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Abstract—The increasing interconnectivity of vehicular 

networks through the Internet of Vehicles (IoV) introduces 

significant security challenges, particularly for the Controller 

Area Network (CAN), a widely adopted protocol vulnerable to 

cyberattacks such as spoofing and Denial-of-Service (DoS). To 

address these challenges, this study explores the potential of 

Intrusion Detection Systems (IDSs) leveraging artificial 

intelligence (AI) techniques to detect and mitigate malicious 

activities in CAN communications. Using the CICIoV2024 

dataset, which provides a realistic testbed of vehicular traffic 

under benign and malicious conditions, we evaluate 25 machine 

learning (ML) models across multiple metrics, including 

accuracy, balanced accuracy, F1-score, and computational 

efficiency. A systematic and repeatable approach was proposed 

to facilitate testing multiple models and classification scenarios, 

enabling a comprehensive exploration of the dataset's 

characteristics and providing insights into various ML 

algorithms' effectiveness. The findings highlight the strengths 

and limitations of various algorithms, with ensemble-based and 

tree-based models demonstrating superior performance in 

handling imbalanced data and achieving high generalization. 

This study provides insights into optimizing IDSs for vehicular 

networks and outlines recommendations for improving the 

robustness and applicability of security solutions in real-world 

IoV scenarios. 
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I. INTRODUCTION 

The Internet of Things (IoT) has revolutionized how 
devices interact, seamlessly connecting billions of smart 
devices across homes, industries, and cities [1], [2]. Recent 
advancements have focused on enhancing real-time data 
processing, energy efficiency, and scalability. Technologies 
such as edge computing, 5G/6G networks, and lightweight 
Machine Learning (ML) models have enabled IoT devices to 
process data locally, reducing latency, network congestion, and 
reliance on cloud-based systems [3], [4]. Artificial Intelligence 
(AI) plays a pivotal role in this transformation by enabling IoT 
devices to analyze vast amounts of data, derive actionable 
insights, and adapt to changing environments autonomously 
[5], [6].  

In the domain of IoT security, AI can enhance threat 
detection, intrusion prevention, and secure authentication. 
Techniques such as anomaly detection, generative adversarial 
networks (GANs) for simulating cyber-attacks, and 
reinforcement learning for adaptive defense strategies enable 
IoT systems to identify and mitigate potential vulnerabilities 

proactively [7], [8]. By integrating AI, IoT ecosystems are 
becoming not only more efficient but also more resilient 
against evolving cybersecurity threats [9]. 

Similarly, vehicular networks and the Internet of Vehicles 
(IoV) leverage IoT to enhance traffic management and enable 
autonomous driving, but it also faces significant security 
threats due to its high interconnectivity and dependence on IoT 
components. Potential attacks exploit both inter-vehicle and 
intra-vehicle vulnerabilities (see Fig. 1). For instance, GPS 
spoofing attacks mislead vehicle navigation systems by 
transmitting false location data, potentially causing accidents 
[10], [11]. Replay attacks involve retransmitting valid network 
messages to disrupt real-time vehicle functionality, while Sybil 
attacks flood the network with fake vehicle nodes to 
manipulate traffic or force detours [10]. Additionally, Denial-
of-Service (DoS) attacks can overwhelm the IoV network, 
leading to service outages that compromise vehicular 
operations. Attacks on Electronic Control Units (ECUs) and 
sensors, such as malware injection, jeopardize vehicle 
decision-making by tampering with critical system data [11]. 
One real-world example includes hackers tricking Tesla's 
Autopilot software into swerving into oncoming traffic lanes, 
demonstrating the tangible risks of compromised IoV security. 

 
Fig. 1. Potential security threats in IoV. 

Addressing these vulnerabilities requires advanced security 
measures, such as AI-driven intrusion detection systems (IDSs) 
and robust cryptographic protocols, to safeguard the integrity, 
availability, and confidentiality of IoV networks. 

In this paper, we focus on the security of IoV and, 
specifically, the security of the Controller Area Network 
(CAN). The CAN is one of the commonly adopted 
communication protocols in vehicle and industrial systems for 
data exchange between ECUs without a central host computer. 
Despite its widespread use, the CAN protocol suffers from 
inherent security vulnerabilities, such as the lack of encryption 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 3, 2025 

273 | P a g e  

www.ijacsa.thesai.org 

and authentication, making it susceptible to spoofing, DoS, and 
replay attacks [12]. 

Traditional IDSs, such as signature-based and rule-based 
approaches, face significant challenges securing CAN 
networks. These conventional methods often suffer from high 
false positive rates, difficulty in adapting to novel attack 
patterns, and computational inefficiencies that limit their real-
time applicability in resource-constrained vehicular 
environments. Furthermore, their reliance on predefined attack 
signatures makes them ineffective against zero-day attacks and 
evolving adversarial techniques [13]. On the other hand, AI-
driven IDSs based on advanced ML and Deep Learning (DL) 
techniques can play a crucial role in enhancing cyberattack 
detection, prevention, and mitigation [14]. These ML and DL 
algorithms can effectively identify abnormal IoV traffic and 
request patterns, contributing to the early detection and 
mitigation of potential attacks. 

As most existing research on CAN has primarily addressed 
these issues through theoretical solutions or simulated 
environments, Neto et al. [15] introduced the CICIoV2024 
dataset to bridge the gap and provide a realistic testbed for 
IDSs focusing on CAN security. The dataset includes diverse 
attack types specific to CAN bus communication, such as DoS 
and spoofing (steering wheel, RPM, speed, gas). Since this 
dataset is considered recent, it requires comprehensive 
investigation. 

Researchers in studies [15]–[17] conducted some 
comparative analyses on multiple ML algorithms using the 
CICIoV2024 dataset. However, the unrealistically high 
performance raises concerns about overfitting or dataset-
specific optimizations, suggesting the need for comprehensive 
evaluation and broader testing on diverse datasets. This paper 
aims to bridge this gap by leveraging the CICIoV2024 dataset 
and evaluating a diverse range of ML models on this dataset, 
highlighting their strengths and limitations, and proposing 
recommendations for enhancing the robustness and 
applicability of IDSs in real-world IoV scenarios. 

The main contributions can be outlined as follows: 

 Comprehensively investigate the CICIoV2024 dataset 
and evaluate a diverse range of ML models on this 
dataset, highlighting their strengths and limitations. 

 Propose a systematic and repeatable approach that 
facilitates testing multiple models and classification 
scenarios to comprehensively explore the dataset's 
characteristics and provide insights into the 
effectiveness of various ML algorithms on that dataset. 

 Perform data cleaning step during preprocessing to 
ensure a more accurate representation of feature 
interactions, making the dataset more suitable for 
reliable ML analysis and reducing the risk of 
overfitting caused by repeated patterns. 

 Provide insights into optimizing IDSs for vehicular 
networks and outline recommendations for improving 
security solutions' robustness and applicability in real-
world IoV scenarios. 

The rest of the paper is organized as follows: Section II 
reviews the related works. Section III explains our 
methodology. Section IV discusses the results of ML models 
and outlines recommendations. Section V concludes the paper. 

II. RELATED WORKS 

This section reviews recent studies that have employed ML 
and DL techniques for intrusion detection, highlighting their 
contributions and limitations. Table I provides a summary of 
related works. 

TABLE I. RELATED WORKS SUMMARY 

Ref. Key Features Limitations 

Subasi et al. [18] 

-Focus on interpretable and 

explainable ML 
-Use of Decision Trees and 

Ridge Classifiers 

-Introduction of cross-
explanations 

-Limited to feature-based 

explanations 

-Challenges with 
aleatoric uncertainties 

and feature correlations 

Mahdi et al. [19] 

-Hybrid approach 

combining LSTM and 

Naive Bayes 
-Three-stage methodology 

-High complexity of 

hybrid model 

-May require significant 
computational resources 

Aswal et al. [16] 
 

-DL-based intrusion 

detection model for CAN 
-Focus on real-time 

detection 

-Lacks comparative 

evaluation with hybrid 

methods 

Neto et al. [15] 

-Introduced the 
CICIoV2024 dataset 

-Emphasizes the importance 

of realistic CAN scenarios 

-Dataset limited to 
specific attack scenarios 

-Immobile vehicle 

constraints 

Amirudin et al. 
[17] 

-Comparative analysis of 

ML algorithms like 
LightGBM, XGBoost, 

CatBoost 

-Unrealistically high 
performance raises 

concerns about 

overfitting or dataset-
specific optimizations 

Tasci [20] 

-Optimized CNN model for 

IoT security 
-Focus on lightweight 

architecture for real-time 

applications 

-Limited exploration of 

diverse attack types 
-Scalability to larger 

datasets requires further 

validation 

Subasi et al. [18] explored interpretable ML approaches for 
intrusion detection, focusing on enhancing model 
explainability using Decision Trees and Ridge Classifiers. By 
incorporating cross-explanation mechanisms and evaluating 
models with metrics like balanced accuracy and Matthews 
Correlation Coefficient, the study emphasized the need for 
interpretable systems in IDSs. However, challenges such as 
feature correlations and aleatoric uncertainties limit their 
applicability in more complex scenarios. 

Building on this, Mahdi et al. [19] proposed a hybrid ML-
DL framework, combining LSTM and Naive Bayes models for 
intrusion detection in IoT networks. This hybrid approach 
leverages the strengths of both DL's pattern recognition and 
ML's efficiency, achieving strong results on the CICIoV2024 
dataset. However, its computational intensity highlights a 
trade-off between accuracy and feasibility for real-time 
applications, raising the importance of lightweight and scalable 
solutions. 

Focusing on the IoV, Neto et al. [15] introduced the 
CICIoV2024 dataset that was designed for testing ML-based 
IDSs in IoVs. They evaluated Logistic Regression, Random 
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Forest, AdaBoost, and Deep Neural Network (DNN) model's 
ability to detect and classify malicious activities. Their findings 
highlight the challenges of addressing cybersecurity in IoV due 
to imbalanced datasets and similarities between benign and 
malicious traffic. 

Aswal et al. [16] developed a DL-based IDS targeting 
vulnerabilities in the CAN protocol. Their model demonstrated 
effective real-time detection of various attacks using the 
CICIoV2024 dataset. Similarly, Amirudin et al. [17] conducted 
a comparative analysis of advanced ML algorithms, including 
LightGBM, XGBoost, and CatBoost, using the CICIoV2024 
dataset. However, the unrealistically high performance raises 
concerns about overfitting or dataset-specific optimizations, 
suggesting the need for comprehensive evaluation and broader 
testing on diverse datasets. 

Expanding beyond vehicular networks, Tasci [20] 
introduced an optimized convolutional neural network (CNN) 
for IoT security, achieving high performance on multiple 
datasets, including CIC-IoT2023, CIC-MalMem-2022, and 
CIC-IDS2017. This lightweight model demonstrated suitability 
for real-time applications, addressing computational limitations 
observed in hybrid approaches. However, its scalability to 
larger datasets and handling of diverse attack types requires 
further investigation. 

Despite significant advancements in using ML and DL for 
intrusion detection in IoT and IoV, several critical research 
gaps remain. High-performing models often exhibit overfitting, 
as seen in studies achieving near-perfect accuracy, highlighting 
the need for comprehensive evaluation and robust evaluation 
across diverse datasets. Computational complexity is another 
challenge, with many hybrid and DL models being resource-
intensive and unsuitable for real-time applications. 
Furthermore, since CICIoV2024 is a newly introduced dataset, 
there is a limited amount of research exploring its usability and 
potential applications. This creates an opportunity to evaluate 
its effectiveness in training and testing various ML and DL 
models for intrusion detection in vehicular networks. In 
addition, most research prioritizes accuracy and F1-scores over 
other metrics. In this study, we address these gaps by 
conducting a comprehensive evaluation of advanced ML and 
DL models on the CICIoV2024 dataset. 

III. METHODOLOGY 

In this section, we discuss the research methodology we 
followed in detail. We adopted a systematic and repeatable 
approach that facilitates testing multiple models and 
classification scenarios to comprehensively explore the 
dataset's characteristics and provide insights into the 
effectiveness of various ML algorithms on that dataset. 

The flowchart in Fig. 2 provides a visual representation of 
the methodology followed in this paper for training and testing 
ML models on the CICIoV2024 dataset. The process starts 
with initializing the dataset and models, followed by removing 
duplicate entries to ensure data quality. The dataset is then split 
into training and testing subsets, guaranteeing a balanced 
evaluation of the models. 

Each classification type (e.g., labels, categories, and 
specific classes) is processed iteratively, with labels converted 

to numeric values to make the dataset compatible with ML 
algorithms. For every classification type, the models are trained 
using the training dataset and evaluated on the testing dataset. 
The results of each model, for all classifications, are collected 
and stored. This process is repeated for all classifications and 
models to ensure comprehensive experimentation. 

 
Fig. 2. Methodology flowchart. 

The final step involves returning the results for analysis and 
comparison. This methodology ensures a systematic approach 
to testing multiple models and classification scenarios, 
providing insights into the effectiveness of various ML 
algorithms on the dataset. The combination of data 
preprocessing, iterative model training, and evaluation ensures 
a robust experimental setup. 

Algorithm 1: Models Training and Testing   
Input: CICIoV2024 Dataset 

Output: Results // lists of results for all models  

1  Function: evaluate_models(CICIoV2024) 

2      Init: Models ← set of models,  

               Classifications ← {label, category, class}, 

               Results ← empty set for results. 

3      For dataset in Dataset  

            //Dataset Preprocessing 

4          dataset ← dataset.removeDuplicate()  

5          For class_type in Classifications  

               // Covert labels to numeric values  

6             dataset ← dataset.numericValues()  

              // Split dataset 

7            x_train,y_train,x_test,y_test← dataset.split(test_size=0.3) 

8            For model in Models 

                  // Train model 
9                train_result= model.train(x_train, y_train) 

                  // Test model 

10                test_result= model.test(x_test,y_test) 
11              Results.add(train_result,test_result) 

12          End For 

13      End For 

14   End For 

15   Return Results 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 3, 2025 

275 | P a g e  

www.ijacsa.thesai.org 

Algorithm 1 details the step-by-step implementation of the 
process used in the study. The input to the algorithm is the 
CICIoV2024 dataset, while the output is a set of results 
capturing the performance of all models across different 
classifications. The following subsections will discuss steps in 
detail. 

A detailed breakdown of the features of the CICIoV2024 
dataset is provided in Table II. Each instance in the dataset 
includes an ID field, which denotes the arbitration ID used to 
determine message priority on the CAN bus, and DATA_0 to 
DATA_7, which represents the eight-byte payload of CAN 
messages. Additionally, the dataset includes labels for 
classifying traffic as benign or malicious, with malicious traffic 
further categorized into DoS and Spoofing types. Spoofing 
attacks are further specified into classes such as Speed 
Spoofing, RPM Spoofing, Gas Spoofing, and Steering Wheel 
Spoofing. These features provide a granular view of vehicular 
communication, enabling detailed analysis and the application 
of ML techniques for intrusion detection. 

TABLE II. CICIOV2024 DATASET FEATURES 

Feature Name Description 

ID 
ID indicating the message priority and type of data being 
transmitted 

DATA_0 to 

DATA_7 

Data fields (Byte 0 to Byte 7) contain the payload of CAN 

bus messages 

Label Classification of the traffic as benign or malicious 

Category Category of the traffic (DoS or Spoofing) 

Specific Class 
Specific malicious traffic class (Speed Spoofing, RPM 
Spoofing, or Gas Spoofing) 

Table III summarizes the dataset composition, labeling 
traffic data instances into benign and malicious types. Benign 
traffic, representing normal vehicle operations, forms the bulk 
of the dataset with 1,223,737 instances. Malicious traffic, with 
184,482 instances, is divided into two primary categories: DoS 
and Spoofing. DoS traffic consists of 74,663 instances while 
Spoofing traffic includes subcategories (specific classes) like 
Gas Spoofing (9,991 instances), Steering Wheel Spoofing 
(19,977 instances), Speed Spoofing (24,951 instances), and 
RPM Spoofing (54,900 instances). This distribution reflects the 
predominance of benign operations in real-world scenarios and 
highlights specific malicious activities. 

TABLE III. CICIOV2024 DATASET SUMMARY 

Traffic type Category Specific Class 
Number of 

Instances 
Total 

Benign - - 1,223,737 1,223,737 

Malicious 

DoS - 74,663 

184,482 
Spoofing 

Gas Spoofing 9,991 

Steering Wheel 19,977 

Speed Spoofing 24,951 

RPM Spoofing 54,900 

A. Machine Learning Models 

The CICIoV2024 dataset was used to train a diverse set of 
ML models (25 models) representing a variety of algorithm 
families and to evaluate its effectiveness comprehensively. 

Ensemble-based methods included AdaBoost Classifier 
(AdaBoostClassifier), Bagging Classifier (BaggingClassifier), 
and Random Forest Classifier (RandomForestClassifier), 
which combine multiple models to enhance prediction 
accuracy. Naive Bayes algorithms, such as Bernoulli Naive 
Bayes (BernoulliNB) and Gaussian Naive Bayes 
(GaussianNB), were utilized for probabilistic modeling. The 
Calibrated Classifier Cross-Validation 
(CalibratedClassifierCV) was employed as a probability 
calibration method to refine predictive probabilities. Decision 
tree-based models encompassed Decision Tree Classifier 
(DecisionTreeClassifier), Extra-tree Classifier 
(ExtraTreeClassifier), Extra-trees Classifier (ExtraTrees), Light 
Gradient Boosting Machine Classifier (LGBMClassifier), and 
Extreme Gradient Boosting Classifier (XGBClassifier), which 
are widely used for their interpretability and efficiency. 
Neighbors algorithms, including k-nearest Neighbors 
(KNeighborsClassifier) and Nearest Centroid Classifier 
(NearestCentroid), were applied for instance-based learning. 

Linear models trained on the dataset included Logistic 
Regression Classifier (LogisticRegression), Passive Aggressive 
Classifier (PassiveAggressiveClassifier), Linear Perceptron 
Classifier (Perceptron), Ridge Classifier (RidgeClassifier), 
Ridge Classifier with Cross-Validation (RidgeClassifierCV), 
and Linear classifiers with Stochastic Gradient Descent 
(SGDClassifier), which are effective for high-dimensional 
data. Semi-supervised learning techniques, such as Label 
Propagation Classifier (LabelPropagation) and LabelSpreading 
Classifier (LabelSpreading), were also employed. Support 
Vector Machine algorithms, including C-Support Vector 
Classification (SVC) and Linear Support Vector Classification 
(LinearSVC), were used for their robustness in handling 
complex classification problems. In addition, Linear 
Discriminant Analysis model (LinearDiscriminantAnalysis) 
and Dummy Classifier (DummyClassifier) were trained. This 
extensive range of algorithms ensured a thorough exploration 
of the dataset's predictive potential. 

B. Duplicate Removal 

Data duplication removal from the dataset is one of the 
essential steps during data cleaning, ensuring that the data is 
accurate and reliable for further analysis or modeling [21]. In 
addition, a large volume of duplicated data might reduce data 
diversity and representativeness, leading to overfitting or 
biased models. 

In our study, we used the drop_duplicates method from the 
Pandas library to remove duplicates in the CICIoV2024 
dataset. Table IV and Fig. 3 show the distribution of data 
across different classifications after duplicate entries were 
removed, reducing the dataset size significantly from 
1,408,219 instances to 3,588 instances. The distribution is 
displayed for three levels of classification: Label, Category, 
and Specific Class. At the Label level, the data is divided into 
benign and malicious, with a noticeable decrease in benign 
traffic proportion due to deduplication. At the Category level, 
malicious traffic is further subdivided into DoS and various 
spoofing types. Finally, at the Specific Class level, the spoofing 
category is broken down into detailed subcategories, including 
gas spoofing, steering wheel spoofing, and RPM spoofing, 
each with a smaller representation. 
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TABLE IV. DATASET DISTRIBUTION AFTER DEDUPLICATION 

 
Benign 

Malicious 

DoS 

Malicious 

Spoofing 

Gas 

Spoofing 

Malicious 

Spoofing 

Steering 

Wheel 

Malicious 

Spoofing 

RPM 

Spoofing 

Label 3,547 41 

Category 3,547 21 20 

Specific Class 3,547 21 10 5 3 

 
Fig. 3. Data distribution across label, category, and specific class 

classifications after deduplication. 

After that, we compared the feature correlations in the 
CICIoV2024 dataset before and after duplicate removal, 
emphasizing the impact of preprocessing on data quality (see 
Fig. 4 and Fig. 5). Fig. 4, which represents the original dataset 
with duplicates, shows amplified correlations across several 
features, as evident from the brighter areas in the heatmap. 
These inflated relationships are likely caused by repeated data 
points, which can obscure unique interactions between features 
and introduce biases in ML models. In contrast, Fig. 5, 
generated after duplicate removal, exhibits more balanced and 
refined correlations, with reduced intensity in previously 
dominant relationships. This indicates a cleaner dataset where 
the true relationships among features are better preserved. The 
duplicate removal process not only eliminates redundancy but 
also ensures a more accurate representation of feature 
interactions, making the dataset more suitable for reliable ML 
analysis and reducing the risk of overfitting caused by repeated 
patterns. 

 
Fig. 4. Dataset heatmap of features correlation (Original dataset). 

 

Fig. 5. Dataset heatmap of features correlation (Duplicate removed). 

C. Dataset Splitting 

Data splitting is a critical step to ensure robust evaluation 
of ML models. After preprocessing the dataset by removing 
duplicates and converting labels into numeric values, the 
dataset is split into training and testing subsets using the 
StratifiedShuffleSplit method, which combines the 
characteristics of ShuffleSplit (randomized splitting) and 
StratifiedKFold (maintaining the proportion of classes in each 
subset). This ensures that the training and testing sets have 
similar class distributions, preserving the balance of the data. 
The dataset is divided into a 70/30 ratio, where 70% is used for 
training the models to learn patterns and relationships, and 
30% is reserved for testing, providing an unbiased evaluation 
of model performance. The final training set size was 2,511, 
and the training set size was 1,007 instances. 

IV. RESULTS AND DISCUSSION 

This section discusses the training and testing results of the 
ML models trained using the CICIoV2024 dataset with both 
Decimal (D) and Binary (B) formats. Performance metrics 
evaluated include accuracy, balanced accuracy, F1-score, and 
processing time. Balanced accuracy takes into account the 
accuracy of different classes separately and then calculates the 
mean. On the other hand, F-score keeps the balance between 
precision and recall. Both metrics help evaluate the sensitivity 
and specificity of the models, and they are particularly 
important when dealing with imbalanced data. 

A. Accuracy 

Results in Table V, Table VI, and bar charts in Fig. 6 
compare the training and testing accuracy of various ML 
models across different classifications (Category, Label, and 
Class) in both decimal and binary formats. This comparison 
highlights their performance consistency and generalizability. 

In the training accuracy results, most models, such as 
DecisionTreeClassifier, ExtraTreesClassifier, XGBClassifier, 
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and LGBMClassifier, achieved near-perfect scores (1.00) 
across all classification levels (Category, Label, and Class in 
both Decimal and Binary formats), reflecting their ability to 
learn from the training data thoroughly. However, models like 
NearestCentroid and GaussianNB showed slightly lower 
training accuracies in specific scenarios. 

TABLE V. TRAINING ACCURACY OF ALL MODELS  

Model 
Category 

(D) 

Category 

(B) 

Label 

(D) 

Label 

(B) 

Class 

(D) 

Class 

(B) 

AdaBoost 1.00 0.99 1.00 1.00 0.99 0.99 

Bagging 1.00 1.00 1.00 1.00 1.00 1.00 

Bernoulli NB 0.99 0.97 0.99 0.97 0.99 0.99 

Calibrated CV 0.99 1.00 0.99 1.00 0.99 1.00 

Decision Tree 1.00 1.00 1.00 1.00 1.00 1.00 

Dummy 

Classifier 
0.99 0.99 0.99 0.99 0.99 0.99 

Extra Tree 1.00 1.00 1.00 1.00 1.00 1.00 

Extra Trees 1.00 1.00 1.00 1.00 1.00 1.00 

Gaussian NB 0.99 1.00 0.95 0.53 1.00 1.00 

K Neighbors 1.00 1.00 1.00 1.00 0.99 1.00 

Label 
Propagation 

1.00 1.00 1.00 1.00 1.00 1.00 

Label 

Spreading 
1.00 1.00 1.00 1.00 1.00 1.00 

LGBM Classifier 1.00 1.00 1.00 1.00 1.00 1.00 

Linear 

Discriminant 
0.97 1.00 0.97 1.00 0.97 1.00 

Linear SVC 0.99 1.00 0.99 1.00 0.99 1.00 

Logistic 

Regression 
0.99 1.00 0.99 1.00 0.99 1.00 

Nearest 

Centroid 
0.72 0.99 0.74 0.99 0.62 0.97 

Passive 

Aggressive 
0.99 1.00 0.99 1.00 0.98 1.00 

Perceptron 0.99 1.00 0.99 1.00 0.99 1.00 

Random Forest 1.00 1.00 1.00 1.00 1.00 1.00 

Ridge Classifier 0.99 1.00 0.99 1.00 0.99 1.00 

Ridge CV 0.99 1.00 0.99 1.00 0.99 1.00 

SGD Classifier 0.99 1.00 0.99 1.00 0.99 1.00 

SVC 1.00 1.00 1.00 1.00 0.99 1.00 

XGB Classifier 1.00 1.00 1.00 1.00 1.00 1.00 

In contrast, the testing accuracy results showed minor 
variations, with some models slightly underperforming 
compared to their training accuracy. For instance, GaussianNB 
exhibited a noticeable drop in accuracy for Label (Binary) 
classification, indicating challenges in generalization. 
Similarly, NearestCentroid demonstrated lower accuracy 
across most classifications, reflecting its limitations with 
complex data structures. However, ensemble-based models, 
including AdaBoostClassifier, BaggingClassifier, and 
RandomForestClassifier, maintained consistently high 
accuracy in both training and testing, demonstrating their 
robustness and ability to generalize effectively. 

TABLE VI. TESTING ACCURACY OF ALL MODELS 

Model 
Category 

(D) 

Category 

(B) 

Label 

(D) 

Label 

(B) 

Class 

(D) 

Class 

(B) 

AdaBoost 0.99 1.00 1.00 1.00 0.99 0.99 

Bagging 1.00 0.99 1.00 1.00 1.00 0.99 

Bernoulli NB 0.99 0.97 0.99 0.96 0.99 0.99 

Calibrated CV 0.99 1.00 0.99 1.00 0.99 1.00 

Decision Tree 1.00 0.99 0.99 1.00 0.99 0.99 

Dummy 
Classifier 

0.99 0.99 0.99 0.48 0.99 0.99 

Extra Tree 1.00 0.99 1.00 1.00 0.99 0.99 

Extra Trees 1.00 1.00 1.00 1.00 1.00 1.00 

Gaussian NB 0.99 0.49 0.94 0.84 1.00 1.00 

K Neighbors 0.99 1.00 1.00 1.00 1.00 0.99 

Label 
Propagation 

1.00 1.00 1.00 1.00 1.00 0.99 

Label 

Spreading 
1.00 1.00 1.00 1.00 1.00 0.99 

LGBM 
Classifier 

1.00 1.00 1.00 0.88 1.00 1.00 

Linear 

Discriminant 
0.97 1.00 0.96 0.84 0.96 0.99 

Linear SVC 0.99 1.00 0.99 1.00 0.99 0.99 

Logistic 
Regression 

0.99 1.00 0.99 1.00 0.99 0.99 

Nearest 

Centroid 
0.71 0.99 0.73 0.92 0.62 0.97 

Passive 
Aggressive 

0.99 1.00 0.99 1.00 0.98 0.99 

Perceptron 0.99 1.00 0.99 1.00 0.99 0.99 

Random 

Forest 
1.00 1.00 1.00 1.00 1.00 1.00 

Ridge 

Classifier 
0.99 1.00 0.99 1.00 0.99 1.00 

Ridge CV 0.99 1.00 0.99 1.00 0.99 1.00 

SGDClassifier 0.99 1.00 0.99 1.00 0.99 0.99 

SVC 0.99 1.00 1.00 1.00 0.99 0.99 

XGB 

Classifier 
1.00 1.00 0.99 1.00 0.99 0.99 

Overall, the comparison underscores the reliability of tree-
based and ensemble models, which consistently perform well 
in both training and testing scenarios. It also highlights the 
importance of balanced model evaluation in identifying 
overfitting or generalization issues, as seen with certain 
algorithms like GaussianNB and NearestCentroid. 
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Fig. 6. Comparison of training and testing accuracy of all models. 

B. Balanced Accuracy 

The balanced accuracy results (see Table VII and Table 
VIII and Fig. 7) reveal how well the models handle imbalanced 
data during training and testing. Many models, such as 
DecisionTree, ExtraTreesClassifier, and XGBClassifier, 
achieved perfect balanced accuracy across all classifications in 
both formats during training, indicating their ability to learn 
effectively from imbalanced data. 

TABLE VII. TRAINING BALANCED ACCURACY OF ALL MODELS  

Model 
Category 

(D) 

Category 

(B) 

Label 

(D) 

Label 

(B) 

Class 

(D) 

Class 

(B) 

AdaBoost 0.86 0.85 1.00 1.00 0.30 0.17 

Bagging 0.95 1.00 0.98 0.98 0.99 1.00 

Bernoulli NB 0.68 0.92 0.77 0.92 0.25 0.67 

Calibrated CV 0.33 1.00 0.50 1.00 0.17 0.52 

Decision Tree 1.00 1.00 1.00 1.00 1.00 1.00 

Dummy 
Classifier 

0.33 0.33 0.50 0.50 0.17 0.17 

Extra Tree 1.00 1.00 1.00 1.00 1.00 1.00 

Extra Trees 1.00 1.00 1.00 1.00 1.00 1.00 

Gaussian NB 0.78 1.00 0.84 0.76 0.95 1.00 

K Neighbors 0.81 0.91 0.97 0.97 0.42 0.56 

Label 

Propagation 
1.00 1.00 1.00 1.00 1.00 1.00 

Label 
Spreading 

1.00 1.00 1.00 1.00 1.00 1.00 

LGBM 

Classifier 
1.00 1.00 1.00 1.00 1.00 1.00 

Linear 

Discriminant 
0.38 0.95 0.58 0.97 0.50 0.98 

Linear SVC 0.36 1.00 0.67 1.00 0.18 1.00 

Logistic 
Regression 

0.36 1.00 0.64 0.97 0.21 1.00 

Nearest 

Centroid 
0.74 0.97 0.85 0.96 0.84 0.92 

Passive 
Aggressive 

0.33 0.95 0.60 0.97 0.50 1.00 

Perceptron 0.67 1.00 0.74 1.00 0.20 1.00 

Random 

Forest 
1.00 1.00 1.00 1.00 1.00 1.00 

Ridge 

Classifier 
0.33 0.93 0.50 0.95 0.17 0.77 

Ridge CV 0.33 0.88 0.50 0.90 0.17 0.77 

SGDClassifier 0.69 0.95 0.84 1.00 0.37 0.92 

SVC 0.77 0.88 0.98 0.93 0.50 0.76 

XGB 

Classifier 
1.00 1.00 1.00 1.00 1.00 1.00 

TABLE VIII. TESTING BALANCED ACCURACY OF ALL MODELS 

Model 
Category 

(D) 

Category 

(B) 

Label 

(D) 

Label 

(B) 

Class 

(D) 

Class 

(B) 

AdaBoost 0.72 1.00 0.92 1.00 0.30 0.17 

Bagging 0.72 0.91 0.83 1.00 0.69 0.39 

Bernoulli NB 0.55 0.95 0.62 0.96 0.25 0.55 

Calibrated CV 0.33 0.92 0.54 1.00 0.17 0.39 

Decision Tree 0.94 0.91 0.83 1.00 0.53 0.39 

Dummy 
Classifier 

0.33 0.50 0.50 0.50 0.17 0.17 

Extra Tree 0.72 0.91 0.87 1.00 0.47 0.56 

Extra Trees 0.72 0.92 0.92 1.00 0.72 0.69 

Gaussian NB 0.67 0.74 0.85 0.84 0.56 0.56 

K Neighbors 0.67 0.92 0.87 1.00 0.39 0.42 

Label 
Propagation 

0.83 1.00 0.87 1.00 0.72 0.17 

Label 

Spreading 
0.78 1.00 0.87 1.00 0.72 0.17 

LGBM 
Classifier 

1.00 0.92 0.92 0.88 0.56 0.78 

Linear 

Discriminant 
0.33 0.96 0.48 0.83 0.33 0.56 

Linear SVC 0.33 1.00 0.58 1.00 0.17 0.56 

Logistic 
Regression 

0.33 0.96 0.54 1.00 0.19 0.39 

Nearest 

Centroid 
0.63 0.91 0.78 0.92 0.66 0.69 

Passive 
Aggressive 

0.33 0.96 0.58 1.00 0.33 0.56 

Perceptron 0.67 0.96 0.75 1.00 0.17 0.55 

Random 

Forest 
0.94 0.96 0.92 1.00 0.72 0.39 

Ridge 

Classifier 
0.33 0.96 0.50 1.00 0.17 0.56 

Ridge CV 0.33 0.96 0.50 1.00 0.17 0.56 

SGDClassifier 0.61 0.92 0.83 1.00 0.33 0.36 

SVC 0.61 0.96 0.83 1.00 0.36 0.22 

XGB 

Classifier 
0.89 0.96 0.79 1.00 0.53 0.75 

However, testing balanced accuracy showed a decline for 
some models, such as GaussianNB, NearestCentroid, and 
SGDClassifier, particularly in challenging classifications like 
Class (Binary) and Label (Decimal), suggesting overfitting or 
difficulty in generalizing to unseen data. Ensemble and tree-
based methods like RandomForestClassifier and 
XGBClassifier maintained consistently high performance 
across both phases, demonstrating their robustness. In contrast, 
simpler models and linear methods struggled with imbalanced 
data, especially in more granular classifications. These results 
highlight the importance of effectively selecting models 
capable of effectively addressing class imbalance. 

C. F1-Score 

The F1-score results, as shown in the tables (IX and Table 
X) and charts (Fig. 8), provide a detailed evaluation of the 
model's F1-score, particularly in balancing precision and recall, 
which is crucial for imbalanced datasets. During training, most 
models, such as DecisionTree, ExtraTreesClassifier, 
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XGBClassifier, and LabelPropagation, achieved perfect F1-
scores across all classifications in both Decimal and Binary 
formats, similar to their accuracy and balanced accuracy 
results. However, models like NearestCentroid and 
GaussianNB showed lower F1-scores in some scenarios, such 
as Class (Binary), reflecting their difficulty in managing 
imbalanced classes effectively. 

TABLE IX. TRAINING F1-SCORE OF ALL MODELS  

Model 
Category 

(D) 

Category 

(B) 

Label 

(D) 

Label 

(B) 

Class 

(D) 

Class 

(B) 

AdaBoost 1.00 0.99 1.00 1.00 0.99 0.98 

Bagging 1.00 1.00 1.00 1.00 1.00 1.00 

Bernoulli NB 0.99 0.98 0.99 0.98 0.99 0.99 

Calibrated CV 0.98 1.00 0.98 1.00 0.98 1.00 

Decision Tree 1.00 1.00 1.00 1.00 1.00 1.00 

Dummy 

Classifier 
0.98 0.98 0.98 0.98 0.98 0.98 

Extra Tree 1.00 1.00 1.00 1.00 1.00 1.00 

Extra Trees 1.00 1.00 1.00 1.00 1.00 1.00 

Gaussian NB 0.99 1.00 0.96 0.68 1.00 1.00 

K Neighbors 1.00 1.00 1.00 1.00 0.99 1.00 

Label 

Propagation 
1.00 1.00 1.00 1.00 1.00 1.00 

Label 

Spreading 
1.00 1.00 1.00 1.00 1.00 1.00 

LGBM 
Classifier 

1.00 1.00 1.00 1.00 1.00 1.00 

Linear 

Discriminant 
0.98 1.00 0.97 1.00 0.97 1.00 

Linear SVC 0.98 1.00 0.99 1.00 0.98 1.00 

Logistic 

Regression 
0.98 1.00 0.99 1.00 0.99 1.00 

Nearest 

Centroid 
0.83 0.99 0.84 0.99 0.75 0.98 

Passive 

Aggressive 
0.98 1.00 0.99 1.00 0.99 1.00 

Perceptron 0.99 1.00 0.99 1.00 0.98 1.00 

Random 

Forest 
1.00 1.00 1.00 1.00 1.00 1.00 

Ridge 

Classifier 
0.98 1.00 0.98 1.00 0.98 1.00 

Ridge CV 0.98 1.00 0.98 1.00 0.98 1.00 

SGDClassifier 0.99 1.00 0.99 1.00 0.99 1.00 

SVC 1.00 1.00 1.00 1.00 0.99 1.00 

XGB 
Classifier 

1.00 1.00 1.00 1.00 1.00 1.00 

 

 
Fig. 7. Comparison of training and testing balanced accuracy of all models. 

TABLE X. TESTING F1-SCORE OF ALL MODELS 

Model 
Category 

(D) 

Category 

(B) 

Label 

(D) 

Label 

(B) 

Class 

(D) 

Class 

(B) 

AdaBoost 0.99 1.00 1.00 1.00 0.99 0.98 

Bagging 0.99 0.99 1.00 1.00 1.00 0.99 

Bernoulli NB 0.99 0.98 0.99 0.96 0.99 0.99 

Calibrated CV 0.98 1.00 0.98 1.00 0.98 0.99 

Decision Tree 1.00 0.99 0.99 1.00 0.99 0.99 

Dummy 
Classifier 

0.98 0.98 0.98 0.31 0.98 0.98 

Extra Tree 0.99 0.99 1.00 1.00 0.99 0.99 

Extra Trees 0.99 1.00 1.00 1.00 1.00 1.00 

Gaussian NB 0.99 0.64 0.96 0.84 1.00 0.99 

K Neighbors 0.99 1.00 1.00 1.00 0.99 0.99 

Label 
Propagation 

1.00 1.00 1.00 1.00 1.00 0.98 

Label 

Spreading 
1.00 1.00 1.00 1.00 1.00 0.98 

LGBM 

Classifier 
1.00 1.00 1.00 0.88 1.00 1.00 

Linear 

Discriminant 
0.97 1.00 0.97 0.83 0.97 0.99 

Linear SVC 0.98 1.00 0.98 1.00 0.98 0.99 

Logistic 
Regression 

0.98 1.00 0.98 1.00 0.99 0.99 

Nearest 

Centroid 
0.82 0.99 0.83 0.92 0.76 0.98 

Passive 
Aggressive 

0.98 1.00 0.99 1.00 0.98 0.99 

Perceptron 0.99 1.00 0.99 1.00 0.98 0.99 

Random 

Forest 
1.00 1.00 1.00 1.00 1.00 0.99 

Ridge 
Classifier 

0.98 1.00 0.98 1.00 0.98 1.00 

Ridge CV 0.98 1.00 0.98 1.00 0.98 1.00 

SGDClassifier 0.99 1.00 0.99 1.00 0.99 0.99 

SVC 0.99 1.00 1.00 1.00 0.99 0.99 

XGB 

Classifier 
1.00 1.00 0.99 1.00 0.99 0.99 

In testing, the F1-scores revealed a more nuanced picture 
compared to accuracy and balanced accuracy. While ensemble 
models like RandomForestClassifier, ExtraTreesClassifier, and 
XGBClassifier maintained high F1-scores, models like 
GaussianNB and NearestCentroid experienced noticeable 
drops, particularly for imbalanced classes, as seen in Class 
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(Binary) and Label (Decimal). These drops align with the 
declines observed in balanced accuracy, reinforcing the 
importance of metrics like F1-score for evaluating models on 
imbalanced datasets. Overall, while accuracy may appear high 
for certain models, the F1-score highlights their limitations in 
balancing precision and recall, providing a more 
comprehensive view of model performance in such challenging 
scenarios. 

 

 

Fig. 8. Comparison of training and testing F1-Score of all models 

D. Training and Testing Time 

Results in Table XI, Table XII and Fig. 9 compare the 
training and testing time. The time taken for training and 
testing ML models highlight the computational efficiency. 
Lightweight models, such as BernoulliNB, GaussianNB, and 
LogisticRegression, exhibited minimal training and testing 
times across all classifications, making them ideal for scenarios 
with limited computational resources. In contrast, more 
complex models like CalibratedClassifierCV, 
LabelPropagation, and LabelSpreading required significantly 
longer training and testing times, particularly for Class 
(Binary), due to their iterative or probabilistic nature.  

Tree-based ensemble models, such as 
RandomForestClassifier, ExtraTreesClassifier, and 
XGBClassifier, balanced efficiency and performance with 
moderate training and testing times. Notably, 
CalibratedClassifierCV had the longest training and testing 
times, especially for Class (Binary), suggesting a high 
computational cost for its probability calibration. These results 
underline the importance of considering computational time 
alongside accuracy and balanced accuracy when selecting 
models, especially for real-time or resource-constrained 
applications such as the IoV applications. 

TABLE XI. TRAINING TIME OF ALL MODELS 

Model 
Category 

(D) 

Category 

(B) 

Label 

(D) 

Label 

(B) 

Class 

(D) 

Class 

(B) 

AdaBoost 0.62 0.69 0.21 0.86 0.38 0.34 

Bagging 0.17 0.41 0.05 0.62 0.10 0.11 

Bernoulli NB 0.08 0.33 0.02 0.49 0.03 0.06 

Calibrated CV 0.44 1.02 0.07 1.06 0.40 14.61 

Decision Tree 0.06 0.27 0.04 0.43 0.04 0.06 

Dummy 

Classifier 
0.02 0.26 0.02 0.43 0.03 0.05 

Extra Tree 0.03 0.26 0.03 0.43 0.03 0.05 

Extra Trees 0.46 0.59 0.18 0.62 0.34 0.36 

Gaussian NB 0.08 0.43 0.02 0.25 0.03 0.05 

K Neighbors 0.43 0.63 0.17 0.35 0.29 0.25 

Label 
Propagation 

0.68 1.46 0.42 0.93 0.44 0.60 

Label 

Spreading 
0.76 1.74 0.52 1.41 0.52 0.72 

LGBM 

Classifier 
0.28 0.65 0.13 0.42 0.55 0.62 

Linear 

Discriminant 
0.04 0.94 0.14 0.43 0.09 0.13 

Linear SVC 0.05 0.40 0.07 0.33 0.05 5.06 

Logistic 

Regression 
0.06 0.45 0.05 0.39 0.05 0.11 

Nearest 
Centroid 

0.02 0.28 0.03 0.28 0.02 0.05 

Passive 

Aggressive 
0.02 0.33 0.03 0.27 0.03 0.14 

Perceptron 0.03 0.35 0.03 0.31 0.03 0.11 

Random 
Forest 

0.28 0.57 0.30 0.55 0.27 0.31 

Ridge 

Classifier 
0.02 0.32 0.03 0.42 0.02 0.18 

Ridge CV 0.04 0.49 0.12 0.46 0.03 0.15 

SGD 

Classifier 
0.09 0.33 0.04 0.30 0.11 0.12 

SVC 0.05 0.40 0.06 0.37 0.06 0.50 

XGB 
Classifier 

0.11 0.61 0.10 0.43 0.16 0.43 

 

 
Fig. 9. Comparison of training and testing time of all models. 
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TABLE XII. TESTING TIME OF ALL MODELS 

Model 
Category 

(D) 

Category 

(B) 

Label 

(D) 

Label 

(B) 

Class 

(D) 

Class 

(B) 

AdaBoost 0.22 0.57 0.18 0.18 0.18 0.38 

Bagging 0.06 0.30 0.06 0.09 0.07 0.18 

Bernoulli NB 0.02 0.25 0.02 0.06 0.02 0.10 

Calibrated CV 0.11 0.94 0.08 0.12 0.19 14.37 

Decision Tree 0.02 0.35 0.03 0.06 0.02 0.05 

Dummy 
Classifier 

0.02 0.32 0.03 0.06 0.02 0.04 

Extra Tree 0.02 0.31 0.03 0.07 0.03 0.03 

Extra Trees 0.17 0.72 0.19 0.18 0.17 0.26 

Gaussian NB 0.02 0.35 0.02 0.06 0.02 0.04 

K Neighbors 0.08 0.41 0.08 0.07 0.08 0.14 

Label 
Propagation 

0.30 1.15 0.33 0.08 0.30 0.54 

Label 

Spreading 
0.45 0.97 0.45 0.10 0.40 0.86 

LGBM 
Classifier 

0.25 0.36 0.23 0.13 0.47 0.58 

Linear 

Discriminant 
0.05 0.39 0.10 0.19 0.05 0.20 

Linear SVC 0.06 0.28 0.07 0.10 0.08 6.25 

Logistic 
Regression 

0.04 0.29 0.05 0.10 0.04 0.09 

Nearest 

Centroid 
0.02 0.24 0.05 0.10 0.02 0.05 

Passive 
Aggressive 

0.03 0.22 0.06 0.06 0.03 0.12 

Perceptron 0.02 0.26 0.03 0.06 0.03 0.10 

Random 

Forest 
0.27 0.47 0.37 0.21 0.27 0.30 

Ridge 

Classifier 
0.02 0.28 0.06 0.07 0.02 0.07 

Ridge CV 0.04 0.40 0.09 0.10 0.04 0.18 

SGDClassifier 0.09 0.25 0.07 0.09 0.10 0.14 

SVC 0.06 0.30 0.10 0.06 0.05 0.38 

XGB 

Classifier 
0.11 0.35 0.15 0.09 0.15 0.41 

E. General Discussion and Recommendation 

The analysis of all results, including accuracy, balanced 
accuracy, F1-scores, and computational time, reveals a 
comprehensive comparison of model performance on the 
dataset. Tree-based ensemble models, such as Decision Tree, 
RandomForestClassifier, ExtraTreesClassifier, and 
XGBClassifier, consistently achieved near-perfect scores 
across all metrics, including accuracy, balanced accuracy, and 
F1-scores, while maintaining moderate computational times, 
making them reliable and efficient choices for most tasks. 
Lightweight models, such as LogisticRegression, BernoulliNB, 
and GaussianNB, demonstrated low computational times with 
competitive performance in accuracy and F1-scores, but they 
struggled with balanced accuracy in scenarios with significant 
class imbalance. On the other hand, models like CalibratedCV, 
LabelPropagation, and LabelSpreading achieved excellent 
accuracy and F1-scores but at the expense of significantly 
higher training and testing times, particularly for more complex 
classifications like Class (Binary). 

While accuracy and F1-scores highlight overall model 
performance, balanced accuracy provided more profound 
insights into handling class imbalances, exposing limitations in 
models like NearestCentroid and GaussianNB. The 
computational time results underscored the trade-offs between 
predictive performance and resource efficiency, with certain 
models offering high accuracy at the cost of increased 
processing time. In summary, ensemble methods emerged as 
the dataset's most robust and practical choice, balancing 
performance and efficiency. At the same time, lightweight 
models offered a computationally inexpensive alternative with 
slightly reduced robustness. These findings emphasize the 
importance of selecting models based on the application's 
specific requirements, whether prioritizing accuracy, 
computational efficiency, or the ability to handle imbalanced 
datasets. 

Recommendations: Based on the discussed results, several 
recommendations can be made to enhance intrusion detection 
in vehicular networks. Ensemble models, such as 
RandomForest ExtraTreesClassifier, ExtraTreesClassifier, and 
XGBClassifier, should be prioritized due to their superior 
performance in accuracy, balanced accuracy, and F1-score, 
particularly for handling imbalanced datasets. Lightweight 
models like LogisticRegression and BernoulliNB can be 
optimized with techniques such as oversampling, feature 
scaling, or class-weight adjustments to enhance their 
performance in imbalanced scenarios. Computationally 
intensive models like LabelPropagation and CalibratedCV 
should be optimized for real-time use through hybrid 
approaches or parallel processing techniques. Additionally, 
expanding the dataset to include more diverse attack scenarios 
and vehicular communication protocols will improve model 
generalizability. Balanced accuracy and F1-scores should be 
emphasized as key evaluation metrics, particularly in 
imbalanced datasets, to ensure fair assessments. Finally, 
integrating high-performing models into real-time systems with 
optimized preprocessing pipelines, including duplicate removal 
and stratified splitting, will enhance their practical applicability 
in real-world vehicular network scenarios. 

V. CONCLUSION 

This study comprehensively explored the CICIoV2024 
dataset to evaluate the effectiveness of various advanced ML 
algorithms in intrusion detection for vehicular networks, 
focusing on CAN security. The research highlights the 
significance of data preprocessing, including duplicate removal 
and stratified splitting, in ensuring robust model evaluation. A 
wide range of ML models were assessed across metrics such as 
accuracy, balanced accuracy, F1-score, and computational 
efficiency. 

The findings underscore the superior performance of 
ensemble-based and tree-based models, such as 
RandomForestClassifier, ExtraTreesClassifier, and 
XGBoostClassifier, consistently demonstrating high 
generalization and resilience to imbalanced data. Simpler 
models, such as LogisticRegression and GaussianNB, offered 
computational efficiency but struggled with complex, 
imbalanced scenarios. Models like LabelPropagation and 
CalibratedClassifiers achieved excellent accuracy but incurred 
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higher computational costs, limiting their applicability for real-
time environments. 

Despite achieving high accuracy, the study identified 
concerns regarding potential overfitting in some models, 
emphasizing the need for broader evaluation across diverse 
datasets. The CICIoV2024 dataset, with its realistic 
representation of spoofing and DoS attacks, proved to be a 
valuable resource but requires further exploration to harness its 
potential fully. 

Future work will focus on integrating additional attack 
scenarios, enhancing the dataset's diversity, evaluating the 
scalability of ML models across varying vehicular 
communication protocols, and improving the generalizability 
of models to diverse communication protocols and real-world 
conditions. Moreover, we could explore more advanced ML 
techniques such as reinforcement learning-based IDS, 
federated learning, or lightweight transformer models for IoV 
security. 
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