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Abstract—Visual changes, including spots, discoloration, and 

deformation characterize coffee leaf diseases. In real-world image 

data, complex backgrounds present challenges for classification 

using deep learning models. Irrelevant objects, such as soil, other 

leaves, and miscellaneous items, can hinder the model's ability to 

accurately recognize disease patterns. Furthermore, the absence 

of effective segmentation techniques has resulted in low accuracy 

in previous studies. This work aims to address these limitations by 

enhancing the performance of the MobileNet-V2 model for coffee 

leaf disease classification. We applied a modified C-Grabcut 

segmentation technique to improve the isolation of diseased areas 

from complex backgrounds. The results demonstrate a significant 

performance improvement, achieving an Intersection over Union 

(IoU) of 0.8369 and an accuracy of 94.83%. These findings suggest 

that the modified MobileNet-V2 model, combined with the 

improved C-Grabcut segmentation, offers robust performance for 

in-field coffee leaf disease classification, striking a better balance 

between effectiveness and accuracy compared to previous studies. 

Keywords—Image segmentation; in-field image; mobilenet-v2; 

coffee leaf diseases; background complexity 

I. INTRODUCTION 

Coffee is an important agricultural commodity with 
significant economic value. In 2020, the coffee industry was 
valued at USD 102 billion [1] and is projected to grow at a 
compound annual growth rate (CAGR) of 4.28% through 2026, 
supporting approximately 125 million jobs [2] worldwide. 
Maintaining the health of coffee plants is crucial for ensuring 
both quality and productivity. 

One of the main challenges in coffee cultivation is the 
occurrence of leaf diseases, which are often caused by 
pathogens such as fungi, bacteria, and viruses [3]. These 
diseases exhibit visual symptoms on leaves, including spots, 
discoloration, and deformation. Early and accurate detection of 
these symptoms is essential to control disease spread and 
enhance crop yield. 

In recent years, deep learning models have gained 
popularity for automating plant disease detection. Among 
these, Convolutional Neural Networks (CNNs) are particularly 
effective for image classification tasks. Previous studies have 
explored CNN models like MobileNet-V2 for classifying 
coffee leaf diseases. However, in-field images often contain 
complex backgrounds, including soil, other leaves, and 
environmental artifacts, which introduce noise and decrease 
model performance. Without effective image segmentation 

techniques, deep learning models struggle to differentiate 
disease-affected areas from irrelevant objects. Some studies 
report accuracy drops as low as 34% when classifying multiple 
disease types [4]. This highlights the need for an approach that 
combines segmentation and classification to enhance model 
robustness in in-field agricultural settings. 

To address these limitations, this study introduces an 
enhanced MobileNet-V2 model that incorporates C-Grabcut 
segmentation technique. The research aims to: 

1) Develop an image segmentation approach that 

effectively isolates disease-relevant features from complex 

backgrounds using modified C-Grabcut. 

2) Improve the accuracy of coffee leaf disease detection 

through transfer learning with MobileNet-V2. 

3) Optimize hyperparameters and augmentation techniques 

to enhance the generalization capability of the model for in-

field classification tasks. 

This study contributes to agricultural image processing by 
integrating segmentation and classification techniques for 
automated plant disease recognition. The findings provide 
insights into optimizing deep learning models for precision 
agriculture, enabling early disease detection and intervention. 

The rest of this paper is organized as follows. Section II 
presents a literature review on existing methods for coffee leaf 
disease classification and segmentation. Section III describes 
the research methodology, including data collection, 
preprocessing, segmentation, model training, and evaluation 
metrics. Section IV discusses the experimental results and 
performance comparisons. Finally, Section V concludes the 
study and suggests future research directions. 

II. LITERATURE REVIEW 

The classification of coffee leaf diseases has become a 
major focus in agricultural research, especially because of its 
impact on crop yield and quality. Developing a strong 
classification model using deep learning that performs 
effectively in field conditions presents unique challenges, such 
as managing complex backgrounds in field images. Many 
existing studies focus primarily on classification using deep 
learning models but do not incorporate effective segmentation 
techniques to isolate disease features from irrelevant 
background elements. Table I provides an overview of several 
studies on the classification of coffee leaf diseases. 
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TABLE I.  RELATED STUDIES 

Methods Data Preprocessing 
No. of 

class 
Accuracy 

MobileNet-
V2 [4] 

Real 

condition 

image 

Augmentation 2, 3, 6 

99.93% ( 2 

classes), 

34% (3 
classes), 

16% (6 

classess 

Extreme 
Learning 

Machine 

ELM [5] 

Controlled 

image 
Segmentation 3 99.09% 

Inception v3 

[6] 

Controlled 

image 
Augmentation 5 97.61% 

VGG16 [7] 
Controlled 
image 

Augmentation 4 97.20% 

EfficientNet-
B0 [8] 

Real 

condition 

image 

Augmentation 6 91% 

ResNet-50 [9] 
Controlled 

image 
Augmentation 2 99% 

ResNet-50 
[10] 

Real 

condition 

image 

Segmentation & 
Augmentation 

2, 6 

92% (2 

classes), 
88.98% (6 

classes) 

Despite the advances in coffee leaf disease classification, 
several challenges remain unaddressed, particularly in in-field 
conditions. Many existing models rely solely on data 
augmentation for performance enhancement but lack proper 
segmentation techniques, leading to suboptimal classification 
in complex environments. 

For instance, MobileNet-V2 achieved an accuracy of 
99.93% for binary classification but significantly dropped to 
34% and 16% for three and six-class classification tasks, 
respectively, in in-field conditions [4]. This highlights the 
model’s difficulty in distinguishing diseased areas from 
background noise such as soil and other foliage, reducing 
overall accuracy. Other studies employing models like Extreme 
Learning Machine (ELM), Inception v3, VGG16, and 
EfficientNet-B0 have reported high accuracy (above 90%) in 
controlled environments but have struggled to generalize to in-
field settings [5], [6], [7], [8]. 

A study using ResNet-50 with segmentation and 
augmentation demonstrated enhanced accuracy (92%) in in-
field images [10]. This underscores the importance of 
integrating segmentation techniques to improve classification 
robustness. However, existing segmentation approaches, such 
as Grabcut, have shown limited effectiveness in isolating 
disease-affected areas from complex backgrounds. 

The C-Grabcut algorithm, originally developed for 
detecting apple leaf diseases, improves upon the traditional 
Grabcut method by incorporating contour detection to more 
accurately isolate areas [11] affected by the disease. This 
approach effectively reduces background noise, allowing 
models to concentrate on relevant features, thus enhancing 
classification accuracy while lowering computational demands. 
However, C-Grabcut has not yet been widely explored for 
coffee leaf disease classification, leaving a gap in its application 
to agricultural disease detection under in-field conditions. 

To bridge these gaps, this study proposes an improved 
MobileNet-V2 model incorporating modified C-Grabcut 
segmentation to enhance coffee leaf disease classification under 
in-field conditions. The proposed approach aims to improve 
segmentation accuracy by modifying C-Grabcut to better 
isolate diseased areas from background elements, reducing 
noise interference from soil, other leaves, and environmental 
artifacts. Additionally, this study integrates segmentation, 
augmentation, and transfer learning techniques to enhance the 
model’s ability to recognize disease patterns more effectively, 
particularly in complex agricultural environments. By 
balancing computational efficiency and classification accuracy, 
this approach ensures that the model remains lightweight and 
practical for real-world agricultural applications. Through the 
combination of segmentation with deep learning, this study 
provides a more effective and scalable solution for coffee leaf 
disease detection, addressing the key limitations identified in 
previous research. 

III. RESEARCH METHODS 

This research aims to improve the accuracy and robustness 
of coffee leaf disease classification under real-world 
agricultural conditions by employing a MobileNet-V2 model 
combined with a modified C-Grabcut segmentation technique. 
The methods are presented in Fig. 1. 

 
Fig. 1. Research method. 

A. Data Collection 

The dataset used in this study comprises images of coffee 
leaves collected from a public dataset [12] containing three 
classes: healthy, rust, and spot disease. Each image represents 
realistic field conditions, including complex backgrounds with 
noise elements such as soil, other leaves, and environmental 
artifacts. Data wrangling is performed to label each image 
according to its class and remove duplicates, ensuring data 
quality and preventing model bias. The dataset is then split into 
training (80%), validation (10%), and test (10%) subsets to 
facilitate model training and performance assessment. 

B. Image Preprocessing 

Data preprocessing in this study involved several steps to 
prepare the coffee leaf images for analysis. First, the images 
were organized into class-specific folders through labeling to 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 3, 2025 

285 | P a g e  

www.ijacsa.thesai.org 

ensure proper categorization. Duplicate images were identified 
and removed using hash-based techniques to maintain data 
integrity. After segmentation, the images were resized to 224 × 
224 pixels to meet the input requirements of the MobileNet-V2 
model. Lastly, data augmentation techniques were employed to 
generate diverse dataset variations, including rotation, blurring, 
noise addition, and contrast adjustment. This approach 
enhances the model's robustness and generalization capabilities 
[13]. The augmented dataset helps the model recognize disease 
features across various field conditions. Table II presents the 
dataset distributions after augmentation. 

TABLE II.  DATASET DISTRIBUTIONS AFTER PREPROCESSING 

Classes 
Data Distributions 

Preview 
Train Validation Test 

Healthy 1600 200 200 

 

Leaf Rust 1600 200 200 

 

Leaf Spot 1600 200 200 

 

Total 4800 600 600  

C. Image Segmentation 

To effectively isolate diseased areas of leaves and minimize 
background noise, the modified C-Grabcut algorithm is applied 
to each image. This enhanced version of the traditional Grabcut 
algorithm includes contour detection, which allows for more 
accurate differentiation between diseased leaf areas and 
surrounding elements, such as soil and other foliage. The 
modifications made to the original C-Grabcut involve 
adjustments to key functions and parameter settings, resulting 
in improved segmentation accuracy while retaining essential 
leaf and disease features. A step-by-step illustration of the 
modified C-Grabcut process is presented in Fig. 2, and the 
procedure is outlined as follows: 

 

Fig. 2. Foreground segmentation with modified C-Grabcut algorithm. 

1) Initialization and modified mask function: Segmentation 

begins by defining an initial bounding box around the leaf, 

focusing the algorithm on the relevant area. To enhance 

foreground detection, two markers are added within this 

bounding box: a foreground box and intersecting vertical-

horizontal lines. The width and height of the bounding box are 

calculated to determine the leaf's orientation, guiding the 

accurate placement of the foreground markers. The modified 

mask function is visualized in Fig. 3. 

2) Foreground box and vertical-horizontal lines: The 

foreground box is assigned a value of 1 in the mask, marking it 

as a definite foreground. A vertical and horizontal line 

intersecting at the bounding box center creates a cross ("+"), 

extending 90% of the box's width and height with a thickness 

of 90 pixels. Pixels within this cross are set to 1, reinforcing the 

foreground, while areas outside the box and cross are set to 2, 

marking probable background. This ensures that key leaf 

features, such as lesions, are preserved during segmentation, 

unlike in the original C-Grabcut. 

3) Bounding box limitation: To address a common issue 

where irrelevant background features remain outside the 

bounding box, the modified mask is restricted to the bounding 

box area only. This ensures the mask applies solely within the 

bounding box, eliminating non-relevant features outside it. 

4) Median filtering: After applying the bounding box 

limitation, a median filter with a 3x3 kernel size is used on the 

mask. This step smooths the mask by reducing noise and 

softening edges. The smaller kernel size provides a gentle 

smoothing effect that preserves critical details of the leaf, such 

as disease features, while effectively eliminating isolated noise. 

The median filter is particularly effective in maintaining the 

shape and texture of small lesions, which are essential for 

accurate disease identification. 

5) Contour functions: Contour detection is performed to 

refine the leaf's boundary within the bounding box. This step 

identifies the edges of the segmented leaf and adjusts the mask 

accordingly, ensuring that it accurately captures the leaf's shape 

and any disease-specific features along its edges. Contour 

detection is particularly effective in preventing background 

elements, which may share similar color properties, from being 

incorrectly included in the foreground. Contour detection 

significantly enhances the overall segmentation accuracy by 

maintaining clear and precise edges. 

6) Bitwise operation: Bitwise operations are used to isolate 

the segmented leaf from the background. Specifically, a bitwise 

AND operation is performed between the mask and the original 

image. This operation retains only the foreground (the 

segmented leaf) while setting the background pixels to zero. As 

a result, any remaining background noise within the bounding 

box is eliminated, producing a clean and focused image of the 

leaf that is ready for disease classification. 

D. Feature Extraction Using Transfer Learning 

This study employs a pre-trained MobileNet-V2 model, 
which has been trained on the ImageNet dataset, for feature 
extraction. Transfer learning enables a model to be trained and 
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fine-tuned for a specific task, then adapted to a related task [14]. 
Transfer learning is utilized by taking weights from this pre-
trained model, which has already learned general features from 
ImageNet [7]. ImageNet is a large dataset widely used for 
training deep learning models, particularly Convolutional 
Neural Networks (CNNs). It consists of approximately 1.2 
million images organized into 1,000 categories [15]. By 
leveraging prior knowledge, this approach enhances the 
model's performance and efficiency in a new context [14]. 

In this model, the bottom layers of MobileNet-V2 are frozen 
to preserve these general features, while the deeper layers are 
modified to learn features specific to the task at hand. These 
layers can be trained or fine-tuned to enhance model 
performance [16]. The top layers, or classifier, are adapted by 
adding three fully connected layers, one batch normalization 
layer, and two dropout layers to reduce the risk of overfitting. 
ReLU activation functions are also utilized. These additional 
layers improve the model's ability to process the extracted 
features effectively, allowing it to classify them into the three 
target classes. 

E. Training and Validation 

The training and validation process starts with loading the 
respective datasets. Training is carried out on the training set, 
while validation is performed using the validation set. The 
initial hyperparameter settings, presented in Table III, are 
applied consistently throughout the initial experiment to 
maintain baseline conditions. 

TABLE III.  INITIAL HYPERPARAMETER TUNING 

Hyperparameter Value 

Number of classes 3 

Pre-trained Model MobileNet-V2 

Trainable Layers Only final classification layer 

Optimizer SGD 

Loss function Cross-Entropy 

Batch size 64 

Learning rate 0.001 

Patience 5 

Epochs 25 

TABLE IV.  EXPERIMENTAL SETUP PHASE 1 

Scenario Segmentation Techniques 

1.1 No Segmentation 

1.2 GrabCut Segmentation 

1.3 C-Grabcut Segmentation 

1.4 Modified C-Grabcut Segmentation 

F. Model Testing 

The testing process consists of four experimental phases, 
evaluating the impact of segmentation, trainable layers, 
hyperparameter tuning, and background complexity on the 
model's classification performance. 

1) Phase 1: Data segmentation setup: The first experiment 

evaluates the impact of different data segmentation techniques 

on the model's performance in recognizing images. The best-

performing setup from this phase is selected for the next 

experiment phase (Table IV). 

2) Phase 2: Trainable layer experiment: In the second 

phase, the number of trainable layers in the model is adjusted 

to assess how different layer configurations affect performance 

under transfer learning. The optimal configuration from this 

experiment is used in the final experiment phase (Table V). 

TABLE V.  EXPERIMENTAL SETUP PHASE 2 

Scenario Number of trainable layer 

2.1 - 

2.2 Last 5% of layers are trainable 

2.3 Last 20% of layers are trainable 

2.4 Last 50% of layers are trainable 

3) Phase 3: Hyperparameter tuning: To optimize the 

model's performance, the final phase involves fine-tuning 

hyperparameters, including batch size, learning rate, optimizer, 

and the number of epochs. Multiple combinations are tested, 

and the model configuration yielding the highest performance 

is selected as the final model, saved for testing (Table VI). 

TABLE VI.  EXPERIMENTAL SETUP PHASE 3 

Hyperparameter Value 

Optimizer SGD, Adam 

Epoch 25, 50, 75 

Learning rate 0.001, 0.0001 

4) Additional experiment: The effect of background 

complexity on model performance: An additional experiment 

was conducted to evaluate the influence of background 

complexity on model accuracy by testing two types of images: 

natural background images, as used in the main study, and plain 

background images, obtained from a public dataset, Roboflow 

[20]. This experiment aimed to determine whether a simplified 

background could improve classification performance 

compared to natural backgrounds. Both datasets underwent the 

same preprocessing steps, except that segmentation was not 

applied to the plain-background images, ensuring a fair 

comparison. The best hyperparameters from previous 

experiments were utilized for both datasets, allowing for an 

objective assessment of performance differences. The results of 

this experiment provide valuable insight into the extent to 

which background complexity affects classification accuracy 

and whether segmentation techniques remain essential when 

dealing with plain-background images. 

G. Segmentation Result Evaluation 

Segmentation result evaluation aims to assess the outcomes 
of both the original C-Grabcut and the modified C-Grabcut 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 3, 2025 

287 | P a g e  

www.ijacsa.thesai.org 

using predefined evaluation metrics. The evaluation process 
consists of two types: quantitative and qualitative. 

Quantitative evaluation provides objective measurements 
utilizing metrics such as Intersection over Union (IoU), Dice 
Coefficient, Pixel Accuracy and Precision. These metrics 
enable a measurable comparison of the performance of the two 
methods. In contrast, qualitative evaluation involves visual 
observation to ensure that the segmentation results meet 
specific visual standards, such as boundary clarity and 
consistency in the target area. The combination of these 
evaluation methods offers a comprehensive assessment of 
segmentation quality. 

IoU measures the agreement between the region predicted 
by the segmentation model and the ground truth region [17]. The 
Dice Coefficient measures the similarity between a 
segmentation model's predicted region and the ground truth 
[17]; higher Dice Coefficient values indicate better model 
performance. Pixel Accuracy, also known as the Rand Index, 
defines the number of correct predictions (both positive and 
negative) relative to the total number of predictions [18]. The 
formulas for the quantitative evaluations are presented in Table 
VII. 

TABLE VII.  THE QUANTITATIVE SEGMENTATION EVALUATION 

Evaluation Formula 

IoU 𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Dice Coefficient 𝐷𝑖𝑐𝑒 =
2 ∗  𝑇𝑃

(2 ∗  𝑇𝑃 +  𝐹𝑃 +  𝐹𝑁)
 

Pixel Accuracy 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

(𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)
 

Precision 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

where TP (True Positive) represents pixels correctly 
classified as part of the class, TN (True Negative) refers to 
pixels correctly predicted as background, FP (False Positive) 
denotes pixels incorrectly classified as part of the class, and FN 
(False Negative) indicates pixels that were not classified as part 
of the class [19]. 

Two main elements are required to compute these metrics: 
the data mask (ground truth) and the prediction mask. The data 
mask represents annotated ground truth areas (e.g., leaf objects) 
and is manually created using the Roboflow platform. It 
generates XML files for each image, which are then converted 
into binary images in .png format. The prediction mask is 
derived from the segmentation results of the original and 
modified C-grabcut methods applied to the test dataset. 

H. Performance Evaluation 

To assess the effectiveness of the proposed model in 
identifying feature patterns across different disease categories 
and evaluating classification accuracy for each class, the 
model's performance is measured using key evaluation metrics 
derived from the confusion matrix. These metrics include 
accuracy, precision, recall, and F1-score, as summarized in 
Table VIII. The best model's performance is evaluated on the 
test set using these metrics thoroughly analyze the model's 

performance for each class. A confusion matrix is also created 
to visualize the classification results across the different classes. 

TABLE VIII.  PERFORMANCE EVALUATION METRIC 

Metric Formula 

Accuracy (ACC) 
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Precision (PRE) 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall (TPR) 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-Score (F1) 2 × 
𝑃𝑅𝐸 × 𝑅𝐸𝐶

𝑃𝑅𝐸 + 𝑅𝐸𝐶
 

IV. RESULTS 

A. Segmentation Evaluation Results 

Table IX presents the quantitative evaluation results of the 
GrabCut, C-Grabcut Original, and Modified C-Grabcut 
methods, assessed using four key metrics: Intersection over 
Union (IoU), Dice Coefficient, Pixel Accuracy, and Precision. 

TABLE IX.  QUANTITATIVE EVALUATION RESULT OF SEGMENTATION 

TECHNIQUES 

Technique IoU 
Dice 

Coefficient 

Pixel 

Accuracy 
Precision 

GrabCut 0,6821 0,7934 0,8445 0,7019 

C-Grabcut 
Original 

0,683 0,7941 0,8446 0,7018 

Modified 

C-Grabcut 
0,8369 0,9091 0,9344 0,8402 

These results indicate that C-Grabcut Original does not 
show significant improvement compared to GrabCut, as 
reflected in the minimal differences in all four metrics. 
However, Modified C-Grabcut outperforms both methods, 
demonstrating higher segmentation accuracy and precision. 

Table X presents the visual results of the GrabCut, C-
Grabcut Original, and Modified C-Grabcut. The results indicate 
that C-Grabcut Original performs better than traditional 
GrabCut, as it is able to retain lesion features more effectively. 
In contrast, GrabCut often removes critical disease lesions, 
leading to loss of essential features for classification. However, 
C-Grabcut Original still has some segmentation inaccuracies, 
particularly in areas where the leaf color or texture closely 
resembles the background, causing parts of the leaf to be 
mistakenly removed. 

In contrast, Modified C-Grabcut demonstrates significant 
improvements over both GrabCut and C-Grabcut Original. The 
segmentation results show that Modified C-Grabcut effectively 
retains lesion structures, reducing the likelihood of 
misclassification between disease spots and the background. 
Compared to GrabCut, which often erases crucial lesion areas, 
and C-Grabcut Original, which still exhibits some errors in 
boundary detection, Modified C-Grabcut achieves better object 
preservation and noise reduction. The enhanced contour 
detection and optimized bounding box adjustments in Modified 
C-Grabcut allow for sharper, more defined segmentation while 
minimizing the loss of lesion information. 
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TABLE X.  VISUAL RESULT OF SEGMENTATION TECHNIQUES 

Data Mask 
Predicted mask (segmentation results) 

GrabCut 
C-Grabcut 

Original 

Modified C-

Grabcut 

Class: Leaf spot 

    

    
Class : Leaf Rust 

    

    
Class: Healthy 

    

    

B. Performance Evaluation 

1) Phase 1: Data segmentation setup: The models trained 

in the first experiment were used for testing. The performance 

metrics of phase 1, including precision, recall, F1-score, and 

accuracy for each class, are presented in Table XI. 

The Modified C-Grabcut approach achieved the highest 
accuracy (88.33%), outperforming traditional Grabcut and C-
Grabcut. The results indicate that segmentation improves 
disease detection, especially for leaf spot classification. 

2) Phase 2: Trainable layer experiment: Table XII presents 

the testing result for experiments utilizing different trainable 

layers in transfer learning. Scenario 2.4, which allowed only the 

last 50% of the layers to be trainable, resulted in the best 

accuracy (92.5%), suggesting that fine-tuning a larger portion 

of MobileNet-V2 enhances feature extraction for coffee leaf 

disease classification. 

3) Phase 3: Hyperparameter tuning: Table XIII presents 

the result from the hyperparameter tuning experiments. 

TABLE XI.  THE RESULT OF PHASE 1 

Segmentation 

Setup 
Class Precision Recall F1-Score Acc 

No 

Segmentation 
(Sc 1.1) 

Healthy 0,84 0,92 0,88 

0,8433 Leaf Spot 0,79 0,82 0,8 

Leaf Rust 0,91 0,8 0,85 

GrabCut 
(Sc 1.2) 

Healthy 0,83 0,93 0,88 

0,8450 Leaf Spot 0,82 0,77 0,79 

Leaf Rust 0,89 0,83 0,86 

C-Grabcut 

Original 

(Sc 1.3) 

Healthy 0,81 0,94 0,87 

0,8517 Leaf Spot 0,85 0,77 0,81 

Leaf Rust 0,9 0,85 0,88 

Modified C-
Grabcut 

(Sc 1.4) 

Healthy 0,86 0,95 0,9 

0,8833 Leaf Spot 0,88 0,83 0,86 

Leaf Rust 0,89 0,83 0,86 

TABLE XII.  THE RESULT OF PHASE 2 

Number of 

trainable 

layer 

Class Precision Recall F1-Score Acc 

- 
(Sc 2.1) 

Healthy 0,82 0,95 0,88 

0,8600 Leaf Spot 0,87 0,78 0,82 

Leaf Rust 0,90 0,84 0,87 

Last 5% 
layers 

(Sc 2.2) 

Healthy 0,88 0,96 0,92 

0,8967 Leaf Spot 0,89 0,84 0,87 

Leaf Rust 0,93 0,89 0,91 

Last 20% 
layers 

(Sc 2.3) 

Healthy 0,89 0,96 0,93 

0,8933 Leaf Spot 0,86 0,86 0,86 

Leaf Rust 0,93 0,86 0,89 

Last 50% 

layers (Sc. 
2.4) 

Healthy 0,91 0,95 0,93 

0,925 Leaf Spot 0,92 0,91 0,91 

Leaf Rust 0,94 0,92 0,93 

TABLE XIII.  THE RESULT OF PHASE 3 

Scenarios 
Hyperparameter 

Accuracy 
Optimizer Learning rate Batch size 

 Epoch : 25  

3.1 SGD 0,001 32 0,925 

3.2 SGD 0,001 64 0,9367 

3.3 SGD 0,001 128 0,94 

3.4 SGD 0,0001 32 0,9233 

3.5 SGD 0,0001 64 0,8917 

3.6 SGD 0,0001 128 0,88 

3.7 Adam 0,001 32 0,9283 

3.8 Adam 0,001 64 0,9333 

3.9 Adam 0,001 128 0,9333 

3.10 Adam 0,0001 32 0,9317 

3.11 Adam 0,0001 64 0,9483 

3.12 Adam 0,0001 128 0,93 

 Epoch : 50  

3.13 SGD 0,0001 64 0,8983 
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3.14 SGD 0,0001 128 0,9 

 Epoch : 75  

3.15 SGD 0,0001 128 0,91 

Overall, the result indicate that the Adam optimizer 
performed better, particularly with a learning rate of 0.0001. 
When comparing learning rates, a lower learning rate of 0.0001 
was found to be more effective with the Adam optimizer, while 
the Stochastic Gradient Descent (SGD) optimizer showed 
slightly better performance with a higher learning rate of 0.001. 
The optimal configuration was identified as Adam with a 
learning rate of 0.0001 and a batch size of 128 which resulted 
in a training accuracy of 99% and an F1 score of 0.9049, 
achieving the highest validation accuracy across all tested 
configurations. 

 
Fig. 3. Confusion Matrix for the best performance model. 

The confusion matrix shown in Fig. 3 indicates that the 
classification results are primarily concentrated along the 
diagonal. This pattern suggests that the model generates more 
True Positives than False Negatives and False Positives. As a 
result, the model demonstrates high accuracy in correctly 
predicting the class of each image. 

In the optimal scenario of the third experiment, the model 
performs well in recognizing all classes, surpassing the results 
of both the first and second experiments. 

4) Additional experiment: The Effect of Background 

Complexity on Model Performance. 

The testing results of additional experiment are presented in 
Table XIV. 

TABLE XIV.  TESTING RESULT OF ADDITIONAL EXPERIMENT 

Scenario Image Type Testing Accuracy 

1.1 
Complex backround 

0,8433 

3.11 0,9483 

1.1 
Plain Background 

0,965 

3.11 0,9983 

The result indicates that background complexity 
significantly affects classification performance. When tested 
with natural background images, the model in Scenario 1.1 
achieved 77.5% validation accuracy and 84.33% test accuracy. 
After hyperparameter optimization in Scenario 3.11, validation 
accuracy improved to 90.17%, and test accuracy increased to 
94.83%, demonstrating that optimized hyperparameters 
enhance the model’s ability to handle complex backgrounds. 

In contrast, models trained with plain background images 
exhibited higher performance across all metrics. In Scenario 
1.1, the validation accuracy reached 94.17%, and test accuracy 
was 96.5%. After applying the best hyperparameters in 
Scenario 3.11, the model achieved 99.50% validation accuracy 
and 99.83% test accuracy, indicating that simplified 
backgrounds facilitate more effective feature extraction. 

V. DISCUSSION 

A. Advantages of Modified C-Grabcut 

The superior performance of Modified C-Grabcut over 
traditional GrabCut and C-Grabcut Original is attributed to a 
series of refinements that enhance segmentation accuracy, 
particularly in complex backgrounds and varying lighting 
conditions. 

One key improvement is the addition of a ‘+’ marker in the 
initial mask, which ensures that the leaf’s edges and disease 
lesions remain intact, preventing accidental removal. This 
enhancement is particularly beneficial for objects that share 
similar colors with the background, maintaining their structure 
more effectively. 

Increasing the number of GrabCut iterations from 5 to 10 
allows the model to refine the segmentation mask, resulting in 
sharper contours and fewer errors caused by noise or slight 
color differences. Additionally, reducing the median filter 
kernel size from 5 to 3 helps retain fine lesion details, 
preventing excessive blurring that could lead to information 
loss. 

Through these modifications, Modified C-Grabcut 
significantly improves segmentation quality, effectively 
isolating the disease-affected areas while minimizing 
background interference. The results confirm that this approach 
enhances feature extraction for classification, making it a more 
reliable and efficient segmentation technique for coffee leaf 
disease detection. 

B. Analysis of Experiment Results 

The results confirm that segmentation plays a crucial role in 
enhancing classification performance, particularly in in-field 
conditions with complex backgrounds. In the first experiment, 
the model achieved an initial accuracy of 88.33%, establishing 
a baseline performance before applying further optimizations. 
The introduction of Modified C-Grabcut segmentation 
significantly improved disease feature extraction by isolating 
lesions from background noise, leading to more stable 
classification performance compared to models without 
segmentation. These findings validate that effective 
segmentation enhances model robustness by reducing 
misclassification due to background interference. 
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Further improvements were observed when 50% of 
MobileNet-V2 layers were fine-tuned, resulting in an accuracy 
of 92.5%. This indicates that selective layer tuning enhances 
feature extraction, allowing the model to capture disease-
specific patterns more effectively. These findings are consistent 
with previous studies, where freezing too many layers reduced 
adaptability, while excessive fine-tuning led to overfitting and 
decreased generalization ability [14]. 

Hyperparameter tuning also played a crucial role in 
optimizing model performance. The Adam optimizer with a 
learning rate of 0.0001 and batch size of 128 achieved the 
highest accuracy at 94.83%, outperforming SGD. Adam’s 
adaptive optimization strategy contributed to faster 
convergence and better classification robustness, reinforcing 
the importance of fine-tuning hyperparameters for deep 
learning-based plant disease detection [21], [22]. 

The trend of accuracy improvement across the three 
experiments is illustrated in Fig. 4, showing a consistent 
upward trajectory as various optimizations were applied. As 
depicted, the model initially achieved 88.33% accuracy in 
Experiment 1, which increased to 92.5% in Experiment 2 after 
trainable layer optimization, and finally reached 94.83% in 
Experiment 3 following hyperparameter tuning. This trend 
confirms that a structured approach to segmentation, transfer 
learning, and hyperparameter tuning leads to significant 
improvements in classification accuracy. 

 
Fig. 4. Trend of model accuracy improvement across experiments. 

C. The Effect of Background Complexity on Model 

Performance 

The additional experiment highlights the significant role of 
background complexity in deep learning-based plant disease 
classification. The results indicate that models trained with 
plain background images achieved higher accuracy across all 
evaluation metrics, confirming that background noise in natural 
images negatively affects classification performance. The 
increase in test accuracy from 84.33% to 94.83% for natural 
background images after hyperparameter tuning suggests that 
model optimization helps mitigate background interference but 
does not fully eliminate its impact. 

The superior accuracy observed in plain background images 
(99.83%) indicates that a simplified background enables the 
model to focus on key object features without distractions. 
Conversely, natural background images introduce additional 
challenges, including color variations, shadows, and 
overlapping objects, which can lead to misclassification errors. 

These findings align with prior computer vision research, which 
has shown that complex backgrounds hinder feature extraction 
and reduce model performance. 

Despite the improved accuracy with plain background 
images, real-world agricultural settings rarely provide such 
controlled conditions. In practical applications, coffee leaves 
are surrounded by other foliage, exposed to uneven lighting, 
and subject to various environmental factors. As a result, 
models trained exclusively on plain background datasets may 
struggle to generalize effectively in in-field conditions, where 
background complexity is unavoidable. 

To address these challenges, segmentation remains a critical 
preprocessing step. By isolating the primary object, Modified 
C-Grabcut significantly reduces background interference, 
allowing the model to extract more relevant disease features. 
The results reinforce the importance of integrating 
segmentation techniques into deep learning workflows, 
ensuring more reliable classification performance in diverse 
and uncontrolled environments. 

VI. CONCLUSION 

This study investigated the impact of Modified C-Grabcut 
segmentation and model optimization on coffee leaf disease 
classification in in-field conditions. The research aimed to 
enhance classification accuracy by addressing the challenges 
posed by complex backgrounds in agricultural images. 

The results confirm that effective segmentation 
significantly improves classification performance. The 
Modified C-Grabcut technique outperformed GrabCut and C-
Grabcut Original, achieving an IoU of 0.8369, Dice Coefficient 
of 0.9091, and test accuracy of 94.83%. These findings validate 
that better contour detection and refined boundary constraints 
help isolate disease-relevant features, reducing 
misclassification due to background noise. 

Further improvements were observed through model 
optimization techniques, particularly in trainable layer selection 
and hyperparameter tuning. Fine-tuning 50% of MobileNet-V2 
layers resulted in an accuracy increase to 92.5%, while the 
Adam optimizer (learning rate 0.0001, batch size 128) achieved 
the highest accuracy of 94.83%. Additionally, experiments on 
background complexity demonstrated that models trained with 
plain background images performed better (99.83% accuracy) 
than those with natural backgrounds, confirming that 
background noise negatively impacts feature extraction. 

In summary, this research demonstrates that segmentation-
based preprocessing is crucial for improving deep learning-
based plant disease classification, especially in real-world 
agricultural applications. The findings contribute to precision 
agriculture and automated disease detection by offering a robust 
segmentation-enhanced classification approach. 
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