄𝒍𝒎𝒏 ((𝒇𝑖(𝒙) − 𝒇0(𝒙))) ∈ ℝ
𝑁 , where the vector 𝒄𝒍𝒎𝒏(𝒛𝑖) 

denotes a column vector created from the sequence of vectors 
𝒛𝑖 for 𝑖 = 1,… , 𝑁 = 𝑚𝑛. 

Using expression (9), the sliding variable vector in (12) is 
defined as follows 

𝝈 = (𝑴⊗ 𝑰𝑁)𝒆                              (13) 

where the matrix 𝑴  is as defined in assumption 3, 𝑰𝑁 
denotes the identity matrix of order 𝑁 , and the symbol ⨂ 
denotes the Kronecker product. 

Assumption 7: Suppose that the dynamics (5) are bounded, 
𝜆𝑚𝑎𝑥(𝑴) > 0, and there exists a pair of constants 𝑙, 𝛿 ∈ ℝ+, for 
which 

‖𝑭(𝒆)‖∞ ≤ 𝛿‖𝝈‖∞

𝑝−1

𝑝 ‖(𝑴⊗ 𝑰𝑁)‖∞ ≤ 𝑙𝜆(𝑴)𝑚𝑎𝑥        (14) 

Theorem 1: Consider that assumptions 1-4 and 6-7 hold. If 
the fixed undirected graph 𝒢  is connected with at least one 
𝑎𝑖0 > 0, the distributed protocols (10) enforce the followers’ 
dynamics (6) to satisfy the consensus condition (8) provided 
that the gains 𝐾1 and 𝐾2 are selected high enough so that 

𝜆

𝑚𝑖𝑛
1/2(𝑷)(𝑸̂)𝑚𝑖𝑛

𝜆(𝑷)𝑚𝑎𝑥
 ,     𝑷 =

1

2
[
4𝐾2 + 𝐾1

2 −𝐾1
−𝐾1 2

]          (15) 

       

   

 

2 2

11 1 2 1 2 1 max 2 1 max

1

12 21 2 2 max max

22 1 max

ˆ 4 4

ˆ ˆ 2
2

ˆ

Q K K K K K l K K l

K
Q Q K K l l

Q K l

  

  



    

    



M M

M M

M
(16) 

Proof: Consider the expression (10) in the case of 𝑝 = 2 and 
a modified form of the Lyapunov function candidate proposed 
in [18]. 

𝑉 = 2𝐾2‖𝝈‖∞ +
1

2
‖𝑽‖∞

2 +
1

2
(𝐾1√‖𝝈‖∞  − ‖𝑽‖∞)

2
=

1

2
𝝃𝑇𝑷𝝃  (17) 

where ‖𝒛‖∞ denotes the infinity norm of a vector 𝒛 and 

𝝃 = [√‖𝝈‖∞       ‖𝑽‖∞]
𝑇
                              (18) 

The time derivative 𝑉̇ is calculated as 

𝑉̇ =
1

2
𝝃𝑇𝑷𝝃̇ +

1

2
𝝃̇𝑇𝑷𝝃                                                             

=
1

2
𝝃𝑇𝑷 [‖𝝈̇‖∞/(2√‖𝝈‖∞)𝑠𝑖𝑔𝑛(𝜎𝑝)      ‖𝑽̇‖∞]

𝑇

+

1/2 [‖𝝈̇‖∞/(2√‖𝝈‖∞)𝑠𝑖𝑔𝑛(𝜎𝑝)      ‖𝑽̇‖∞]
𝑇

𝑷𝝃

   (19) 

 

where 𝜎𝑝  is defined such that ‖𝝈‖∞ = |𝜎𝑝| . With 𝜉2̇ =

‖𝑽̇‖
∞
= ‖−𝐾2𝑠𝑖𝑔𝑛(𝝈)‖∞ = 𝐾2, expression (20) becomes 

                       𝑉̇ ≈
−𝐾2
2
[𝐾1√‖𝝈‖∞ − 2‖𝑽‖∞] − ‖𝝈̇‖∞/ 

(2√‖𝝈‖∞)𝑠𝑖𝑔𝑛(𝜎𝑝)[−(4𝐾2 + 𝐾1
2)√‖𝝈‖∞  + 𝐾1‖𝑽‖∞] (20) 

Using the following norm properties:  

‖𝝈̇‖∞ = ‖𝑴⊗ 𝑰𝑁𝒆̇‖∞ ≤ ‖𝑴⊗ 𝑰𝑁‖∞‖𝒆̇‖∞           

‖𝒆̇‖∞ ≤ ‖𝑭(𝒆)‖∞ + 𝐾1√‖𝝈‖∞ + ‖𝑽‖∞                     (21) 

expression (20) can be written as 

𝑉̇ ≈
−𝐾2
2
[𝐾1√‖𝝈‖∞ − 2‖𝑽‖∞]

− 1/ (√‖𝝈‖∞) ‖(𝑴⊗ 𝑰𝑀)‖∞. 

(‖𝑭(𝒆)‖∞ + 𝐾1√‖𝝈‖∞  + ‖𝑽‖∞). [−(4𝐾2 + 𝐾1
2)√‖𝝈‖∞  +

𝐾1‖𝑽‖∞]   (22) 

In matrix form, 

𝑉̇ ≈ −
1

2√‖𝝈‖∞
𝝃𝑇𝑸1𝝃 −

‖(𝑴⊗𝑰𝑁)‖∞

2√‖𝝈‖∞
𝝃𝑇𝑸2𝝃 −

                                             
‖(𝑴⊗𝑰𝑁)‖∞

2√‖𝝈‖∞
‖𝑭(𝒆)‖∞𝒒

𝑇𝝃                 (23) 

with 

𝑸2 = [
−𝐾1(4𝐾2 + 𝐾1

2) −2𝐾2
−2𝐾2 𝐾1

] 

𝑸1 = 𝐾2 [
𝐾1 −1
−1 0

],𝒒𝑇 = [−(4𝐾2 + 𝐾1
2) 𝐾1]   (24) 

According to assumption 7, expression (23) reduces to 

𝑉̇ ≈ −1/(2√‖𝝈‖∞). (𝝃
𝑇𝑸1𝝃 + 𝑙𝜆(𝑴)

𝑇
2
(𝑴)𝑇3𝑚𝑎𝑥𝑚𝑎𝑥

)    

(25) 

with  

𝑸3 = [
−(4𝐾2 + 𝐾1

2)
𝐾1

2
𝐾1

2
0
]                     (26) 

In compact form, 

𝑉̇ ≈ −1/(2√‖𝝈‖∞)𝝃
𝑇𝑸̂𝝃           (27) 

       

     

2 2

11 1 2 1 2 1 max 2 1 max

1

12 21 2 2 max max 22 1 max

ˆ 4 4

ˆ ˆ ˆ2 ,   
2

Q K K K K K l K K l

K
Q Q K K l l Q K l

  

   

    

     

M M

M M M
 (28) 

From the following inequalities: 

𝑉̇ ≈ −1/(2√‖𝝈‖∞)𝝃
𝑇𝑸̂𝝃 ≤ −1/

(2√‖𝝈‖∞)𝜆(𝑸̂)‖𝝃‖2
2
𝑚𝑖𝑛

√‖𝝈‖∞ ≤ ‖𝝃‖2 ≤ √𝑉/

𝜆
𝑚𝑖𝑛

1/2(𝑷)   (𝑷)‖𝝃‖2
2(𝑷)‖𝝃‖2

2
𝑚𝑎𝑥𝑚𝑖𝑛  (29) 

it results that 

𝑉̇ ≤ −𝛾√𝑉, 𝛾 = 𝜆
𝑚𝑖𝑛

1/2(𝑷)(𝑸̂)(𝑷)𝑚𝑎𝑥𝑚𝑖𝑛            (30) 

End of proof. 
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The convergence time (settling time) can be estimated from 
the following expression: 

√𝑉 = √𝑉0 −
1

2
𝛾𝑡                                       (31) 

Let √𝑉0 −
1

2
𝛾𝑡∗ = 0, which gives the convergence time 𝑡∗ 

as 

𝑡∗ = 1/𝛾𝝃0
𝑇𝑷𝝃0                                   (32) 

Lemma 2: The Lyapunov function (17) ensures the 
convergence of all trajectories of the consensus (11) to zero in 
a finite time 𝑡 equal or smaller than 𝑡∗. 

Lemma 3: Since the Lyapunov function (17) is continuous 
everywhere but not differentiable at  ‖𝝈‖∞ = 0 (except on the 
set 𝑆 =  {‖𝝈‖∞ , ‖𝑽‖∞ ∈ ℝ

2 | ‖𝝈‖∞ =  0} ), the solutions of 
the consensus (11) are understood in Filippov’s sense. Hence, 
the function (17) is not locally Lipschitz function. 

Lemma 4: In the case of a fixed directed graph topology, 
the results obtained in theorem 1 remain valid with substitution 
of the matrix 𝑴 in (13) by a matrix 𝑵 such that 

𝝈 = (𝑵⊗ 𝑰𝑁)𝒆,  𝐍𝐌+𝐌𝑇𝑵 = 𝐼𝑁                    (33) 

Remark. The gains 𝐾1  and 𝐾2   in protocols (10) can be 
tuned along each motion direction to get enough smooth control 
input. 

C. Perturbed Dynamics 

Consider the following perturbed consensus dynamics 
model 

𝒙̇𝑖 = 𝒇𝑖(𝒙𝑖) − 𝒇0(𝒙0) + 𝒖𝑖(𝒙𝑖) + 𝒅𝑖(𝒙𝑖)              (34) 

Assumption 8. The disturbances 𝒅𝑖(𝑡)  are bounded 
disturbances that satisfy the following conditions 

𝒅𝑖(𝒙𝑖 , 𝑡) = 𝒅𝑖
𝑠(𝒙𝑖 , 𝑡) + 𝒅𝑖

𝑢(𝒙𝑖 , 𝑡),  𝑙𝑖𝑚
𝑡→∞

𝒅𝑖(𝒙𝑖 , 𝑡) = 𝜻𝑖    (35) 

where 𝒅𝑖
𝑠(𝒙𝑖 , 𝑡)  and 𝒅𝑖

𝑢(𝒙𝑖 , 𝑡)  denote the structured and 
unstructured parts of the matched disturbances 𝒅𝑖  and  𝜻𝑖  are 
unknown constant vectors. 

Assumption 9. The unstructured disturbances 𝒅𝑖
𝑢(𝒙𝑖 , 𝑡) can 

be considered as zero-mean Gaussian noises while the 
structured disturbances 𝒅𝑖

𝑠(𝒙𝑖 , 𝑡)  are expressed using regressor 
notation [18] 

𝑑𝑖,𝑘
𝑠 (𝒙𝑖 , 𝑡) = 𝜽𝑖

𝑇𝝋𝑖(𝒙𝑖)    𝑘 = 1,2, . . . , 𝑚            (36) 

where 𝜽𝑖 ∈ ℝ
𝑝  is an uncertain parameter vector and 

𝝋𝑖: ℝ
𝑚 → ℝ𝑝  is a known nonlinear base function. In the 

presence of structured disturbances (35), the consensus 
dynamics (12) are rewritten as 

𝒆̇ = 𝑭(𝒆) − 𝐾1‖𝝈‖∞

𝑝−1
𝑝 𝑠𝑖𝑔𝑛(𝝈) + 𝑽 − 𝜣𝑇𝜱(𝒙) 

𝑽̇ = −𝐾2‖𝝈‖∞

𝑝−2

𝑝 𝑠𝑖𝑔𝑛(𝝈)            (37) 

where 

𝜣 = [𝜃1
𝑇 , 𝜃2

𝑇,...,θ𝑛
𝑇]𝑇 ∈ 𝑅𝑁 ,   Φ = [𝜑1

𝑇 , 𝜑2
𝑇,...,φ𝑛

𝑇]𝑇 ∈ 𝑅𝑁  (38) 

Theorem 2: Consider that assumptions 4 and 5 hold. If the 
graph 𝒢 is connected with at least one 𝑎𝑖0 > 0, the following 
agents’ controllers and disturbance observers ensure that the 
consensus condition (8) is robustly achieved in finite time 
despite external disturbances. 

Controllers: 

𝑢𝑖,𝑘 = −𝐾1‖𝝈𝑘(𝒙𝑖)‖∞

𝑝−1
𝑝 𝑠𝑖𝑔𝑛 (𝜎𝑖,𝑘(𝒙𝑖)) + 𝑣𝑖,𝑘 − 𝜽𝑖

𝑇𝝋𝑖(𝒙𝑖) 

𝑣̇𝑖,𝑘 = −𝐾2‖𝝈𝑘(𝒙𝑖)‖∞

𝑝−2

𝑝 𝑠𝑖𝑔𝑛 (𝜎𝑖,𝑘(𝒙𝑖))     (38) 

Observers: 

𝜽̇̂𝑖 = 𝜞𝑖𝜳𝑖(𝝈𝑖)𝝋𝑖(𝒙𝑖)                                 (39) 

where 𝜞𝑖 = 𝒅𝒊𝒂𝒈(𝜌1,1, 𝜌1,2, … , 𝜌1,𝑚) ∈ ℝ
𝑚×𝑚  and  

𝚿𝑖(𝝈𝑖) = 𝒅𝒊𝒂𝒈(𝑠𝑖𝑔𝑛(𝜎𝑖,𝑗)) ∈ ℝ
𝑚×𝑚. 

Proof: Consider the following Lyapunov function  

𝑉𝑒𝑥𝑡 = 𝑉𝑛𝑜𝑚 +
1

2
𝜣̃𝑇𝜞−1𝜣̃                             (40) 

where 𝑉𝑛𝑜𝑚  is given by expression (17), 𝚯̃ = (𝚯̂ − 𝚯) ∈
ℝ𝑁  is a parameter error vector, 𝚯̂  is the estimate of the 
unknown parameter vector 𝚯 , and 𝜞 =
𝒅𝒊𝒂𝒈(𝜌1,1, … , 𝜌1,𝑚, … 𝜌𝑛,1, … , 𝜌𝑛,𝑚) ∈ ℝ

𝑁×𝑁  with 𝜌𝑖,𝑗  being 

adaptive gain coefficient for the agent ‘i’ along motion 
direction ‘j’. To actively estimate and reject external 
disturbances in each agent’s motion direction and robustly 
achieve consensus tracking (8), the following adaptive law is 
proposed. 

𝜣̇̂ = 𝜞𝜳(𝝈)𝛷(𝒙)                           (41) 

where 𝚿(𝝈) = 𝒅𝒊𝒂𝒈(𝑠𝑖𝑔𝑛(𝜎𝑖,𝑗)) ∈ ℝ
𝑁×𝑁 . Since 𝚯  is 

unknown, the time-derivative of (44) is obtained as 

𝑉̇𝑒𝑥𝑡 = 𝑉̇𝑛𝑜𝑚 + 𝜣̃
𝑇𝜞−1𝜣̇̂                           (42) 

With (30), the extended Lyapunov function may be 
bounded as 

𝑉̇𝑒𝑥𝑡 ≤ − [𝛾√𝑉𝑛𝑜𝑚 + 𝜣̃
𝑇𝜞−1 (𝜣̇̂ − 𝜞𝜳(𝝈)𝛷(𝒙))]       (43) 

end of the proof. 

IV. CONSENSUS-TRACKING FOR SECOND-ORDER DYNAMICS 

A. Problem Statement 

This section addresses the design of distributed consensus 
tracking protocols for nonlinear second-order MAS to achieve 
robust high-accuracy position and velocity consensus tracking. 
Consider a MAS composed of a virtual leader ‘0’ and n 
identical followers with nonlinear uncertain second-order 
dynamics subject to unknown but bounded external 
disturbances. The leader’s and followers’ dynamics are, 
respectively 

𝒙̇0 = 𝒗0𝒗̇0 = 𝒇0(𝒙0) + 𝑮0(𝒙0)𝒖0(𝒙0)                  (44) 

𝒙̇𝑖 = 𝒗𝑖𝒗̇𝑖 = 𝒇𝑖(𝒙𝑖) + 𝑮𝑖(𝒙𝑖)[𝒖𝑖(𝒙𝑖) + 𝒅𝑖(𝒙𝑖 , 𝑡)]        (45) 
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where 𝒙0 ∈ ℝ
𝑚  and 𝒗0 ∈ ℝ

𝑚  are the leader’s state and 
velocity vectors, respectively; 𝒙𝑖 ∈ ℝ

𝑚 , 𝒗𝑖 ∈ ℝ
𝑚 , 𝒖𝑖 ∈ ℝ

𝑚 , 
and 𝒅𝑖 ∈ ℝ

𝑚 are the ith follower’s state, velocity, control input, 
and disturbance vectors, respectively; 𝒇0 ∈ ℝ

𝑚, 𝒇𝑖 ∈ ℝ
𝑚, 𝒅𝑖 ∈

ℝ𝑚 , 𝑮0 ∈ ℝ
𝑚×𝑚  and 𝑮𝑖 ∈ ℝ

𝑚×𝑚  are continuous uncertain 
functions. Disturbances 𝒅𝑖  obey the conditions in assumptions 
5, 8 and 9. 

Assumption 10: The control matrices 𝑮0  and 𝑮𝑖  are 
defined such that 𝑮0 = 𝒅𝒊𝒂𝒈(1 𝜌01

2⁄ , . . , 1 𝜌0𝑚
2⁄ )  and 𝑮𝑖 =

𝒅𝒊𝒂𝒈(1 𝜌1
2⁄ , . . , 1 𝜌𝑚

2⁄ )  where 𝜌𝑗  denotes the control 

constraints along the ′𝑗′ motion direction. 

The objective of second-order distributed consensus 
tracking is to design protocols 𝒖𝑖 for dynamics (49) such that 
the following consensus agreement is achieved simultaneously 
by all the followers’ dynamics and maintained for further time: 

𝑙𝑖𝑚
𝑡→𝑇

‖𝒙𝑖(𝑡) − 𝒙0(𝑡)‖ = 0, 𝑙𝑖𝑚
𝑡→𝑇

‖𝒗𝑖(𝑡) − 𝒗0(𝑡)‖ = 0  ∀𝑖 =

1,2, . . . , 𝑛    (46) 

To apply STSM control to the second-order distributed 
consensus tracking problem, the sliding variables are defined, 
for 𝑖 = 1, . . , 𝑛 𝑘 = 1, . . , 𝑚,  as follows: 

𝜎𝑖,𝑘(𝒙𝑖) = ∑ 𝑎𝑖𝑗[𝑥𝑖,𝑘 − 𝑥𝑗,𝑘]
𝑛
𝑗=0 + 𝑐 ∑ 𝑎𝑖𝑗[𝑣𝑖,𝑘 − 𝑣𝑗,𝑘]

𝑛
𝑗=0    (47) 

where 𝑐 ∈ ℝ+. 

B. Second-order Distributed Consensus Tracking 

To address the problem of second-order distributed 
consensus tracking in its general form, the leader’s dynamics are 
considered nonlinear dynamics with time-varying velocities. 
For 𝑛 agents and 𝑚 motion directions, the sliding manifold (48) 
and the consensus dynamics (44)-(45) are written, in matrix 
form, as follows: 

𝝈 = 𝝈𝑥 + 𝑐𝝈𝑣                                   (48) 

𝒆̇𝑥 = 𝒆𝑣 

𝒆̇𝑣 = 𝑭(𝒆𝑣) + (𝑴⊗ 𝑰𝑁)(𝑮(𝒆𝑣)𝑼 − 𝑼0(𝒙0))        (49) 

where 𝒆𝑥 = [𝒙1
𝑇 , … , 𝒙𝑛

𝑇]𝑇 ∈ ℝ𝑁 , 𝒆𝑣 = [𝒗̃1
𝑇 , … , 𝒗̃𝑛

𝑇]𝑇 ∈ ℝ𝑁 , 
𝝈 = [𝝈1

𝑇 , … , 𝝈𝑛
𝑇]𝑇 ∈ ℝ2𝑁 , and 𝑐  is a positive constant. The 

vectors 𝒙𝑖  are defined as in the previous section 𝒙𝑖 = 𝒙𝑖 −

𝒙0 ∈ ℝ
𝑚 ,  𝒗̃𝑖 = 𝒗𝑖 − 𝒗0 ∈ ℝ

𝑚 , and 𝝈𝑖 = [𝜎𝑖,1, . . , 𝜎𝑖,𝑚]
𝑇
∈

ℝ2𝑚 ; 𝑼 = [𝒖1
𝑇 , … , 𝒖𝑛

𝑇]𝑇 ∈ ℝ𝑁 , 𝑮(𝒆𝑣) =  [𝑮1, … , 𝑮𝑛]
𝑇 ∈

ℝ𝑁×𝑚 , and 𝑼0 = 𝒓𝒆𝒑((𝑮0𝒖0)
𝑇 , 𝑁)𝑇 ∈ ℝ𝑁  with (𝒓𝒆𝒑(𝒛), 𝑛) 

denotes a vector formed by n replications of  the vector 𝒛.  

Assumption 11. The following upper limit bounds the 
leader’s control inputs 

‖𝑮0(𝒙0)𝒖0‖∞ ≤ 𝑣0,𝑚𝑎𝑥                         (50) 

where 𝑣0,𝑚𝑎𝑥 ∈ ℝ
+ is a control constraint. 

Assumption 12: Suppose that dynamics (45) are bounded,  
𝜆𝑚𝑎𝑥(𝑴) > 0, and there exist some constants 𝑙𝑀, 𝑙𝐺 , 𝛿𝑣 ∈ ℝ

+, 
for which 

‖𝑭(𝒆𝑣)‖∞ ≤ 𝛿𝑣‖𝝈‖∞
𝛼1  

‖𝑮(𝒆𝑣)‖∞ ≤ 𝑙𝐺𝜆(𝑮)𝑚𝑎𝑥  
‖(𝑴⊗ 𝑰𝑁)‖∞ ≤ 𝑙𝑀𝜆(𝑴)𝑚𝑎𝑥                         (51) 

Theorem 3: Suppose assumptions 1-4 and 10-12 hold. The 
following STSM protocol enforces the MAS (48)-(49) to satisfy 
the consensus condition (45) in finite time despite uncertainties 
and/or disturbances.  

𝑼 = −𝐾1𝑣𝑒𝑐𝑡(|𝜎𝑘|
𝛼1𝑠𝑖𝑔𝑛(𝜎𝑘)) + 𝑽 − 𝜣

𝑇𝜱(𝒙) 

𝑽̇ = −𝐾2𝑣𝑒𝑐𝑡(|𝜎𝑘|
𝛼2𝑠𝑖𝑔𝑛(𝜎𝑘))    𝑘 = 1, . . 𝑁              (52) 

with 𝛼2 = 2𝛼1/(1 + 𝛼1),𝑽 = [𝑽1
𝑇 , … , 𝑽𝑛

𝑇]𝑇 ∈ ℝ𝑁, 𝑽𝑖 ∈ ℝ
𝑚. 

Proof: Consider the case of α1 = 1/2 in expression (52) 
and the nominal form of the consensus model (44)-(45) and 
select the following Lyapunov function: 

𝑉𝑛𝑜𝑚(𝝃) = 𝐾2 ∫ ‖𝒛‖∞
𝛼2𝑑𝑧

‖𝝈‖∞
0

+
1

2
‖𝑽‖∞

2                      (53) 

𝝃 = [‖𝝈‖∞ ‖𝑽‖∞]
𝑇                         (54) 

The time-derivative 𝑉̇𝑛𝑜𝑚 can be given as 

𝑉̇𝑛𝑜𝑚 = 𝜕𝑉/𝜕𝝃. 𝝃̇ = ⟨𝐾2‖𝝈‖∞
𝛼2 ‖𝑽‖∞⟩[‖𝝈̇‖∞ ‖𝑽̇‖

∞
]
𝑇
   

(55) 

Assuming that 

‖𝝈̇𝑥‖∞ = −𝑐‖𝝈̇𝑣‖∞                               (56) 

It results from expressions (49), (51) and (55) that 

𝑉̇𝑛𝑜𝑚 ≤ ⟨𝐾2‖𝝈‖∞
𝛼2 ‖𝑽‖∞⟩. 

[(1 − 𝑐)‖𝑴⊗ 𝑰𝑁‖∞(‖𝑭(𝒆𝑣)‖∞ + ‖𝑮(𝒆𝑣)‖∞(𝐾1‖𝝈‖∞
𝛼1 +

‖𝑽‖∞) + ‖𝑼0‖∞)   𝐾2‖𝝈‖∞
𝛼2]𝑇  (57) 

with 

𝑐 = 1 + 𝜆𝑣(𝜆𝑣𝑚𝑎𝑥𝑚𝑎𝑥)𝑚𝑎𝑥𝑚𝑎𝑥     (58) 

and 

𝑉̇𝑛𝑜𝑚 ≤ −
‖𝑴⊗ 𝑰𝑁‖∞𝐾2

𝜆𝑚𝑎𝑥(𝑮(𝒆𝑣))
‖𝝈‖∞

𝛼2 . 

(‖𝑭(𝒆𝑣)‖∞ + 𝐾1‖𝑮(𝒆𝑣)‖∞‖𝝈‖∞
𝛼1 + ‖𝑮(𝒆𝑣)‖∞‖𝑼0‖∞) (59) 

Using the bounds (55) and (56), it results that 

𝑉̇𝑛𝑜𝑚 ≤ −
𝜆𝑚𝑎𝑥(𝑴)𝑙𝑀𝐾2

𝜆𝑚𝑎𝑥(𝑮(𝒆𝑣))
. 

(
𝛿𝑣‖𝝈‖∞

(𝛼1+𝛼2) + 𝐾1𝑙𝐺𝜆𝑚𝑎𝑥(𝑮(𝒆𝑣))‖𝝈‖∞
(𝛼1+𝛼2)

+𝑙𝐺𝜆𝑚𝑎𝑥(𝑮(𝒆𝑣))𝑣‖𝝈‖∞
𝛼2
0,𝑚𝑎𝑥

)    (60) 

end of the proof. 

Lemma 5: Since V ̇_nom is not strictly negative because 
V ̇_nom=0 for ‖σ‖_∞=0, the asymptotic stability of the 
consensus tracking is guaranteed by the Krasovskii-LaSalle’s 
invariance principle. 

Proof of Lemma 5: Let 𝑆 = {(‖𝝈‖∞, ‖𝑽‖∞) ∈ ℝ
𝟐: 𝑉̇𝑛𝑜𝑚 =

0 } , the asymptotic stability of the consensus tracking is 

guaranteed only if   𝑆 = {(0,0)} . For 𝜆𝑚𝑎𝑥(𝑴) > 0  and 
𝜆𝑚𝑎𝑥(𝑮) > 0 , equation (64) has ‖𝝈𝑣‖∞ = 0  as the only 

solution for 𝑉̇𝑛𝑜𝑚 = 0. From the dynamics (49) and (52) the 
only remaining solution is ‖𝑽‖∞ = 0. 
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Lemma 6: In the case of structured disturbances, the 
asymptotic convergence of the extended Lyapunov function  

𝑉𝑒𝑥𝑡 = 𝐾2 ∫ ‖𝒛‖∞
1/3
𝑑𝑧

‖𝝈‖∞
0

+
1

2
‖𝑽‖∞

2 + 𝜣̃𝑇𝜞−1𝜣̇̂             (61) 

is guaranteed by the same conditions as in (63) and the 
observers (39) can be used to estimate the structured 
disturbances. 

V. SIMULATION 

The proposed consensus protocols and observers' 
effectiveness are evaluated in this section. Both first-order and 
second-order control algorithms are run using the Matlab 
simulation environment with a sampling time ∆𝑡 =
0.0001 𝑠𝑒𝑐. 

A. First-order Planar Consensus without Disturbances 

Consider a network of seven agents indexed by ‘1’ to ‘7’, 
respectively, to follow a virtual leader indexed by 
‘0’performing the virtual graph under the undirected 
communication topology shown in Fig. 1(a). Starting from a 
given initial condition, the agents must follow a common path 
(𝑥0,1 = 𝑡 + sin (𝑡), 𝑥0,2 = sin (𝜋𝑡 3⁄ ))  to reach a desired 

position while avoiding obstacles as shown in Fig. 1(b). The 
dynamics of the leader are given by 𝒙̇0 = 𝑠𝑖𝑛(𝒙0(𝑡)) . The 
conventional distributed consensus controllers (62) are applied 
to agents 𝑖 = 1, . . , 𝑛, with 𝛼 = 100, and 𝛽 = 25. The results of 
the consensus tracking are shown in Fig. 2 to 4. 

𝑢𝑖,𝑘(𝒙𝑖) = −𝛼∑𝑎𝑖𝑗(𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)

𝑛

𝑗=0

−  

𝛽𝑠𝑖𝑔𝑛(∑ 𝑎𝑖𝑗(𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)
𝑛
𝑗=0 )   (62) 

 
(a) 

 
(b) 

Fig. 1. Distributed consensus of seven agents: (a) Communication graph, 

(b) Virtual tracking path. 

 
(a) 

 
(b) 

Fig. 2. Trajectories: (a) Unperturbed STSM-based consensus (10), (b) 

FOSM-based consensus (62). 

 
(a) 

 
(b) 

Fig. 3. Consensus protocols using FOSM-based consensus (62): (a) Control 

effort u1i, (b) Control effort  u2i. 

 
Fig. 4. Consensus protocols using STSM-based consensus (10): (a) Control 

effort u1i, (b) Control effort  u2i. 
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B. First-order Consensus Tracking with Structured 

Disturbances 

Consider a network of five agents indexed by ‘1’ to ‘5’, 
respectively and follow a virtual leader indexed by ‘0’ under 
the communication topology shown in Fig. 5. 

 
Fig. 5. The communication graph for a network of seven agents. 

In this scenario, the five agents must follow a common path 
with the presence of structured disturbances associated with 
each agent’s state as defined in assumption 9 with an arbitrarily 
selected parameter vector 𝜽𝒊 

𝜽 = [
2 −5 4 5 3.5
5 3 −4 3.6 2

]
𝑇

               (63) 

and state-dependent base functions 𝝋𝒊 

𝝋𝑖(𝒙𝑖) = [𝑠𝑖𝑛(2𝑥𝑖, 1) 𝑠𝑖𝑛(2𝑥𝑖, 2)]𝑇                      (64) 

The STSM-based distributed consensus protocols (9) is 
applied with 𝐾1 = 15  and 𝐾2 = 30. The disturbance observer 
is applied with 

𝝆 = [
16 576 13.5 27 −20
55 24 19.5 7.5 3.5

]
𝑇

                 (65)  

The consensus tracking, and an example for disturbance 
estimation and parameters updating are shown in Fig. 6 and 
Fig. 7. 

 
Fig. 6. Consensus tracking among the 5 agents. 

 

 
(a) 

 
(b) 

Fig. 7. Disturbance estimation for agents 1 and 2 using proposed observer: 

(a) Estimations (b) Estimator errors. 

C. Second-order Consensus Tracking with Structured 

Disturbances 

In this scenario, the performance and robustness of the 
proposed STSM-based protocol for second-order systems are 

simulated using a switched topology {𝒢1̅, 𝒢2̅, 𝒢3̅, 𝒢4̅}  with 
switching period 𝜏 = 10𝑠𝑒𝑐 as shown in Fig. 8. 
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Fig. 8. Fixed-time switching topology. 

For the disturbances, an agent’s state dependent component 
is added to the time-varying disturbances with 𝜃 =
 [1  0.5  0.6  0.8  0.2]𝑇and 𝜑𝑖 functions given by (66) 

{
 
 
 
 
 

 
 
 
 
 

𝜑1(𝑡, 𝑥1) = 𝑐𝑜𝑠(0.1𝑡) 𝑠𝑖𝑛(𝑥1) 

𝜑2(𝑡, 𝑥2) = 𝑠𝑖𝑛 (0.5 𝑡 +
𝜋

4
) 𝑠𝑖𝑛(𝑥2)

𝜑3(𝑡, 𝑥3) = 𝑐𝑜𝑠(3𝑡) 𝑠𝑖𝑛(𝑥3)

𝜑4(𝑡, 𝑥4) 𝑠𝑖𝑛 (2 𝑡 +
𝜋

3
) 𝑠𝑖𝑛(𝑥4)

𝜑5(𝑡, 𝑥5) =

{
 
 

 
 ((𝑠𝑖𝑛(𝜔1𝑡) − 1) 𝑠𝑖𝑛(𝑥5)  for t<30 sec)                 

((𝑠𝑖𝑛(𝜔1𝑡) + 1) 𝑠𝑖𝑛(𝑥5) for t≥30 sec)              

𝜔1 = 2𝜋 (
5.9𝑡

60
+ 0.1) ,   𝜔2 = 2𝜋 (−

5.9𝑡

60
+ 6)    

 

(66) 

Accurate robust finite-time consensus tracking is achieved 
using the proposed STSM-based protocol as shown in Fig. 9. 
The simulation was run with 𝛼1 = 1/3 , 𝛼2 = 1/2 ,  𝑐 = 5 , 
 𝐾1 = 1.5 , 𝐾2 = 1.9  and    𝝆 = 𝑑𝑖𝑎𝑔(10−3[−20.25 −
4.25  9.75  19  23]). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9. Results with consensus protocol (57) (a) Trajectories, (b) Velocities, 

(c) Protocols (d) Disturbance estimation error. 

VI. CONCLUSION 

This paper introduced a novel finite-time synchronization 
framework for multi-agent systems (MAS) operating under 
switching communication topologies, addressing scenarios 
with and without direct velocity measurements. By integrating 
graph-theoretic principles, local finite-time convergence theory 
for homogeneous systems, and the non-smooth LaSalle’s 
invariance principle, we developed a distributed control 
strategy ensuring precise synchronization of agents’ states and 
velocities. The proposed control laws exhibit inherent 
robustness to topology variations, communication constraints, 
and dynamic agent interactions, making them suitable for real-
world applications, including satellite formation flying, 
autonomous robotic networks, and cooperative unmanned 
aerial vehicles (UAVs). 

To further enhance robustness and reduce communication 
overhead, we introduced a finite-time high-order sliding-mode 
observer, enabling agents to accurately estimate relative 
velocity states without direct measurements. This observer-
based strategy mitigates reliance on continuous inter-agent 
communication, ensuring high-precision synchronization even 
under sensor limitations, intermittent connectivity, and external 
disturbances. The developed framework is inherently scalable, 
allowing seamless integration into large-scale distributed 
systems where centralized coordination is impractical or 
infeasible. 

The results presented in this study establish a resilient and 
computationally efficient control paradigm for distributed 
synchronization in MAS, providing a strong foundation for 
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future advancements in autonomous and cooperative multi-
agent technologies. Future work will address key challenges in 
inter-agent communication, such as signal interference, 
transmission delays, and adaptive information-sharing 
protocols, to further enhance the real-time performance and 
robustness of distributed synchronization mechanisms in 
increasingly complex operational environments. The extension 
of this framework to heterogeneous agent networks, 
cooperative task execution, and event-triggered control will be 
explored to support the next generation of intelligent and 
autonomous multi-agent systems. Moreover, the present work 
could be extended beyond bounded perturbation assumptions 
by exploring adaptive learning-based control, stochastic 
models, and event-triggered MPC for real-time disturbance 
adaptation. Additionally, higher-order sliding mode and hybrid 
multi-agent reinforcement learning (MARL) approaches will 
be investigated to enhance robustness in highly uncertain 
environments. These advancements will improve the 
applicability of the proposed framework to real-world multi-
agent systems. 
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