
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

272 | P a g e

www.ijacsa.thesai.org

AI-Driven Intrusion Detection in IoV

Communication: Insights from CICIoV2024 Dataset

Nourah Fahad Janbi

Department of Information Technology, College of Computing and Information Technology at Khulais,

University of Jeddah, Jeddah, Saudi Arabia

Abstract—The increasing interconnectivity of vehicular

networks through the Internet of Vehicles (IoV) introduces

significant security challenges, particularly for the Controller

Area Network (CAN), a widely adopted protocol vulnerable to

cyberattacks such as spoofing and Denial-of-Service (DoS). To

address these challenges, this study explores the potential of

Intrusion Detection Systems (IDSs) leveraging artificial

intelligence (AI) techniques to detect and mitigate malicious

activities in CAN communications. Using the CICIoV2024

dataset, which provides a realistic testbed of vehicular traffic

under benign and malicious conditions, we evaluate 25 machine

learning (ML) models across multiple metrics, including

accuracy, balanced accuracy, F1-score, and computational

efficiency. A systematic and repeatable approach was proposed

to facilitate testing multiple models and classification scenarios,

enabling a comprehensive exploration of the dataset's

characteristics and providing insights into various ML

algorithms' effectiveness. The findings highlight the strengths

and limitations of various algorithms, with ensemble-based and

tree-based models demonstrating superior performance in

handling imbalanced data and achieving high generalization.

This study provides insights into optimizing IDSs for vehicular

networks and outlines recommendations for improving the

robustness and applicability of security solutions in real-world

IoV scenarios.

Keywords—Intrusion Detection System; controller area

network; Internet of Vehicles; CICIoV2024; machine learning;

Artificial Intelligence; security

I. INTRODUCTION

The Internet of Things (IoT) has revolutionized how
devices interact, seamlessly connecting billions of smart
devices across homes, industries, and cities [1], [2]. Recent
advancements have focused on enhancing real-time data
processing, energy efficiency, and scalability. Technologies
such as edge computing, 5G/6G networks, and lightweight
Machine Learning (ML) models have enabled IoT devices to
process data locally, reducing latency, network congestion, and
reliance on cloud-based systems [3], [4]. Artificial Intelligence
(AI) plays a pivotal role in this transformation by enabling IoT
devices to analyze vast amounts of data, derive actionable
insights, and adapt to changing environments autonomously
[5], [6].

In the domain of IoT security, AI can enhance threat
detection, intrusion prevention, and secure authentication.
Techniques such as anomaly detection, generative adversarial
networks (GANs) for simulating cyber-attacks, and
reinforcement learning for adaptive defense strategies enable
IoT systems to identify and mitigate potential vulnerabilities

proactively [7], [8]. By integrating AI, IoT ecosystems are
becoming not only more efficient but also more resilient
against evolving cybersecurity threats [9].

Similarly, vehicular networks and the Internet of Vehicles
(IoV) leverage IoT to enhance traffic management and enable
autonomous driving, but it also faces significant security
threats due to its high interconnectivity and dependence on IoT
components. Potential attacks exploit both inter-vehicle and
intra-vehicle vulnerabilities (see Fig. 1). For instance, GPS
spoofing attacks mislead vehicle navigation systems by
transmitting false location data, potentially causing accidents
[10], [11]. Replay attacks involve retransmitting valid network
messages to disrupt real-time vehicle functionality, while Sybil
attacks flood the network with fake vehicle nodes to
manipulate traffic or force detours [10]. Additionally, Denial-
of-Service (DoS) attacks can overwhelm the IoV network,
leading to service outages that compromise vehicular
operations. Attacks on Electronic Control Units (ECUs) and
sensors, such as malware injection, jeopardize vehicle
decision-making by tampering with critical system data [11].
One real-world example includes hackers tricking Tesla's
Autopilot software into swerving into oncoming traffic lanes,
demonstrating the tangible risks of compromised IoV security.

Fig. 1. Potential security threats in IoV.

Addressing these vulnerabilities requires advanced security
measures, such as AI-driven intrusion detection systems (IDSs)
and robust cryptographic protocols, to safeguard the integrity,
availability, and confidentiality of IoV networks.

In this paper, we focus on the security of IoV and,
specifically, the security of the Controller Area Network
(CAN). The CAN is one of the commonly adopted
communication protocols in vehicle and industrial systems for
data exchange between ECUs without a central host computer.
Despite its widespread use, the CAN protocol suffers from
inherent security vulnerabilities, such as the lack of encryption

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

273 | P a g e

www.ijacsa.thesai.org

and authentication, making it susceptible to spoofing, DoS, and
replay attacks [12].

Traditional IDSs, such as signature-based and rule-based
approaches, face significant challenges securing CAN
networks. These conventional methods often suffer from high
false positive rates, difficulty in adapting to novel attack
patterns, and computational inefficiencies that limit their real-
time applicability in resource-constrained vehicular
environments. Furthermore, their reliance on predefined attack
signatures makes them ineffective against zero-day attacks and
evolving adversarial techniques [13]. On the other hand, AI-
driven IDSs based on advanced ML and Deep Learning (DL)
techniques can play a crucial role in enhancing cyberattack
detection, prevention, and mitigation [14]. These ML and DL
algorithms can effectively identify abnormal IoV traffic and
request patterns, contributing to the early detection and
mitigation of potential attacks.

As most existing research on CAN has primarily addressed
these issues through theoretical solutions or simulated
environments, Neto et al. [15] introduced the CICIoV2024
dataset to bridge the gap and provide a realistic testbed for
IDSs focusing on CAN security. The dataset includes diverse
attack types specific to CAN bus communication, such as DoS
and spoofing (steering wheel, RPM, speed, gas). Since this
dataset is considered recent, it requires comprehensive
investigation.

Researchers in studies [15]–[17] conducted some
comparative analyses on multiple ML algorithms using the
CICIoV2024 dataset. However, the unrealistically high
performance raises concerns about overfitting or dataset-
specific optimizations, suggesting the need for comprehensive
evaluation and broader testing on diverse datasets. This paper
aims to bridge this gap by leveraging the CICIoV2024 dataset
and evaluating a diverse range of ML models on this dataset,
highlighting their strengths and limitations, and proposing
recommendations for enhancing the robustness and
applicability of IDSs in real-world IoV scenarios.

The main contributions can be outlined as follows:

 Comprehensively investigate the CICIoV2024 dataset
and evaluate a diverse range of ML models on this
dataset, highlighting their strengths and limitations.

 Propose a systematic and repeatable approach that
facilitates testing multiple models and classification
scenarios to comprehensively explore the dataset's
characteristics and provide insights into the
effectiveness of various ML algorithms on that dataset.

 Perform data cleaning step during preprocessing to
ensure a more accurate representation of feature
interactions, making the dataset more suitable for
reliable ML analysis and reducing the risk of
overfitting caused by repeated patterns.

 Provide insights into optimizing IDSs for vehicular
networks and outline recommendations for improving
security solutions' robustness and applicability in real-
world IoV scenarios.

The rest of the paper is organized as follows: Section II
reviews the related works. Section III explains our
methodology. Section IV discusses the results of ML models
and outlines recommendations. Section V concludes the paper.

II. RELATED WORKS

This section reviews recent studies that have employed ML
and DL techniques for intrusion detection, highlighting their
contributions and limitations. Table I provides a summary of
related works.

TABLE I. RELATED WORKS SUMMARY

Ref. Key Features Limitations

Subasi et al. [18]

-Focus on interpretable and

explainable ML
-Use of Decision Trees and

Ridge Classifiers

-Introduction of cross-
explanations

-Limited to feature-based

explanations

-Challenges with
aleatoric uncertainties

and feature correlations

Mahdi et al. [19]

-Hybrid approach

combining LSTM and

Naive Bayes
-Three-stage methodology

-High complexity of

hybrid model

-May require significant
computational resources

Aswal et al. [16]

-DL-based intrusion

detection model for CAN
-Focus on real-time

detection

-Lacks comparative

evaluation with hybrid

methods

Neto et al. [15]

-Introduced the
CICIoV2024 dataset

-Emphasizes the importance

of realistic CAN scenarios

-Dataset limited to
specific attack scenarios

-Immobile vehicle

constraints

Amirudin et al.
[17]

-Comparative analysis of

ML algorithms like
LightGBM, XGBoost,

CatBoost

-Unrealistically high
performance raises

concerns about

overfitting or dataset-
specific optimizations

Tasci [20]

-Optimized CNN model for

IoT security
-Focus on lightweight

architecture for real-time

applications

-Limited exploration of

diverse attack types
-Scalability to larger

datasets requires further

validation

Subasi et al. [18] explored interpretable ML approaches for
intrusion detection, focusing on enhancing model
explainability using Decision Trees and Ridge Classifiers. By
incorporating cross-explanation mechanisms and evaluating
models with metrics like balanced accuracy and Matthews
Correlation Coefficient, the study emphasized the need for
interpretable systems in IDSs. However, challenges such as
feature correlations and aleatoric uncertainties limit their
applicability in more complex scenarios.

Building on this, Mahdi et al. [19] proposed a hybrid ML-
DL framework, combining LSTM and Naive Bayes models for
intrusion detection in IoT networks. This hybrid approach
leverages the strengths of both DL's pattern recognition and
ML's efficiency, achieving strong results on the CICIoV2024
dataset. However, its computational intensity highlights a
trade-off between accuracy and feasibility for real-time
applications, raising the importance of lightweight and scalable
solutions.

Focusing on the IoV, Neto et al. [15] introduced the
CICIoV2024 dataset that was designed for testing ML-based
IDSs in IoVs. They evaluated Logistic Regression, Random

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

274 | P a g e

www.ijacsa.thesai.org

Forest, AdaBoost, and Deep Neural Network (DNN) model's
ability to detect and classify malicious activities. Their findings
highlight the challenges of addressing cybersecurity in IoV due
to imbalanced datasets and similarities between benign and
malicious traffic.

Aswal et al. [16] developed a DL-based IDS targeting
vulnerabilities in the CAN protocol. Their model demonstrated
effective real-time detection of various attacks using the
CICIoV2024 dataset. Similarly, Amirudin et al. [17] conducted
a comparative analysis of advanced ML algorithms, including
LightGBM, XGBoost, and CatBoost, using the CICIoV2024
dataset. However, the unrealistically high performance raises
concerns about overfitting or dataset-specific optimizations,
suggesting the need for comprehensive evaluation and broader
testing on diverse datasets.

Expanding beyond vehicular networks, Tasci [20]
introduced an optimized convolutional neural network (CNN)
for IoT security, achieving high performance on multiple
datasets, including CIC-IoT2023, CIC-MalMem-2022, and
CIC-IDS2017. This lightweight model demonstrated suitability
for real-time applications, addressing computational limitations
observed in hybrid approaches. However, its scalability to
larger datasets and handling of diverse attack types requires
further investigation.

Despite significant advancements in using ML and DL for
intrusion detection in IoT and IoV, several critical research
gaps remain. High-performing models often exhibit overfitting,
as seen in studies achieving near-perfect accuracy, highlighting
the need for comprehensive evaluation and robust evaluation
across diverse datasets. Computational complexity is another
challenge, with many hybrid and DL models being resource-
intensive and unsuitable for real-time applications.
Furthermore, since CICIoV2024 is a newly introduced dataset,
there is a limited amount of research exploring its usability and
potential applications. This creates an opportunity to evaluate
its effectiveness in training and testing various ML and DL
models for intrusion detection in vehicular networks. In
addition, most research prioritizes accuracy and F1-scores over
other metrics. In this study, we address these gaps by
conducting a comprehensive evaluation of advanced ML and
DL models on the CICIoV2024 dataset.

III. METHODOLOGY

In this section, we discuss the research methodology we
followed in detail. We adopted a systematic and repeatable
approach that facilitates testing multiple models and
classification scenarios to comprehensively explore the
dataset's characteristics and provide insights into the
effectiveness of various ML algorithms on that dataset.

The flowchart in Fig. 2 provides a visual representation of
the methodology followed in this paper for training and testing
ML models on the CICIoV2024 dataset. The process starts
with initializing the dataset and models, followed by removing
duplicate entries to ensure data quality. The dataset is then split
into training and testing subsets, guaranteeing a balanced
evaluation of the models.

Each classification type (e.g., labels, categories, and
specific classes) is processed iteratively, with labels converted

to numeric values to make the dataset compatible with ML
algorithms. For every classification type, the models are trained
using the training dataset and evaluated on the testing dataset.
The results of each model, for all classifications, are collected
and stored. This process is repeated for all classifications and
models to ensure comprehensive experimentation.

Fig. 2. Methodology flowchart.

The final step involves returning the results for analysis and
comparison. This methodology ensures a systematic approach
to testing multiple models and classification scenarios,
providing insights into the effectiveness of various ML
algorithms on the dataset. The combination of data
preprocessing, iterative model training, and evaluation ensures
a robust experimental setup.

Algorithm 1: Models Training and Testing
Input: CICIoV2024 Dataset

Output: Results // lists of results for all models

1 Function: evaluate_models(CICIoV2024)

2 Init: Models ← set of models,

 Classifications ← {label, category, class},

 Results ← empty set for results.

3 For dataset in Dataset

 //Dataset Preprocessing

4 dataset ← dataset.removeDuplicate()

5 For class_type in Classifications

 // Covert labels to numeric values

6 dataset ← dataset.numericValues()

 // Split dataset

7 x_train,y_train,x_test,y_test← dataset.split(test_size=0.3)

8 For model in Models

 // Train model
9 train_result= model.train(x_train, y_train)

 // Test model

10 test_result= model.test(x_test,y_test)
11 Results.add(train_result,test_result)

12 End For

13 End For

14 End For

15 Return Results

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

275 | P a g e

www.ijacsa.thesai.org

Algorithm 1 details the step-by-step implementation of the
process used in the study. The input to the algorithm is the
CICIoV2024 dataset, while the output is a set of results
capturing the performance of all models across different
classifications. The following subsections will discuss steps in
detail.

A detailed breakdown of the features of the CICIoV2024
dataset is provided in Table II. Each instance in the dataset
includes an ID field, which denotes the arbitration ID used to
determine message priority on the CAN bus, and DATA_0 to
DATA_7, which represents the eight-byte payload of CAN
messages. Additionally, the dataset includes labels for
classifying traffic as benign or malicious, with malicious traffic
further categorized into DoS and Spoofing types. Spoofing
attacks are further specified into classes such as Speed
Spoofing, RPM Spoofing, Gas Spoofing, and Steering Wheel
Spoofing. These features provide a granular view of vehicular
communication, enabling detailed analysis and the application
of ML techniques for intrusion detection.

TABLE II. CICIOV2024 DATASET FEATURES

Feature Name Description

ID
ID indicating the message priority and type of data being
transmitted

DATA_0 to

DATA_7

Data fields (Byte 0 to Byte 7) contain the payload of CAN

bus messages

Label Classification of the traffic as benign or malicious

Category Category of the traffic (DoS or Spoofing)

Specific Class
Specific malicious traffic class (Speed Spoofing, RPM
Spoofing, or Gas Spoofing)

Table III summarizes the dataset composition, labeling
traffic data instances into benign and malicious types. Benign
traffic, representing normal vehicle operations, forms the bulk
of the dataset with 1,223,737 instances. Malicious traffic, with
184,482 instances, is divided into two primary categories: DoS
and Spoofing. DoS traffic consists of 74,663 instances while
Spoofing traffic includes subcategories (specific classes) like
Gas Spoofing (9,991 instances), Steering Wheel Spoofing
(19,977 instances), Speed Spoofing (24,951 instances), and
RPM Spoofing (54,900 instances). This distribution reflects the
predominance of benign operations in real-world scenarios and
highlights specific malicious activities.

TABLE III. CICIOV2024 DATASET SUMMARY

Traffic type Category Specific Class
Number of

Instances
Total

Benign - - 1,223,737 1,223,737

Malicious

DoS - 74,663

184,482
Spoofing

Gas Spoofing 9,991

Steering Wheel 19,977

Speed Spoofing 24,951

RPM Spoofing 54,900

A. Machine Learning Models

The CICIoV2024 dataset was used to train a diverse set of
ML models (25 models) representing a variety of algorithm
families and to evaluate its effectiveness comprehensively.

Ensemble-based methods included AdaBoost Classifier
(AdaBoostClassifier), Bagging Classifier (BaggingClassifier),
and Random Forest Classifier (RandomForestClassifier),
which combine multiple models to enhance prediction
accuracy. Naive Bayes algorithms, such as Bernoulli Naive
Bayes (BernoulliNB) and Gaussian Naive Bayes
(GaussianNB), were utilized for probabilistic modeling. The
Calibrated Classifier Cross-Validation
(CalibratedClassifierCV) was employed as a probability
calibration method to refine predictive probabilities. Decision
tree-based models encompassed Decision Tree Classifier
(DecisionTreeClassifier), Extra-tree Classifier
(ExtraTreeClassifier), Extra-trees Classifier (ExtraTrees), Light
Gradient Boosting Machine Classifier (LGBMClassifier), and
Extreme Gradient Boosting Classifier (XGBClassifier), which
are widely used for their interpretability and efficiency.
Neighbors algorithms, including k-nearest Neighbors
(KNeighborsClassifier) and Nearest Centroid Classifier
(NearestCentroid), were applied for instance-based learning.

Linear models trained on the dataset included Logistic
Regression Classifier (LogisticRegression), Passive Aggressive
Classifier (PassiveAggressiveClassifier), Linear Perceptron
Classifier (Perceptron), Ridge Classifier (RidgeClassifier),
Ridge Classifier with Cross-Validation (RidgeClassifierCV),
and Linear classifiers with Stochastic Gradient Descent
(SGDClassifier), which are effective for high-dimensional
data. Semi-supervised learning techniques, such as Label
Propagation Classifier (LabelPropagation) and LabelSpreading
Classifier (LabelSpreading), were also employed. Support
Vector Machine algorithms, including C-Support Vector
Classification (SVC) and Linear Support Vector Classification
(LinearSVC), were used for their robustness in handling
complex classification problems. In addition, Linear
Discriminant Analysis model (LinearDiscriminantAnalysis)
and Dummy Classifier (DummyClassifier) were trained. This
extensive range of algorithms ensured a thorough exploration
of the dataset's predictive potential.

B. Duplicate Removal

Data duplication removal from the dataset is one of the
essential steps during data cleaning, ensuring that the data is
accurate and reliable for further analysis or modeling [21]. In
addition, a large volume of duplicated data might reduce data
diversity and representativeness, leading to overfitting or
biased models.

In our study, we used the drop_duplicates method from the
Pandas library to remove duplicates in the CICIoV2024
dataset. Table IV and Fig. 3 show the distribution of data
across different classifications after duplicate entries were
removed, reducing the dataset size significantly from
1,408,219 instances to 3,588 instances. The distribution is
displayed for three levels of classification: Label, Category,
and Specific Class. At the Label level, the data is divided into
benign and malicious, with a noticeable decrease in benign
traffic proportion due to deduplication. At the Category level,
malicious traffic is further subdivided into DoS and various
spoofing types. Finally, at the Specific Class level, the spoofing
category is broken down into detailed subcategories, including
gas spoofing, steering wheel spoofing, and RPM spoofing,
each with a smaller representation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

276 | P a g e

www.ijacsa.thesai.org

TABLE IV. DATASET DISTRIBUTION AFTER DEDUPLICATION

Benign

Malicious

DoS

Malicious

Spoofing

Gas

Spoofing

Malicious

Spoofing

Steering

Wheel

Malicious

Spoofing

RPM

Spoofing

Label 3,547 41

Category 3,547 21 20

Specific Class 3,547 21 10 5 3

Fig. 3. Data distribution across label, category, and specific class

classifications after deduplication.

After that, we compared the feature correlations in the
CICIoV2024 dataset before and after duplicate removal,
emphasizing the impact of preprocessing on data quality (see
Fig. 4 and Fig. 5). Fig. 4, which represents the original dataset
with duplicates, shows amplified correlations across several
features, as evident from the brighter areas in the heatmap.
These inflated relationships are likely caused by repeated data
points, which can obscure unique interactions between features
and introduce biases in ML models. In contrast, Fig. 5,
generated after duplicate removal, exhibits more balanced and
refined correlations, with reduced intensity in previously
dominant relationships. This indicates a cleaner dataset where
the true relationships among features are better preserved. The
duplicate removal process not only eliminates redundancy but
also ensures a more accurate representation of feature
interactions, making the dataset more suitable for reliable ML
analysis and reducing the risk of overfitting caused by repeated
patterns.

Fig. 4. Dataset heatmap of features correlation (Original dataset).

Fig. 5. Dataset heatmap of features correlation (Duplicate removed).

C. Dataset Splitting

Data splitting is a critical step to ensure robust evaluation
of ML models. After preprocessing the dataset by removing
duplicates and converting labels into numeric values, the
dataset is split into training and testing subsets using the
StratifiedShuffleSplit method, which combines the
characteristics of ShuffleSplit (randomized splitting) and
StratifiedKFold (maintaining the proportion of classes in each
subset). This ensures that the training and testing sets have
similar class distributions, preserving the balance of the data.
The dataset is divided into a 70/30 ratio, where 70% is used for
training the models to learn patterns and relationships, and
30% is reserved for testing, providing an unbiased evaluation
of model performance. The final training set size was 2,511,
and the training set size was 1,007 instances.

IV. RESULTS AND DISCUSSION

This section discusses the training and testing results of the
ML models trained using the CICIoV2024 dataset with both
Decimal (D) and Binary (B) formats. Performance metrics
evaluated include accuracy, balanced accuracy, F1-score, and
processing time. Balanced accuracy takes into account the
accuracy of different classes separately and then calculates the
mean. On the other hand, F-score keeps the balance between
precision and recall. Both metrics help evaluate the sensitivity
and specificity of the models, and they are particularly
important when dealing with imbalanced data.

A. Accuracy

Results in Table V, Table VI, and bar charts in Fig. 6
compare the training and testing accuracy of various ML
models across different classifications (Category, Label, and
Class) in both decimal and binary formats. This comparison
highlights their performance consistency and generalizability.

In the training accuracy results, most models, such as
DecisionTreeClassifier, ExtraTreesClassifier, XGBClassifier,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

277 | P a g e

www.ijacsa.thesai.org

and LGBMClassifier, achieved near-perfect scores (1.00)
across all classification levels (Category, Label, and Class in
both Decimal and Binary formats), reflecting their ability to
learn from the training data thoroughly. However, models like
NearestCentroid and GaussianNB showed slightly lower
training accuracies in specific scenarios.

TABLE V. TRAINING ACCURACY OF ALL MODELS

Model
Category

(D)

Category

(B)

Label

(D)

Label

(B)

Class

(D)

Class

(B)

AdaBoost 1.00 0.99 1.00 1.00 0.99 0.99

Bagging 1.00 1.00 1.00 1.00 1.00 1.00

Bernoulli NB 0.99 0.97 0.99 0.97 0.99 0.99

Calibrated CV 0.99 1.00 0.99 1.00 0.99 1.00

Decision Tree 1.00 1.00 1.00 1.00 1.00 1.00

Dummy

Classifier
0.99 0.99 0.99 0.99 0.99 0.99

Extra Tree 1.00 1.00 1.00 1.00 1.00 1.00

Extra Trees 1.00 1.00 1.00 1.00 1.00 1.00

Gaussian NB 0.99 1.00 0.95 0.53 1.00 1.00

K Neighbors 1.00 1.00 1.00 1.00 0.99 1.00

Label
Propagation

1.00 1.00 1.00 1.00 1.00 1.00

Label

Spreading
1.00 1.00 1.00 1.00 1.00 1.00

LGBM Classifier 1.00 1.00 1.00 1.00 1.00 1.00

Linear

Discriminant
0.97 1.00 0.97 1.00 0.97 1.00

Linear SVC 0.99 1.00 0.99 1.00 0.99 1.00

Logistic

Regression
0.99 1.00 0.99 1.00 0.99 1.00

Nearest

Centroid
0.72 0.99 0.74 0.99 0.62 0.97

Passive

Aggressive
0.99 1.00 0.99 1.00 0.98 1.00

Perceptron 0.99 1.00 0.99 1.00 0.99 1.00

Random Forest 1.00 1.00 1.00 1.00 1.00 1.00

Ridge Classifier 0.99 1.00 0.99 1.00 0.99 1.00

Ridge CV 0.99 1.00 0.99 1.00 0.99 1.00

SGD Classifier 0.99 1.00 0.99 1.00 0.99 1.00

SVC 1.00 1.00 1.00 1.00 0.99 1.00

XGB Classifier 1.00 1.00 1.00 1.00 1.00 1.00

In contrast, the testing accuracy results showed minor
variations, with some models slightly underperforming
compared to their training accuracy. For instance, GaussianNB
exhibited a noticeable drop in accuracy for Label (Binary)
classification, indicating challenges in generalization.
Similarly, NearestCentroid demonstrated lower accuracy
across most classifications, reflecting its limitations with
complex data structures. However, ensemble-based models,
including AdaBoostClassifier, BaggingClassifier, and
RandomForestClassifier, maintained consistently high
accuracy in both training and testing, demonstrating their
robustness and ability to generalize effectively.

TABLE VI. TESTING ACCURACY OF ALL MODELS

Model
Category

(D)

Category

(B)

Label

(D)

Label

(B)

Class

(D)

Class

(B)

AdaBoost 0.99 1.00 1.00 1.00 0.99 0.99

Bagging 1.00 0.99 1.00 1.00 1.00 0.99

Bernoulli NB 0.99 0.97 0.99 0.96 0.99 0.99

Calibrated CV 0.99 1.00 0.99 1.00 0.99 1.00

Decision Tree 1.00 0.99 0.99 1.00 0.99 0.99

Dummy
Classifier

0.99 0.99 0.99 0.48 0.99 0.99

Extra Tree 1.00 0.99 1.00 1.00 0.99 0.99

Extra Trees 1.00 1.00 1.00 1.00 1.00 1.00

Gaussian NB 0.99 0.49 0.94 0.84 1.00 1.00

K Neighbors 0.99 1.00 1.00 1.00 1.00 0.99

Label
Propagation

1.00 1.00 1.00 1.00 1.00 0.99

Label

Spreading
1.00 1.00 1.00 1.00 1.00 0.99

LGBM
Classifier

1.00 1.00 1.00 0.88 1.00 1.00

Linear

Discriminant
0.97 1.00 0.96 0.84 0.96 0.99

Linear SVC 0.99 1.00 0.99 1.00 0.99 0.99

Logistic
Regression

0.99 1.00 0.99 1.00 0.99 0.99

Nearest

Centroid
0.71 0.99 0.73 0.92 0.62 0.97

Passive
Aggressive

0.99 1.00 0.99 1.00 0.98 0.99

Perceptron 0.99 1.00 0.99 1.00 0.99 0.99

Random

Forest
1.00 1.00 1.00 1.00 1.00 1.00

Ridge

Classifier
0.99 1.00 0.99 1.00 0.99 1.00

Ridge CV 0.99 1.00 0.99 1.00 0.99 1.00

SGDClassifier 0.99 1.00 0.99 1.00 0.99 0.99

SVC 0.99 1.00 1.00 1.00 0.99 0.99

XGB

Classifier
1.00 1.00 0.99 1.00 0.99 0.99

Overall, the comparison underscores the reliability of tree-
based and ensemble models, which consistently perform well
in both training and testing scenarios. It also highlights the
importance of balanced model evaluation in identifying
overfitting or generalization issues, as seen with certain
algorithms like GaussianNB and NearestCentroid.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

278 | P a g e

www.ijacsa.thesai.org

Fig. 6. Comparison of training and testing accuracy of all models.

B. Balanced Accuracy

The balanced accuracy results (see Table VII and Table
VIII and Fig. 7) reveal how well the models handle imbalanced
data during training and testing. Many models, such as
DecisionTree, ExtraTreesClassifier, and XGBClassifier,
achieved perfect balanced accuracy across all classifications in
both formats during training, indicating their ability to learn
effectively from imbalanced data.

TABLE VII. TRAINING BALANCED ACCURACY OF ALL MODELS

Model
Category

(D)

Category

(B)

Label

(D)

Label

(B)

Class

(D)

Class

(B)

AdaBoost 0.86 0.85 1.00 1.00 0.30 0.17

Bagging 0.95 1.00 0.98 0.98 0.99 1.00

Bernoulli NB 0.68 0.92 0.77 0.92 0.25 0.67

Calibrated CV 0.33 1.00 0.50 1.00 0.17 0.52

Decision Tree 1.00 1.00 1.00 1.00 1.00 1.00

Dummy
Classifier

0.33 0.33 0.50 0.50 0.17 0.17

Extra Tree 1.00 1.00 1.00 1.00 1.00 1.00

Extra Trees 1.00 1.00 1.00 1.00 1.00 1.00

Gaussian NB 0.78 1.00 0.84 0.76 0.95 1.00

K Neighbors 0.81 0.91 0.97 0.97 0.42 0.56

Label

Propagation
1.00 1.00 1.00 1.00 1.00 1.00

Label
Spreading

1.00 1.00 1.00 1.00 1.00 1.00

LGBM

Classifier
1.00 1.00 1.00 1.00 1.00 1.00

Linear

Discriminant
0.38 0.95 0.58 0.97 0.50 0.98

Linear SVC 0.36 1.00 0.67 1.00 0.18 1.00

Logistic
Regression

0.36 1.00 0.64 0.97 0.21 1.00

Nearest

Centroid
0.74 0.97 0.85 0.96 0.84 0.92

Passive
Aggressive

0.33 0.95 0.60 0.97 0.50 1.00

Perceptron 0.67 1.00 0.74 1.00 0.20 1.00

Random

Forest
1.00 1.00 1.00 1.00 1.00 1.00

Ridge

Classifier
0.33 0.93 0.50 0.95 0.17 0.77

Ridge CV 0.33 0.88 0.50 0.90 0.17 0.77

SGDClassifier 0.69 0.95 0.84 1.00 0.37 0.92

SVC 0.77 0.88 0.98 0.93 0.50 0.76

XGB

Classifier
1.00 1.00 1.00 1.00 1.00 1.00

TABLE VIII. TESTING BALANCED ACCURACY OF ALL MODELS

Model
Category

(D)

Category

(B)

Label

(D)

Label

(B)

Class

(D)

Class

(B)

AdaBoost 0.72 1.00 0.92 1.00 0.30 0.17

Bagging 0.72 0.91 0.83 1.00 0.69 0.39

Bernoulli NB 0.55 0.95 0.62 0.96 0.25 0.55

Calibrated CV 0.33 0.92 0.54 1.00 0.17 0.39

Decision Tree 0.94 0.91 0.83 1.00 0.53 0.39

Dummy
Classifier

0.33 0.50 0.50 0.50 0.17 0.17

Extra Tree 0.72 0.91 0.87 1.00 0.47 0.56

Extra Trees 0.72 0.92 0.92 1.00 0.72 0.69

Gaussian NB 0.67 0.74 0.85 0.84 0.56 0.56

K Neighbors 0.67 0.92 0.87 1.00 0.39 0.42

Label
Propagation

0.83 1.00 0.87 1.00 0.72 0.17

Label

Spreading
0.78 1.00 0.87 1.00 0.72 0.17

LGBM
Classifier

1.00 0.92 0.92 0.88 0.56 0.78

Linear

Discriminant
0.33 0.96 0.48 0.83 0.33 0.56

Linear SVC 0.33 1.00 0.58 1.00 0.17 0.56

Logistic
Regression

0.33 0.96 0.54 1.00 0.19 0.39

Nearest

Centroid
0.63 0.91 0.78 0.92 0.66 0.69

Passive
Aggressive

0.33 0.96 0.58 1.00 0.33 0.56

Perceptron 0.67 0.96 0.75 1.00 0.17 0.55

Random

Forest
0.94 0.96 0.92 1.00 0.72 0.39

Ridge

Classifier
0.33 0.96 0.50 1.00 0.17 0.56

Ridge CV 0.33 0.96 0.50 1.00 0.17 0.56

SGDClassifier 0.61 0.92 0.83 1.00 0.33 0.36

SVC 0.61 0.96 0.83 1.00 0.36 0.22

XGB

Classifier
0.89 0.96 0.79 1.00 0.53 0.75

However, testing balanced accuracy showed a decline for
some models, such as GaussianNB, NearestCentroid, and
SGDClassifier, particularly in challenging classifications like
Class (Binary) and Label (Decimal), suggesting overfitting or
difficulty in generalizing to unseen data. Ensemble and tree-
based methods like RandomForestClassifier and
XGBClassifier maintained consistently high performance
across both phases, demonstrating their robustness. In contrast,
simpler models and linear methods struggled with imbalanced
data, especially in more granular classifications. These results
highlight the importance of effectively selecting models
capable of effectively addressing class imbalance.

C. F1-Score

The F1-score results, as shown in the tables (IX and Table
X) and charts (Fig. 8), provide a detailed evaluation of the
model's F1-score, particularly in balancing precision and recall,
which is crucial for imbalanced datasets. During training, most
models, such as DecisionTree, ExtraTreesClassifier,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

279 | P a g e

www.ijacsa.thesai.org

XGBClassifier, and LabelPropagation, achieved perfect F1-
scores across all classifications in both Decimal and Binary
formats, similar to their accuracy and balanced accuracy
results. However, models like NearestCentroid and
GaussianNB showed lower F1-scores in some scenarios, such
as Class (Binary), reflecting their difficulty in managing
imbalanced classes effectively.

TABLE IX. TRAINING F1-SCORE OF ALL MODELS

Model
Category

(D)

Category

(B)

Label

(D)

Label

(B)

Class

(D)

Class

(B)

AdaBoost 1.00 0.99 1.00 1.00 0.99 0.98

Bagging 1.00 1.00 1.00 1.00 1.00 1.00

Bernoulli NB 0.99 0.98 0.99 0.98 0.99 0.99

Calibrated CV 0.98 1.00 0.98 1.00 0.98 1.00

Decision Tree 1.00 1.00 1.00 1.00 1.00 1.00

Dummy

Classifier
0.98 0.98 0.98 0.98 0.98 0.98

Extra Tree 1.00 1.00 1.00 1.00 1.00 1.00

Extra Trees 1.00 1.00 1.00 1.00 1.00 1.00

Gaussian NB 0.99 1.00 0.96 0.68 1.00 1.00

K Neighbors 1.00 1.00 1.00 1.00 0.99 1.00

Label

Propagation
1.00 1.00 1.00 1.00 1.00 1.00

Label

Spreading
1.00 1.00 1.00 1.00 1.00 1.00

LGBM
Classifier

1.00 1.00 1.00 1.00 1.00 1.00

Linear

Discriminant
0.98 1.00 0.97 1.00 0.97 1.00

Linear SVC 0.98 1.00 0.99 1.00 0.98 1.00

Logistic

Regression
0.98 1.00 0.99 1.00 0.99 1.00

Nearest

Centroid
0.83 0.99 0.84 0.99 0.75 0.98

Passive

Aggressive
0.98 1.00 0.99 1.00 0.99 1.00

Perceptron 0.99 1.00 0.99 1.00 0.98 1.00

Random

Forest
1.00 1.00 1.00 1.00 1.00 1.00

Ridge

Classifier
0.98 1.00 0.98 1.00 0.98 1.00

Ridge CV 0.98 1.00 0.98 1.00 0.98 1.00

SGDClassifier 0.99 1.00 0.99 1.00 0.99 1.00

SVC 1.00 1.00 1.00 1.00 0.99 1.00

XGB
Classifier

1.00 1.00 1.00 1.00 1.00 1.00

Fig. 7. Comparison of training and testing balanced accuracy of all models.

TABLE X. TESTING F1-SCORE OF ALL MODELS

Model
Category

(D)

Category

(B)

Label

(D)

Label

(B)

Class

(D)

Class

(B)

AdaBoost 0.99 1.00 1.00 1.00 0.99 0.98

Bagging 0.99 0.99 1.00 1.00 1.00 0.99

Bernoulli NB 0.99 0.98 0.99 0.96 0.99 0.99

Calibrated CV 0.98 1.00 0.98 1.00 0.98 0.99

Decision Tree 1.00 0.99 0.99 1.00 0.99 0.99

Dummy
Classifier

0.98 0.98 0.98 0.31 0.98 0.98

Extra Tree 0.99 0.99 1.00 1.00 0.99 0.99

Extra Trees 0.99 1.00 1.00 1.00 1.00 1.00

Gaussian NB 0.99 0.64 0.96 0.84 1.00 0.99

K Neighbors 0.99 1.00 1.00 1.00 0.99 0.99

Label
Propagation

1.00 1.00 1.00 1.00 1.00 0.98

Label

Spreading
1.00 1.00 1.00 1.00 1.00 0.98

LGBM

Classifier
1.00 1.00 1.00 0.88 1.00 1.00

Linear

Discriminant
0.97 1.00 0.97 0.83 0.97 0.99

Linear SVC 0.98 1.00 0.98 1.00 0.98 0.99

Logistic
Regression

0.98 1.00 0.98 1.00 0.99 0.99

Nearest

Centroid
0.82 0.99 0.83 0.92 0.76 0.98

Passive
Aggressive

0.98 1.00 0.99 1.00 0.98 0.99

Perceptron 0.99 1.00 0.99 1.00 0.98 0.99

Random

Forest
1.00 1.00 1.00 1.00 1.00 0.99

Ridge
Classifier

0.98 1.00 0.98 1.00 0.98 1.00

Ridge CV 0.98 1.00 0.98 1.00 0.98 1.00

SGDClassifier 0.99 1.00 0.99 1.00 0.99 0.99

SVC 0.99 1.00 1.00 1.00 0.99 0.99

XGB

Classifier
1.00 1.00 0.99 1.00 0.99 0.99

In testing, the F1-scores revealed a more nuanced picture
compared to accuracy and balanced accuracy. While ensemble
models like RandomForestClassifier, ExtraTreesClassifier, and
XGBClassifier maintained high F1-scores, models like
GaussianNB and NearestCentroid experienced noticeable
drops, particularly for imbalanced classes, as seen in Class

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

280 | P a g e

www.ijacsa.thesai.org

(Binary) and Label (Decimal). These drops align with the
declines observed in balanced accuracy, reinforcing the
importance of metrics like F1-score for evaluating models on
imbalanced datasets. Overall, while accuracy may appear high
for certain models, the F1-score highlights their limitations in
balancing precision and recall, providing a more
comprehensive view of model performance in such challenging
scenarios.

Fig. 8. Comparison of training and testing F1-Score of all models

D. Training and Testing Time

Results in Table XI, Table XII and Fig. 9 compare the
training and testing time. The time taken for training and
testing ML models highlight the computational efficiency.
Lightweight models, such as BernoulliNB, GaussianNB, and
LogisticRegression, exhibited minimal training and testing
times across all classifications, making them ideal for scenarios
with limited computational resources. In contrast, more
complex models like CalibratedClassifierCV,
LabelPropagation, and LabelSpreading required significantly
longer training and testing times, particularly for Class
(Binary), due to their iterative or probabilistic nature.

Tree-based ensemble models, such as
RandomForestClassifier, ExtraTreesClassifier, and
XGBClassifier, balanced efficiency and performance with
moderate training and testing times. Notably,
CalibratedClassifierCV had the longest training and testing
times, especially for Class (Binary), suggesting a high
computational cost for its probability calibration. These results
underline the importance of considering computational time
alongside accuracy and balanced accuracy when selecting
models, especially for real-time or resource-constrained
applications such as the IoV applications.

TABLE XI. TRAINING TIME OF ALL MODELS

Model
Category

(D)

Category

(B)

Label

(D)

Label

(B)

Class

(D)

Class

(B)

AdaBoost 0.62 0.69 0.21 0.86 0.38 0.34

Bagging 0.17 0.41 0.05 0.62 0.10 0.11

Bernoulli NB 0.08 0.33 0.02 0.49 0.03 0.06

Calibrated CV 0.44 1.02 0.07 1.06 0.40 14.61

Decision Tree 0.06 0.27 0.04 0.43 0.04 0.06

Dummy

Classifier
0.02 0.26 0.02 0.43 0.03 0.05

Extra Tree 0.03 0.26 0.03 0.43 0.03 0.05

Extra Trees 0.46 0.59 0.18 0.62 0.34 0.36

Gaussian NB 0.08 0.43 0.02 0.25 0.03 0.05

K Neighbors 0.43 0.63 0.17 0.35 0.29 0.25

Label
Propagation

0.68 1.46 0.42 0.93 0.44 0.60

Label

Spreading
0.76 1.74 0.52 1.41 0.52 0.72

LGBM

Classifier
0.28 0.65 0.13 0.42 0.55 0.62

Linear

Discriminant
0.04 0.94 0.14 0.43 0.09 0.13

Linear SVC 0.05 0.40 0.07 0.33 0.05 5.06

Logistic

Regression
0.06 0.45 0.05 0.39 0.05 0.11

Nearest
Centroid

0.02 0.28 0.03 0.28 0.02 0.05

Passive

Aggressive
0.02 0.33 0.03 0.27 0.03 0.14

Perceptron 0.03 0.35 0.03 0.31 0.03 0.11

Random
Forest

0.28 0.57 0.30 0.55 0.27 0.31

Ridge

Classifier
0.02 0.32 0.03 0.42 0.02 0.18

Ridge CV 0.04 0.49 0.12 0.46 0.03 0.15

SGD

Classifier
0.09 0.33 0.04 0.30 0.11 0.12

SVC 0.05 0.40 0.06 0.37 0.06 0.50

XGB
Classifier

0.11 0.61 0.10 0.43 0.16 0.43

Fig. 9. Comparison of training and testing time of all models.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

281 | P a g e

www.ijacsa.thesai.org

TABLE XII. TESTING TIME OF ALL MODELS

Model
Category

(D)

Category

(B)

Label

(D)

Label

(B)

Class

(D)

Class

(B)

AdaBoost 0.22 0.57 0.18 0.18 0.18 0.38

Bagging 0.06 0.30 0.06 0.09 0.07 0.18

Bernoulli NB 0.02 0.25 0.02 0.06 0.02 0.10

Calibrated CV 0.11 0.94 0.08 0.12 0.19 14.37

Decision Tree 0.02 0.35 0.03 0.06 0.02 0.05

Dummy
Classifier

0.02 0.32 0.03 0.06 0.02 0.04

Extra Tree 0.02 0.31 0.03 0.07 0.03 0.03

Extra Trees 0.17 0.72 0.19 0.18 0.17 0.26

Gaussian NB 0.02 0.35 0.02 0.06 0.02 0.04

K Neighbors 0.08 0.41 0.08 0.07 0.08 0.14

Label
Propagation

0.30 1.15 0.33 0.08 0.30 0.54

Label

Spreading
0.45 0.97 0.45 0.10 0.40 0.86

LGBM
Classifier

0.25 0.36 0.23 0.13 0.47 0.58

Linear

Discriminant
0.05 0.39 0.10 0.19 0.05 0.20

Linear SVC 0.06 0.28 0.07 0.10 0.08 6.25

Logistic
Regression

0.04 0.29 0.05 0.10 0.04 0.09

Nearest

Centroid
0.02 0.24 0.05 0.10 0.02 0.05

Passive
Aggressive

0.03 0.22 0.06 0.06 0.03 0.12

Perceptron 0.02 0.26 0.03 0.06 0.03 0.10

Random

Forest
0.27 0.47 0.37 0.21 0.27 0.30

Ridge

Classifier
0.02 0.28 0.06 0.07 0.02 0.07

Ridge CV 0.04 0.40 0.09 0.10 0.04 0.18

SGDClassifier 0.09 0.25 0.07 0.09 0.10 0.14

SVC 0.06 0.30 0.10 0.06 0.05 0.38

XGB

Classifier
0.11 0.35 0.15 0.09 0.15 0.41

E. General Discussion and Recommendation

The analysis of all results, including accuracy, balanced
accuracy, F1-scores, and computational time, reveals a
comprehensive comparison of model performance on the
dataset. Tree-based ensemble models, such as Decision Tree,
RandomForestClassifier, ExtraTreesClassifier, and
XGBClassifier, consistently achieved near-perfect scores
across all metrics, including accuracy, balanced accuracy, and
F1-scores, while maintaining moderate computational times,
making them reliable and efficient choices for most tasks.
Lightweight models, such as LogisticRegression, BernoulliNB,
and GaussianNB, demonstrated low computational times with
competitive performance in accuracy and F1-scores, but they
struggled with balanced accuracy in scenarios with significant
class imbalance. On the other hand, models like CalibratedCV,
LabelPropagation, and LabelSpreading achieved excellent
accuracy and F1-scores but at the expense of significantly
higher training and testing times, particularly for more complex
classifications like Class (Binary).

While accuracy and F1-scores highlight overall model
performance, balanced accuracy provided more profound
insights into handling class imbalances, exposing limitations in
models like NearestCentroid and GaussianNB. The
computational time results underscored the trade-offs between
predictive performance and resource efficiency, with certain
models offering high accuracy at the cost of increased
processing time. In summary, ensemble methods emerged as
the dataset's most robust and practical choice, balancing
performance and efficiency. At the same time, lightweight
models offered a computationally inexpensive alternative with
slightly reduced robustness. These findings emphasize the
importance of selecting models based on the application's
specific requirements, whether prioritizing accuracy,
computational efficiency, or the ability to handle imbalanced
datasets.

Recommendations: Based on the discussed results, several
recommendations can be made to enhance intrusion detection
in vehicular networks. Ensemble models, such as
RandomForest ExtraTreesClassifier, ExtraTreesClassifier, and
XGBClassifier, should be prioritized due to their superior
performance in accuracy, balanced accuracy, and F1-score,
particularly for handling imbalanced datasets. Lightweight
models like LogisticRegression and BernoulliNB can be
optimized with techniques such as oversampling, feature
scaling, or class-weight adjustments to enhance their
performance in imbalanced scenarios. Computationally
intensive models like LabelPropagation and CalibratedCV
should be optimized for real-time use through hybrid
approaches or parallel processing techniques. Additionally,
expanding the dataset to include more diverse attack scenarios
and vehicular communication protocols will improve model
generalizability. Balanced accuracy and F1-scores should be
emphasized as key evaluation metrics, particularly in
imbalanced datasets, to ensure fair assessments. Finally,
integrating high-performing models into real-time systems with
optimized preprocessing pipelines, including duplicate removal
and stratified splitting, will enhance their practical applicability
in real-world vehicular network scenarios.

V. CONCLUSION

This study comprehensively explored the CICIoV2024
dataset to evaluate the effectiveness of various advanced ML
algorithms in intrusion detection for vehicular networks,
focusing on CAN security. The research highlights the
significance of data preprocessing, including duplicate removal
and stratified splitting, in ensuring robust model evaluation. A
wide range of ML models were assessed across metrics such as
accuracy, balanced accuracy, F1-score, and computational
efficiency.

The findings underscore the superior performance of
ensemble-based and tree-based models, such as
RandomForestClassifier, ExtraTreesClassifier, and
XGBoostClassifier, consistently demonstrating high
generalization and resilience to imbalanced data. Simpler
models, such as LogisticRegression and GaussianNB, offered
computational efficiency but struggled with complex,
imbalanced scenarios. Models like LabelPropagation and
CalibratedClassifiers achieved excellent accuracy but incurred

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

282 | P a g e

www.ijacsa.thesai.org

higher computational costs, limiting their applicability for real-
time environments.

Despite achieving high accuracy, the study identified
concerns regarding potential overfitting in some models,
emphasizing the need for broader evaluation across diverse
datasets. The CICIoV2024 dataset, with its realistic
representation of spoofing and DoS attacks, proved to be a
valuable resource but requires further exploration to harness its
potential fully.

Future work will focus on integrating additional attack
scenarios, enhancing the dataset's diversity, evaluating the
scalability of ML models across varying vehicular
communication protocols, and improving the generalizability
of models to diverse communication protocols and real-world
conditions. Moreover, we could explore more advanced ML
techniques such as reinforcement learning-based IDS,
federated learning, or lightweight transformer models for IoV
security.

REFERENCES

[1] M. E. E. Alahi et al., "Integration of IoT-Enabled Technologies and
Artificial Intelligence (AI) for Smart City Scenario: Recent
Advancements and Future Trends," Sensors 2023, Vol. 23, Page 5206,
vol. 23, no. 11, p. 5206, May 2023, doi: 10.3390/S23115206.

[2] D. Serpanos and M. Wolf, "The IoT Landscape," in Internet-of-Things
(IoT) Systems, Cham: Springer International Publishing, 2018, pp. 1–6.
doi: 10.1007/978-3-319-69715-4_1.

[3] N. Janbi, I. Katib, A. Albeshri, and R. Mehmood, "Distributed artificial
intelligence-as-a-service (DAIaaS) for smarter IoE and 6G
environments," Sensors (Switzerland), vol. 20, no. 20, pp. 1–28, Oct.
2020, doi: 10.3390/s20205796.

[4] N. Janbi, R. Mehmood, I. Katib, A. Albeshri, J. M. Corchado, and T.
Yigitcanlar, "Imtidad: A Reference Architecture and a Case Study on
Developing Distributed AI Services for Skin Disease Diagnosis over
Cloud, Fog and Edge," Sensors 2022, Vol. 22, Page 1854, vol. 22, no. 5,
p. 1854, Feb. 2022, doi: 10.3390/S22051854.

[5] M. Merenda, C. Porcaro, and D. Iero, "Edge Machine Learning for AI-
Enabled IoT Devices: A Review," Sensors 2020, Vol. 20, Page 2533,
vol. 20, no. 9, p. 2533, Apr. 2020, doi: 10.3390/S20092533.

[6] N. F. Janbi, M. A. Ghaseb, and A. A. Almazroi, "ESTS-GCN: An
Ensemble Spatial–Temporal Skeleton-Based Graph Convolutional
Networks for Violence Detection," Int. J. Intell. Syst., vol. 2024, no. 1,
p. 2323337, Jan. 2024, doi: 10.1155/2024/2323337.

[7] N. Srinivasan, "Artificial Intelligence in IoT Security: Review of
Advancements, Challenges, and Future Directions," Int. J. Innov.
Technol. Explor. Eng., vol. 13, no. 7, pp. 14–20, 2024, doi:
10.35940/ijitee.g9911.13070624.

[8] N. Janbi, I. Katib, and R. Mehmood, "Distributed artificial intelligence:
Taxonomy, review, framework, and reference architecture," Intell. Syst.
with Appl., vol. 18, p. 200231, May 2023, doi:
10.1016/j.iswa.2023.200231.

[9] S. A. Abdulkareem, C. H. Foh, M. Shojafar, F. Carrez, and K. Moessner,
"Network Intrusion Detection: An IoT and Non IoT-Related Survey,"
IEEE Access, 2024, doi: 10.1109/ACCESS.2024.3473289.

[10] S. M. Karim, A. Habbal, S. A. Chaudhry, and A. Irshad, "Architecture,
Protocols, and Security in IoV: Taxonomy, Analysis, Challenges, and
Solutions," Secur. Commun. Networks, vol. 2022, no. 1, p. 1131479,
Jan. 2022, doi: 10.1155/2022/1131479.

[11] H. Taslimasa, S. Dadkhah, E. C. P. Neto, P. Xiong, S. Ray, and A. A.
Ghorbani, "Security issues in Internet of Vehicles (IoV): A
comprehensive survey," Internet of Things, vol. 22, p. 100809, Jul.
2023, doi: 10.1016/J.IOT.2023.100809.

[12] M. Hanselmann, T. Strauss, K. Dormann, and H. Ulmer, "CANet: An
Unsupervised Intrusion Detection System for High Dimensional CAN
Bus Data," IEEE Access, vol. 8, pp. 58194–58205, 2020, doi:
10.1109/ACCESS.2020.2982544.

[13] A. Salehi Shahraki, L. Diana, P. Dini, and D. Paolini, "Overview on
Intrusion Detection Systems for Computers Networking Security,"
Comput. 2025, Vol. 14, Page 87, vol. 14, no. 3, p. 87, Mar. 2025, doi:
10.3390/COMPUTERS14030087.

[14] A. Sivanathan, H. Habibi Gharakheili, and V. Sivaraman, "Managing
IoT Cyber-Security Using Programmable Telemetry and Machine
Learning," IEEE Trans. Netw. Serv. Manag., vol. 17, no. 1, pp. 60–74,
Mar. 2020, doi: 10.1109/TNSM.2020.2971213.

[15] E. C. P. Neto et al., "CICIoV2024: Advancing realistic IDS approaches
against DoS and spoofing attack in IoV CAN bus," Internet of Things,
vol. 26, p. 101209, Jul. 2024, doi: 10.1016/J.IOT.2024.101209.

[16] K. Aswal and H. Pathak, "Advancing Vehicle Security: Deep Learning
based Solution for Defending CAN Networks in the Internet of
Vehicles," EAI Endorsed Trans. Internet Things, vol. 10, pp. 1–14, Oct.
2024, doi: 10.4108/EETIOT.6523.

[17] N.' Aliah Amirudin and S. J. Abdulkadir, "Comparative Study of
Machine Learning Algorithms using the CICIOV2024 Dataset," Platf.
A J. Sci. Technol., vol. 7, no. 1, p. 1, 2024, doi:
10.61762/pjstvol7iss1art27052.

[18] O. Subasi, J. Cree, J. Manzano, and E. Peterson, "A Critical Assessment
of Interpretable and Explainable Machine Learning for Intrusion
Detection," Jul. 2024, Accessed: Dec. 05, 2024. [Online]. Available:
https://arxiv.org/abs/2407.04009v1

[19] Z. S. Mahdi, R. M. Zaki, and L. Alzubaidi, "Advanced Hybrid
Techniques for Cyberattack Detection and Defense in IoT Networks,"
Secur. Priv., p. e471, Oct. 2024, doi: 10.1002/SPY2.471.

[20] B. Taşcı, "Deep-Learning-Based Approach for IoT Attack and Malware
Detection," Appl. Sci. 2024, Vol. 14, Page 8505, vol. 14, no. 18, p.
8505, Sep. 2024, doi: 10.3390/APP14188505.

[21] P. Dhawas, A. Dhore, D. Bhagat, R. D. Pawar, A. Kukade, and K.
Kalbande, Big Data Preprocessing, Techniques, Integration,
Transformation, Normalisation, Cleaning, Discretization, and Binning.
IGI Global, 2024. doi: 10.4018/979-8-3693-0413-6.ch006.

