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Abstract—Deep learning models such as TabNet have gained 

popularity for handling tabular data. However, most existing 

architectures treat categorical variables as nominal, ignoring the 

inherent ordering in ordinal data, which can lead to suboptimal 

classification performance, particularly in tasks where ordinal 

relationships carry meaningful information, such as quality 

assessment, disease severity staging, and risk prediction. This 

study investigates the impact of explicitly modeling ordinal 

relationships in deep learning by developing an ordinal 

classification model and comparing it with its nominal 

counterpart. The proposed approach integrates TabNet a deep 

learning framework with ordinal constraints, leveraging a 

proportional odds model to better capture the ordinal structure 

and Beta cross-entropy as the loss function to enforce ordering 

during training. To evaluate the effectiveness of the proposed 

ordinal classification approach, experiments were conducted on 

two publicly available datasets: the White Wine Quality dataset 

and the Hepatitis C dataset. The results demonstrate that 

incorporating ordinal constraints leads to improvements across 

multiple evaluation metrics, including 1-off accuracy, average 

mean absolute error (AMAE), maximum mean absolute error 

(MMAE), and quadratic weighted kappa (QWK) compared to a 

nominal classification model trained under the same conditions. 

These findings underscore the importance of ordinal modeling in 

tabular classification and contribute to the advancement of deep 

learning techniques for structured data. 

Keywords—Ordinal classification; TabNet; proportional odds 
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I. INTRODUCTION 

Tree-based machine learning algorithms like Extreme 
Gradient Boosting (XGBoost), Categorical Boosting (CatBoost) 
have achieved strong performance on tabular data, but they have 
limitations in learning complex, and non-linear relationships as 
compared to deep learning methods. Numerous neural 
architectures have been proposed for the purpose of 
strengthening neural networks' performance on tabular data. 
TabNet [1] is a type of neural network specifically designed for 
processing tabular data. TabNet has improved classification in 
various domains such as insurance [2], rainfall prediction [3], 
food safety risk [4]. In tabular datasets, each column represents 
a distinct feature, with some columns containing continuous 
numerical values while others include discrete or categorical 
data [5]. During training, TabNet uses softmax for discrete 
outputs which gives the model's predefined set of class 
probabilities for classification tasks. However, on the case of 

ordinal classification, the softmax might not be the best choice. 

Ordinal regression (ordinal classification) problems in 
machine learning involve classifying patterns according to a 
categorical scale that reflects a natural order among the labels 
[6]. This type of problem can be approached as nominal 
classification; however, doing so ignores the ordinal information 
[7], which may result in low prediction accuracy and the loss of 
important information regarding the order of the categories. A 
more effective strategy is to employ methods that consider the 
ordinality, thereby enhancing the classification model's 
performance. It can be challenging to ascertain the link between 
distinct classes using other techniques, but ordinal regression 
can help [8]. 

In non-tabular domains, ordinal classification has been 
transformed by deep learning, such as age estimation [9] and 
medical diagnosis [10] using images. However, no deep learning 
model has been developed explicitly for ordinal classification in 
tabular data. This study intends to close this gap by creating a 
deep learning ordinal classifier specifically designed for tabular 
data, utilising neural networks with ordinal constraints to 
enhance interpretability and prediction accuracy. We introduce 
Proportional Odds Model (POM) for TabNet, combined with the 
Beta Cross-Entropy loss function, to enhance the classification 
performance of ordinal tabular data. The (POM) [11] is a 
category of generalized linear models employed to model the 
dependence of an ordinal response on discrete or continuous 
covariates. The POM can be directly applicable to the output of 
a TabNet, thus addressing the challenge of deep learning 
methods in tabular data ignoring ordering information of data. 
POMs offer a more adaptable and comprehensible method of 
deep ordinal classification by indirectly modelling a latent space 
in addition to the set of thresholds dividing the ordered classes. 
By replacing the one-hot labels with their soft label equivalents, 
the beta cross-entropy loss function adds soft labels to the cross-
entropy loss function. Soft labels might potentially improve 
model performance by better accounting for ordinal 
classification uncertainty, which occurs when it is difficult to 
distinguish between nearby categories because of their 
resemblance. 

The remainder of this paper is structured as follows: A 
review of relevant theory and related literature is presented in 
Section II; materials and methods for completing the work are 
described in Section III; analysis and interpretation of results are 
presented in Section IV, while Sections V and VI provide the 
discussion and conclusion, respectively. 
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II. LITERATURE REVIEW 

While a lot of research has been done on the ordinal 
classification of tabular data, very little of it has concentrated on 
deep learning for the ordinal classification of tabular data. 
Convolutional Neural Networks (CNN) are used in image 
datasets for the current deep learning ordinal techniques. 

A. Deep Learning Ordinal Classification in Image Data 

For determining the degree of neurological damage in 
individuals with Parkinson's disease (PD), an ordinal 
decomposition method in conjunction with a 3D CNN ordinal 
model was suggested [10]. Instead of employing a softmax 
function for the output nodes, a regular sigmoid function is 
supplied in the output node. They provided experimental 
evidence that using ordinal information can enhance 
performance on a challenging task, such as evaluating changes 
in brain activity in Parkinson's disease. 

By taking into account a family of probabilistic ordinal link 
functions in the output layer, a deep convolutional neural 
network model for ordinal regression was proposed [9]. The 
experiments ran over two different image data ordinal 
classification problems. The link functions used are those from 
cumulative link models, which are traditional statistical linear 
models that project each pattern onto a one-dimensional space. 

B. Ordinal Classification in Tabular Data 

A thorough analysis of ordinal classification techniques was 
presented in study [6], the authors grouped ordinal classification 
methods into three: naïve approaches, binary decomposition, 
and threshold models. Naïve approaches apply standard 
machine learning models without explicitly considering the 
ordinal structure. Binary decomposition transforms the ordinal 
problem into multiple binary classification tasks, either solved 
by separate models or a multi-output model. Threshold models 
approximate a real-valued predictor and partition it into intervals 
to determine class boundaries. 

In naïve approaches, artificial intelligence-machine learning 
(AI-ML) algorithms were proposed for cost-sensitive learning 
utilizing resampling techniques and for ordinal categorization 
using ordinal decomposition [12]. They evaluated a "naïve" 
multi-class decomposition called "One-Vs-One" (OvO) and a 
"naïve" conversion of the classification issue into a regression 
task, and an ordinal ‘Ordered Partitions’ (OrdP) decomposition. 
In the cost-sensitive learning they used SMOTE. To predict 
white wine quality based on physicochemical data, [13] applied 
Synthetic Minority Oversampling Technique (SMOTE) 
algorithm to address class imbalance then applied Random 
Forest and Multinomial Logistic Regression for classification, 
ignoring the order between classes. Random Forest 
outperformed the Multinomial Logistic Regression. The 
absence of a clear correlation between the regression model's 
prediction error and the misclassification error is one of the 
drawbacks of the conventional ordinal classification techniques 
based on regression. 

An ordinal binary decomposition method that allows 
ordering information to be used by standard classification in 
class attributes was presented in study [14]. An ensemble-based 
classifier that combines ensemble-learning paradigm such as 

bagging and AdaBoost with the ordinal binary decomposition 
by study [14] to improve prediction performance was proposed 
in study [15]. To predict soil temperature level, the study in [16] 
proposed Soil Temperature Ordinal Classification (STOC) 
approach that used five different traditional ML methods (K-
Nearest Neighbors, Random Forest, Naïve Bayes, Support 
Vector Machines, and Decision Trees). The STOC using 
Decision Trees as the base learner (STOC.DT) performed better 
among the others. The primary challenge with ordinal binary 
decomposition approaches is that, they are strongly dependent 
on the specific decomposition method used and the way the 
results from all decompositions are combined into a final 
classification. 

Two gradient descent-based techniques for learning an 
ensemble of base classifiers being decision rules was presented 
in study [17] . The forward stage-wise additive modelling that 
makes use of the threshold loss function is the foundation of the 
decision rule induction algorithm. The ordinal decision criteria 
are competitive with both the established ordinal classification 
techniques and conventional regression and multi-class 
classification methods. In study [18] a method that simplifies the 
ordered class classification problem to the conventional two-
class problem was presented. Neural networks and support 
vector machines were then trained using the method. An 
experimental study verified the usefulness of the approach. In 
study an ordinal loss function based on the soft labelling 
approach was used to combine four Multi-Layer Perceptron 
(MLP) models that had been optimized. Furthermore, an ordinal 
logistic regressor is included with the soft labelling models. The 
unimodal probability distributions fail to explicitly model the 
ordinal structure of data. 

C. Unimodal Regularisation 

The performance of ordinal classifiers with respect to the 
conventional one-hot encoding has been enhanced by the 
distributions suggested to softly model the targets. 

A straightforward technique was proposed in study [20] to 
enforce unimodality in discrete ordinal probability distributions 
using the Poisson distribution. The distribution parameter λ is 
equal to the mean and variance of this type of distribution. As a 
result, its ability to obtain a slight variation is limited. Because 
of this, they also employed the binomial distribution, which has 
two parameters: the probability, p, and the number of classes, C. 
Although the variance (Cp(1 − p)) and the mean (Cp) have 
different expressions, positioning the mode at the right point in 
the interval while obtaining a small variance is difficult. 

It was suggested to use a soft labelling strategy based on 
generalized triangular distributions, which are asymmetric and 
unique for every class in study [21]. A metaheuristic is used to 
calculate the parameters of these distributions, which are then 
tailored to the particular problem. Additionally, the model can 
avoid errors in remote classes thanks to this method. 

A sample based on the exponential function 𝑒
−|𝑖−𝑙|

𝜏   where 𝑙 
represents the class of the pattern and 𝑖 =  1, . . . , 𝐶, followed by 
a softmax normalization was proposed [22]. However, the value 
of τ requires experimental tuning, and in some cases, the 
probability mass is not sufficiently concentrated in the interval 
of the correct class. 
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A unimodal regularization technique based on the beta 
distribution was proposed in study [23] and applied to the cross-
entropy loss. This regularization encourages the label 
distribution to form a soft unimodal shape. Because of its low 
variance and domain constraint from 0 to 1, using beta 
distributions to determine the soft labels is an improvement over 
earlier approaches [19] . 

D. Research Gap and Motivation 

Ordinal binary decomposition (OBD) is commonly used to 
handle ordinal classification in tabular data. OBD does, 
however, have inherent limits because its effectiveness is highly 
reliant on the particular decomposition technique employed and 
how the output of several decompositions is combined to 
provide a final classification. This dependence may result in 
suboptimal performance and a more complex model. To address 
these challenges, we propose an alternative approach inspired by 
techniques widely used in image-based ordinal classification 
namely, threshold-based modeling applied to the output of deep 
learning algorithms. We use TabNet [1], a deep learning model 
developed especially for tabular datasets, and apply POM to its 
output layer. 

Additionally, recent research has shown that soft labeling 
can improve ordinal classification performance by incorporating 
uncertainty and reducing the impact of hard class boundaries. To 
take advantage of this benefit, we use a unimodal regularization 
technique based on the beta distribution [23] in place of the 
conventional categorical cross-entropy loss in order to improve 
the accuracy and robustness of our ordinal classifier. 

In order to provide a more efficient solution for ordinal 
classification in tabular data, our study aims to close the gap 
between conventional OBD approaches and contemporary deep 
learning techniques by using these developments. 

III. MATERIALS AND METHODS 

Building on the previous analysis of the state-of-the-art, our 
proposal is to integrate a flexible threshold model in the output 
layer, POM, with a unimodal probability distribution based on 
the beta distribution to more effectively enforce ordinal 
constraints during learning. 

A. Data Description and Preprocessing 

This study uses two datasets to evaluate the different models; 
Hepatitis C dataset and white wine quality dataset both 
obtainable online at UCI machine learning repository [24]. The 
data was processed and split into the ratio of 7:3 for training, and 
testing respectively. 

1) Hepatitis C dataset: The Hepatitis C dataset has 615 

instances of laboratory values of blood donors and Hepatitis C 

patients and demographic values like age. It includes a total of 

14 features including the target attribute which has five 

outcomes, ‘0=Blood Donor’, ‘0s=suspect Blood Donor’, 

‘1=Hepatitis’, ‘2=Fibrosis’, ‘3=Cirrhosis’. Category (blood 

donors vs. Hepatitis C, including its progression: 'simply' 

Hepatitis C, Fibrosis, Cirrhosis) is the target attribute for 

classification. The dataset has some missing values and they 

were filled using mean. Blood donor, suspect blood donor was 

encoded as 0, hepatitis was encoded as 1, fibrosis encoded as 2, 

cirrhosis as 3. Numerical values were normalized. Since the 

classes were imbalanced (see Fig. 1), SMOTE was used to 

balance the classes. 

 

Fig. 1. Hepatitis C dataset class distribution. 

2) White wine quality dataset: The white wine quality 

dataset has 4898 instances of physicochemical tests of the 

Portuguese “Vinho Verde” wine. It includes a total of 12 

features including the target variable “quality” which has 7 

outcomes ranging from 3 to 9. The classes are ordered and not 

balanced as shown in Fig. 2 so SMOTE was used to balance the 

classes. 

 

Fig. 2. White wine quality dataset class distribution. 

B. TabNet Architecture 

TabNet's architecture consists of 𝑁𝑠𝑡𝑒𝑝𝑠  subnetworks that 

are processed sequentially in a hierarchical manner (see Fig. 3), 
with each subnetwork representing a decision step. During 
training, every decision step processes the current data batch as 

its input. At the 𝑖𝑡ℎ step the subnetwork takes in the processed 

information from the (𝑖 − 1)𝑡ℎ step to determine which features 
to utilize. It then outputs a refined feature representation, which 
is incorporated into the overall decision. TabNet combines the 
outputs of all decision steps to generate the final prediction. 

At every decision step, TabNet employs a feature mask that 
encourages controlled sparsity M[i]  ∈  ℜ𝐵 ×𝐷 , where 𝐵 
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represents the batch size, for soft instance-wise feature selection. 
The masking is applied multiplicatively,  M[i] ∙ f  , f   is the 
feature representation at the current step. This feature mask is 
learned using attentive information from the preceding decision 
step, a [i − 1] , and is computed as:                                                      

M[i] =  sparsemax (P [i − 1] ∙  h𝑖(a [i − 1])) . The feature 

transformer module determines which features should be 
forwarded to the next decision step and which features should 
be utilized to produce the output at the current decision step. 

This process is defined as: [d[i], a[i]] = f𝑖(M[i] ∙ f) , where 

d[i]  ∈  ℜ𝐵 ×𝑁𝑑 represents the decision step output, and     a[i]  ∈
 ℜ𝐵 ×𝑁𝑎  serves as attentive information for subsequent steps. 
Certain layers within the feature transformers are shared across 
all decision steps. The feature masks generated during this 
process correspond to local feature weights and can be 
aggregated into a global importance score. 

Drawing inspiration from decision-tree-like aggregation, 
TabNet forms the overall decision embedding as: dout =

 ∑ ReLU (d[i])
𝑁𝑠𝑡𝑒𝑝𝑠

𝑖=1
.  A linear transformation, Wfinaldout , is 

then applied to generate the output mapping. For discrete 
outputs, a softmax function is used during training, while 
argmax is applied during inference. 

 

Fig. 3. TabNet architecture [1]. 

C. Proportional Odds Model 

When the classes have a natural order, rather than addressing 
the problem using the standard approach mentioned above, a 
threshold-based method known as the Proportional Odds Model 
(POM) can be used instead of softmax. POM is part of a broader 
category of models called Cumulative Link Models (CLMs) 
[25]. In the POM framework, the class ordering is maintained 
through the following latent constraint shown in Eq. (1): 

𝑓−1(𝑃(𝑦 ≤ 𝑦𝑐|𝑥)) =  𝑡𝑐 − 𝑓(𝑥)  (1) 

Where 𝑐 = 1, 2, ⋯ , 𝐶 − 1, 𝑓−1 is a function that maps 
probabilities from the range [0,1] to the entire real number line, 
ensuring a monotonic transformation. The threshold for class 𝑦𝑐 
is denoted as 𝑡𝑐. Consequently, the class 𝑦𝑐 is predicted if and 
only if: 𝑓(𝑥)  ∈  [𝑡𝑐−1, 𝑡𝑐]. 

POM utilizes the logit link function, which is defined in Eq. 
(2) as: 

logit[𝑃(𝑦 ≤ 𝑦𝑐| 𝑥)] = log
𝑃(𝑦 ≤ 𝑦𝑐| 𝑥)

1 −  𝑃(𝑦 ≤ 𝑦𝑐| 𝑥)
 

= 𝑡𝑐 − 𝑓(𝑥),   𝑐 = 1, ⋯ , 𝐶 − 1,  (2) 

or the equivalent expression expressed in Eq. (3): 

𝑃(𝑦 ≤ 𝑦𝑐| 𝑥) =  
1

1+ 𝑒−(𝑡𝑐−𝑓(𝑥))  (3) 

D. Beta Cross-Entropy 

Beta cross-entropy is a unimodal regularization technique 
that incorporates the beta distribution into the cross-entropy loss. 
This regularization promotes a soft unimodal distribution of 
labels, making it more suitable for ordinal classification 
problems. 

For a one-hot label, the probability distribution of the label 
is given by 𝑞(𝑖) =  𝛿𝑖,𝑙 , where 𝑙  represents the ground truth 

class. The Dirac delta function, 𝛿𝑖,𝑙 equals 1 when 𝑖 =  𝑙, and 0 

otherwise. This label smoothing technique can be incorporated 
into the cross-entropy loss by modifying 𝑞(𝑖) in Eq. (4): 

𝐿 =  ∑ 𝑞(𝑖)[− log 𝑃(𝑦 = 𝐶𝑖|𝑥)]𝐽
𝑖=1   (4) 

with a target distribution that is more conservative as shown 
in  Eq. (5): 

𝐿 =  ∑ 𝑞′(𝑖)[− log 𝑃(𝑦 = 𝐶𝑖|𝑥)]𝐽
𝑖=1   (5) 

where 𝑞′(𝑖) =  (1 −  𝜂)𝛿𝑖,1 +  𝜂𝑓(𝑥, 𝑎, 𝑏) and the linear 

combination is controlled by the parameter 𝜂  . 𝑓(𝑥, 𝑎, 𝑏) 
represents the probability value sampled from a beta distribution 

centred in 𝑥 =
2𝐽−1

2𝐽
  and makes uses of the a and b parameters 

obtained using the method proposed by the authors [23]. 

The properties of the beta distribution are as follows. In its 
standard form, the beta distribution, denoted as, 𝛽(𝑎, 𝑏)  is a 
continuous distribution. Its probability density function (PDF) is 
given in Eq. (6): 

𝑓(𝑥, 𝑎, 𝑏) =  
𝑥𝑎−1(1−𝑥)𝑏−1

𝐵(𝑎,𝑏)
   (6) 

where 0 < 𝑥 < 1, 𝑎 > 0  and 𝑏 > 0 . The beta function 
𝐵(𝑎, 𝑏) has the form shown in Eq. (7): 

𝐵(𝑎, 𝑏) = ∫ 𝑥𝑎−1(1 − 𝑥)𝑏−1𝑑𝑥 =  
Γ(𝑎)Γ(𝑏)

Γ(𝑎+𝑏)

1

0
 (7) 

where Γ(𝑎) =  (𝑎 − 1)! . When 𝑎, 𝑏 > 1,  the probability 

density function  𝑓(𝑥) has a unique mode at 
𝑎−1

(𝑎+𝑏−2)
 and is zero 

at 𝑥 = 0  and 𝑥 = 1 . If 𝑎 = 1  or 𝑏 = 1  then 𝑓(𝑥)  has a 
corresponding terminal value 𝑏 or 𝑎, respectively. Lastly,  𝑓(𝑥) 
becomes the uniform distribution if 𝑎 = 𝑏 = 1. 

Fig. 4 illustrates the differences in the final layer and loss 
functions of the nominal TabNet and its ordinal variation as 
proposed. 
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Fig. 4. Comparison between the existing nominal (left) and proposed ordinal TabNet (right). The key difference is in the loss function and the constraint on 

learned representations, affecting how the model treats ordinal relationships. 

IV. RESULTS 

The results of the proposed ordinal TabNet approach are 
presented in this section, along with a comprehensive 
comparison against the compared approaches. 

A. Hyperparameters 

We present best hyper-parameter configuration that 
achieved the highest performance for each dataset. We 
employed Bayesian hyper-parameter optimization approach to 
identify the most effective hyper-parameter setup for 
optimization purposes. We used early stopping as a strategy to 
determine the optimal number of epochs for training the model, 
which helps conserve computational resources, prevent over-
fitting, and demonstrate strong generalization capabilities 
without excessive training. 

For the Hepatitis C dataset, the best performance was 
achieved with the values shown in Table I.TABLE I.  

TABLE I.  HYPERPARAMETERS FOR HEPATITIS C DATASET 

Hyperparameter Value 

Number of Decision Steps (n_steps) 7 

Decision Layer Size (n_d) 39 

Attention Layer Size (n_a) 31 

lambda_sparse 2.882 x 10-3 

Learnring rate (lr) 7.457 x 10-3 

Gamma  1. 175 

For the white wine dataset, the best performance was 
achieved with the values shown in Table II. 

TABLE II.  HYPERPARAMETERS FOR WHITE WINE DATATSET 

Hyperparameter Value 

Number of Decision Steps (n_steps) 8 

Decision Layer Size (n_d) 62 

Attention Layer Size (n_a) 63 

lambda_sparse 3.634 x 10-3 

Learnring rate (lr) 9.890 x 10-3 

Gamma  1. 010 

B. Evaluation Metrics 

Various evaluation metrics are used to measure the closeness 
of predictions to actual values. In this work, all selected 
performance metrics are well-suited for ordinal classification 
problems, as they appropriately penalize misclassification errors 
more severely when they occur in distant classes compared to 
adjacent ones. The following performance metrics are 
considered: 

 1-off accuracy: assesses the proportion of predictions 
that are either correct or differ by at most one category 
from the actual class. 

 Average Mean Absolute Error (AMAE) [26]: The 
average MAE, calculated as the mean of the MAE 
classification errors across different classes, helps to 
reduce the impact of imbalanced class distributions. 
When AMAE is applied to an unbalanced dataset, the 
trivial class for AMAE is counted like any other class 
rather than in proportion to its frequency. Let MAEc be 
the MAE for a given c-th class, AMAE is defined in Eq. 
(8) as: 

𝐴𝑀𝐴𝐸 =  
1

𝐶
∑ 𝑀𝐴𝐸𝑐

𝐶
𝑐=1   (8) 

where AMAE values fall between 0 to C − 1. 

 Quadratic Weighted Kappa (QWK) [27]: Reflects the 
degree of disagreement, placing greater emphasis on 
larger differences between ratings than on smaller ones. 
The quadratic weighted kappa is calculated as Eq. (9): 

𝑄𝑊𝐾 = 1 −  
∑ 𝑊𝑖,𝑗𝑂𝑖,𝑗𝑖,𝑗

∑ 𝑊𝑖,𝑗𝐸𝑖,𝑗𝑖,𝑗
  (9) 

where, W is the penalization matrix; quadratic weights are 

taken into consideration in this instance, 𝑊𝑖,𝑗 =
(𝑖−𝑗)2

(𝐶−1)2 ), E is the 

expected matrix, whereas O is the confusion matrix that 
represents the agreement that would occur by chance. 

 Maximum Mean Absolute Error (MMAE) [28]:  MMAE 
represents the MAE value of the class with the largest 
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deviation between the true and predicted values, as 
shown in Eq. (10): 

𝑀𝑀𝐴𝐸 = max {𝑀𝐴𝐸𝑐; 𝑐 = 1, ⋯ , 𝐶} (10) 

C. Compared Approaches 

The proposed ordinal TabNet approach is evaluated in 
comparison with the following methods: 

 A nominal TabNet (using softmax and cross-entropy) 
[1]. 

 STOC.DT [16]: An ordinal classification model that was 
developed to classify soil temperature level in tabular 
data. 

D. Model Comparison 

This section presents the results of this study that 
implemented the ordinal TabNet. Table III and Table IV present 
a comparative analysis of the proposed approach against the 
baseline nominal model TabNet, and STOC.DT using 
evaluation metrics for both the Hepatitis C and white Wine 
datasets. Each metric's best value is indicated in bold. 

TABLE III.  HEPATITIS C MODEL EVALUATION METRICS 

Model 
1-off 

(%) 

AMAE QWK MMAE 

TabNet 97.8  0.423 0.835 0.777 

STOC.DT 97.2 0.602 0.769 1.16 

Proposed 

Approach 
98.9 0.439 0.890 0.666 

TABLE IV.  WHITE WINE MODEL EVALUATION METRICS 

Model 1-off (%) AMAE QWK MMAE 

TabNet 92.6 1.222 0.584 3.0 

STOC.DT 92.2 1.028 0.569 2.16 

Proposed 

Approach 
92.9 1.051 0.598 2.333 

Test confusion matrices for the Hepatitis C and white wine 
datasets are displayed in 0   and Fig. 6 , respectively, for the 
proposed approach and the baseline approach (nominal 
approach). 

  

Fig. 5. Hepatitis C confusion matrices for nominal(left) and proposed ordinal TabNet(right). 

  

Fig. 6. White wine confusion matrices for nominal(left) and proposed ordinal TabNet(right). 
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V. DISCUSSION 

Table III shows results from Hepatitis C model evaluation, 
our proposed approach has achieved a 1-off accuracy of 98.9%, 
QWK of 0.890, and MMAE of 0.666 outperforming TabNet [1] 
that treats the problem as nominal and STOC.DT [16] that takes 
the ordinal information into consideration through ordinal 
binary decomposition. When comparing the test confusion 
matrices (0) of the baseline technique (nominal approach) and 
proposed approach, the confusion matrix of the proposed 
approach is centered on the diagonal which shows that our 
approach penalizes inaccuracy among distant classes. 

Table IV shows results from white wine model evaluation. 
It demonstrates that, in comparison to the alternative methods, 
TabNet [1] and STOC.DT [16], the proposed method achieved 
a higher 1-off accuracy and QWK with values 92.9% and 0.598, 
respectively. STOC.DT was a close competition as it performed 
slightly better than our approach in terms AMAE and MMAE. 
The same can be observed for white wine test confusion 
matrices Fig. 6 as in the Hepatitis C confusion matrices that the 
confusion matrix of the proposed approach is centered on the 
diagonal which shows that our approach penalizes inaccuracy 
among distant classes. 

VI. CONCLUSION 

This paper presents a novel deep ordinal network that 
integrates POM with a Beta Cross-Entropy loss function 
applicable to ordinal tabular data. The study presents a data-
driven approach to improving predicting accuracy while 
preserving the inherent order within categorical labels by 
combining deep learning architecture with ordinal constraints. 
The proposed model enhances the performance of deep 
networks compared to its nominal counterpart. The findings 
indicate that the optimal parameter values are problem-
dependent, emphasizing the need for an experimental design 
where all parameters are carefully tuned for each specific 
problem. 

By emphasizing the benefits of integrating ordinal 
constraints into deep neural networks, this paper theoretically 
advances the expanding field of ordinal deep learning. 
Additionally, the study provides insight into how deep ordinal 
classifiers behave while working with tabular data, laying the 
groundwork for further developments in this field. 

The proposed approach can successfully classify ordinal 
data with enhanced robustness, which makes it appropriate for 
practical applications where ordinal relationships are essential. 

Despite these contributions, the study has certain limitations. 
Substantial computational resources are needed for the deep 
learning model, which restricts its use in real-time situations. 
The model's effectiveness on other ordinal classification tasks 
has not been tested, despite its strong performance on the 
selected datasets. 

Future work could explore an ensemble approach that 
integrates various soft labeling techniques to enhance model 
robustness. Additionally, investigating alternative cumulative 
link model (CLM) link functions beyond the logit function may 
provide deeper insights into ordinal relationships and improve 
classification performance. 
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