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Abstract—This paper investigates the application of machine 

learning and deep learning models for intelligent real-time Air 

Quality Index (AQI) classification within a smart home digital 

twin context. Leveraging sensor data encompassing CO2 and 

TVOC levels, we perform a comparative analysis of eight models: 

Transformer Neural Network (TNN), Convolutional Neural 

Networks (CNN), Gated Recurrent Units (GRU), Recurrent 

Neural Networks (RNN), Support Vector Machines (SVM), 

Random Forest (RF), Gradient Boosting (GB), and K-Nearest 

Neighbors (KNN). These models aim to accurately classify air 

quality into six categories corresponding to AQI levels, ranging 

from Good to Hazardous, which are critical for assessing health 

risks. The performance of each model is rigorously evaluated 

using metrics including accuracy, precision, recall, F1-score, and 

ROC curves. Our findings demonstrate that the implemented 

models exhibit strong performance. This high-accuracy 

classification enables the smart home digital twin to move beyond 

passive monitoring, enabling proactive environmental control. For 

instance, the digital twin can use this real-time AQI classification 

to automatically adjust HVAC systems, trigger air purifiers when 

indoor air quality degrades, and potentially inform occupancy 

schedules. This integration allows for intelligent, adaptive 

management of the home's environment, ensuring optimal indoor 

air quality and occupant well-being. The paper also discusses the 

limitations of each model and suitable application scenarios for 

intelligent AQI management within the digital twin framework, 

offering valuable insights for the selection of appropriate air 

quality classification models in smart home environments. 
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I. INTRODUCTION 

The digital world and digital technologies are constantly 
increasing. One of the most important digital technologies is the 
digital twin. A digital twin is a virtual twin or digital copy of a 
physical asset, system, process, or product that operates in a 
virtual environment. The digital twin acts as a bridge between 
the physical entities and the virtual environment. One of these 
field of digital twin is smart building that spans the building 
lifecycle and collect real-time data from building by using 
sensors to control the behavior and monitor operations to 
optimize building performance and improve the decision 
making. Air pollution is a major environmental concern 
affecting public health worldwide [1]. Accurate and reliable air 
quality classification is crucial for implementing effective 
mitigation strategies and informing the public [2]. 

Air quality is a very important factor anywhere, especially in 
enclosed spaces. To ensure human safety, air quality must be 
monitored. Monitoring air quality means know the percentage 
of harmful gases such as carbon dioxide and volatile organic 
compounds in the surrounding environment.  Air pollution is 
responsible for many diseases, including lung cancer, asthma, 
and heart disease, and it can also cause a wide range of other 
health problems. Traditional methods of air quality assessment 
rely on expensive and complex analytical laboratory-based 
methods. However, with the advancements in low-cost sensor 
technologies, real-time, local air quality monitoring has become 
increasingly feasible. 

This paper explores the application of various machine 
learning (ML) and deep learning (DL) models for air quality 
classification in smart building using a real dataset composed of 
CO2 and TVOC CCS811 sensor readings. CCS811 is an Air 
Quality Sensor can measure the CO2 (equivalent CO2) and 
TVOC (Total Volatile Organic Compounds) density. We 
analyze the performance of eight models: Transformer Neural 
Network (TNN), Convolutional Neural Networks (CNN), Gated 
Recurrent Units (GRU), Recurrent Neural Networks (RNN), 
Support Vector Machines (SVM), Random Forest, Gradient 
Boosting, and K-Nearest Neighbors (KNN). This study can help 
to identify the optimal models for this task. We highlight the 
strengths and weaknesses of each model in the context of air 
quality classification and discuss their suitability for different 
applications. 

II. LITERATURE REVIEW 

The imperative for effective air quality monitoring has 
spurred significant research into the use of computational 
techniques, with a notable focus on machine learning (ML) and 
deep learning (DL). Traditional approaches to air quality 
classification rely on laboratory-based analyses of complex 
compounds. These approaches are often time-consuming and 
expensive and not suitable for real time analysis [2]. Several 
studies have explored the use of different models that can 
analyze the data for real time and cost-effective classification. 

Classical machine learning techniques have been widely 
applied in the realm of air quality prediction and assessment. For 
instance, Support Vector Machines (SVMs) have demonstrated 
their ability in creating robust decision boundaries, performing 
effectively in high-dimensional data spaces [3]. Similarly, K-
Nearest Neighbors (KNN) approaches have been utilized, 
showcasing its simplicity and effectiveness in numerous 
classification tasks [4]. Furthermore, tree-based ensemble 
methods have shown promise in this domain. Random Forest 
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algorithms have demonstrated strong generalization 
performance, effectively handling complex, non-linear data [5]. 
Additionally, boosting methods such as AdaBoost have proven 
useful in combining weak learners into strong classifiers, often 
achieving good performance on imbalanced and complex 
datasets [6]. 

The advancement of deep learning has also brought notable 
contributions to air quality analysis. Deep Neural Networks 
(DNNs), including Convolutional Neural Networks (CNNs), 
have proven useful in identifying spatial patterns and 
hierarchical features from sensor data [7]. Furthermore, 
Recurrent Neural Networks (RNNs) have demonstrated their 
ability to capture temporal dependencies in time series data, 
making them applicable in situations with continuous sensor 
data [8]. The Transformer model, a relatively recent 
advancement in deep learning, has shown impressive results in 
numerous fields, exhibiting the power of self-attention 
mechanisms in data modeling and classification [9, 10]. It has 
been used for various classification, regression and other data 
processing tasks. The integration of air quality monitoring 
systems within smart homes is a growing area of interest, 
particularly in the context of digital twins, which are virtual 
replicas of physical environments. These systems leverage 
Internet of Things (IoT) technologies, low-cost sensors, and 
advanced machine learning models to provide real-time insights 
into indoor air quality (IAQ). Such insights are pivotal for 
enhancing occupant health, comfort, and well-being. This 
review synthesizes recent advancements in IAQ monitoring and 
classification, focusing on their potential applications in digital 
twins for smart homes. 

III. INDOOR AIR QUALITY MONITORING SYSTEMS 

Castellani et al. (2021) [15] present a systematic review of 
IoT-based systems for IAQ monitoring, highlighting that 
thermal comfort parameters, CO₂, and particulate matter (PM) 
levels are the most frequently monitored metrics, with 70%, 
65%, and 27.5% of studies focusing on these aspects, 
respectively. The authors also note that Arduino and Raspberry 
Pi controllers dominate system designs, accounting for 37.5% 
and 35% of implementations. However, only 22.5% of systems 
adopt calibration approaches prior to deployment, raising 
concerns about data accuracy (Castellani, Benini, & Brunelli, 
2021). For digital twins in smart homes, precise calibration is 
essential to ensure reliable IAQ classification, as inaccuracies 
could compromise the twin's ability to reflect real-world 
conditions. Low-cost air quality sensors (LCS) have emerged as 
a feasible solution for pervasive monitoring, as discussed by De 
Vito et al. (2024) [16] and Higgins et al. (2024). While LCS 
offer affordability and unobtrusiveness, their limitations in 
producing data suitable for source apportionment models pose 
challenges (Higgins, Kumar, & Morawska, 2024). Furthermore, 
Tagle et al. (2020) demonstrate moderate inter-unit variability in 
low-cost PM sensors, emphasizing the need for robust 
calibration methodologies. These findings underscore the 
importance of integrating calibration routines into digital twin 
frameworks to enhance the reliability of IAQ classifications. 

IV.  MACHINE LEARNING MODELS FOR AIR QUALITY 

PREDICTION 

Advanced machine learning models play a critical role in air 
quality prediction and classification, enabling digital twins to 
forecast pollutant concentrations and identify sources of 
pollution. TAOYING et al. (2020) [19] propose a hybrid CNN-
LSTM model for predicting PM2.5 concentrations, leveraging 
convolutional neural networks (CNNs) for feature extraction 
and long short-term memory (LSTM) networks for capturing 
temporal dependencies. Their results indicate superior 
performance compared to standalone LSTM models, with lower 
mean absolute error (MAE) and root mean square error (RMSE). 
Similarly, Xiao et al. (2020) [20] introduce a weighted LSTM 
extended model (WLSTME) that accounts for spatiotemporal 
correlations influenced by site density and wind conditions. 
Both studies highlight the potential of deep learning models to 
support real-time IAQ classification in digital twins. Toharudin 
et al. (2023) [21] address the challenge of unbalanced PM2.5 
concentration datasets using boosting algorithms such as 
AdaBoost, XGBoost, CatBoost, and LightGBM. Their approach 
significantly reduces bias and variance, improving classification 
accuracy for different PM2.5 levels. For digital twins, such 
techniques can enable more granular and accurate IAQ 
categorization, facilitating proactive measures to mitigate 
pollution exposure. 

V. INTEGRATION WITH DIGITAL TWINS 

Digital twins in smart homes require seamless integration of 
sensor data, predictive models, and user interfaces to provide 
actionable insights. The work of Castellani et al. (2021) [15] 
emphasizes the importance of energy-efficient designs, with 
72.5% of reviewed systems claiming energy efficiency as a key 
feature. Energy efficiency is particularly relevant for digital 
twins, as continuous data acquisition and processing demand 
significant computational resources. Additionally, De Vito et al. 
(2024) advocate for open datalakes to support repeatability and 
further research, which aligns with the principles of digital twin 
development, where data transparency and interoperability are 
paramount. Chen et al. (2023) [22] propose a CNN-RF ensemble 
framework for PM2.5 concentration modeling, demonstrating 
improvements in root mean square error (RMSE) and mean 
absolute error (MAE) compared to standalone CNN and random 
forest (RF) models. This hybrid approach could be adapted for 
digital twins, enabling accurate and reliable IAQ classification 
across diverse microenvironments within smart homes. 

VI. CHALLENGES AND FUTURE DIRECTIONS 

Despite significant progress, several challenges remain. 
Higgins et al. (2024) [17] highlight the lack of IAQ data from 
non-residential and non-educational microenvironments, 
particularly in regions outside Europe and North America. This 
geographic bias limits the generalizability of IAQ classification 
models for global smart home applications. Furthermore, the 
heterogeneity of indoor environments, as noted by Higgins et al. 
[17], [18] necessitates careful consideration of sensor 
placement, occupancy patterns, and building characteristics. 
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Future research should focus on developing standardized 
calibration protocols for low-cost sensors and exploring novel 
AI-driven approaches to address unbalanced datasets and spatial 
variability. Additionally, the integration of external pollution 
data and environmental conditions into digital twin frameworks 
could enhance their ability to differentiate between indoor and 
outdoor pollution sources. Despite the significant contributions 
in air quality monitoring, there is a noticeable absence of a 
comprehensive, side-by-side comparison of these diverse 
methods on a consistent data setting. Prior research tends to 
emphasize single model types or particular subsets of machine 
learning algorithms for specific tasks and datasets, limiting the 
generalization across different environments. A gap exists in the 
current knowledge as there is less comparative analysis of 
several models trained on the same dataset. This analysis will 
enable the identification of the best suited model for air quality 
assessment. This study, using a real dataset, aims to address this 
gap by performing a comprehensive, comparative analysis using 
a diverse set of models from each of the aforementioned types, 
and explore their effectiveness when applied to a standardized 
dataset. 

VII. METHODOLOGY OF AIR QUALITY CLASSIFICATION 

A. Maintaining the Integrity of the Specifications 

The template is used to format your paper and style the text. 
All margins, column widths, line spaces, and text fonts are 
prescribed; please do not alter them. You may note peculiarities. 
For example, the head margin in this template measures 
proportionately more than is customary. This measurement and 
others are deliberate, using specifications that anticipate your 
paper as one part of the entire proceedings, and not as an 
independent document. Please do not revise any of the current 
designations. 

VIII. AIR QUALITY CLASSIFICATION SYSTEM 

ARCHITECTURE 

Fig. 1 shows the architecture of the Air Quality 
Classification System (AQCS) which consists of the following 
modules: 

 Data Acquisition: The system uses CCS811 sensor data 
acquired by the Arduino microcontroller. CO2 and 
TVOC levels from a sensor are the input. These readings 
are labelled using predefined ranges for the different air 
quality categories. 

 Preprocessing Stage: Data scaling is used to standardize 
the input features. Label encoding is used for categorical 
data and one hot encoding of those labels. Reshaping of 
input features is done as necessary for each model. 

 Model Training and Prediction: 8 models are trained 
with respective hyperparameters. Predictions and 
probability scores are produced from those models. 

 Performance Evaluation: Each model is evaluated using 
metrics, such as accuracy, precision, recall, f1-score, 
AUC, log loss and confusion matrices. 

IX. METHODOLOGY OF AIR QUALITY CLASSIFICATION 

The CO2 and TVOC values are acquired from CCS811 
sensor and classified into air quality categories (Excellent, 
Good, Moderate, Poor, Unhealthy, Hazardous). Table I 
summarizes the TVOC and CO2 ranges for each category [15]. 
Model architectures and training will be explained in the next 
sections. 

 

Fig. 1. Air quality classification system architecture. 

Pollutant Categories (PCs) (based on ranges) and the Air 
Quality Index (AQI) are both tools that simplify complex data. 
They make air pollution information more understandable, 
accessible, and actionable for both the public and policymakers. 
They help estimate the potential health impacts of air pollution 
based on concentrations. They also enable informed decision-
making by communicating the health risks associated with 
different levels of air pollution, empowering individuals to take 
steps to protect themselves and their families. They support 
policy and management through informing the development of 
regulations, tracking progress, and enabling effective air 
pollution control strategies. Table II and Table III show the 
TVOC and CO2 concentration ranges by air quality category. 

TABLE I TVOC AND CO2 RANGES FOR EACH CATEGORY 

Category CO2 Range (ppm) TVOC Range (𝝁𝝁𝒈/𝒎𝟑) 

Excellent 200 - 400 10 - 50 

Good 401 - 700 51 - 100 

Moderate 701 - 1000 101 - 200 

Poor 1001 - 1500 201 - 400 

Unhealthy 1501 - 2000 401 - 600 

Hazardous 2001 - 3000 601 - 1000 

CCS811 sensor for 

TVOC and CO2 Data 

Acquisition 

Microcontroller  

Preprocessing 

Stage 

 

Model 

Training 

and 

Predictio

n 

 

Transfo

rmer, 

CNN, 

GRU, 

RNN, 

GB, RF, 

SVM, 

KNN 

 

 

Perform

ance 

Evaluati

on 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 3, 2025 

312 | P a g e  

www.ijacsa.thesai.org 

TABLE II TVOC CONCENTRATION RANGES BY AIR QUALITY 

CATEGORY 

Rang Category Caution 

10 - 50 Excellent very clean environment 

51 - 100 Good Low TVOC levels 

101 - 200 Moderate 
Moderate levels, some sources may be 

present 

201 - 400 Poor 
Potentially concerning, increased 

ventilation needed 

401 - 600 Unhealthy Significant source, ventilation likely needed 

601 - 1000 Hazardous High exposure, take action to reduce levels 

TABLE III CO2 CONCENTRATION RANGES BY AIR QUALITY CATEGORY 

Rang Category Caution 

200 - 400 Excellent Optimal air quality 

401 - 700 Good Acceptable air quality 

701 - 1000 Moderate Some ventilation may be required 

1001 - 1500 Poor Poor ventilation, possible discomfort 

1501 - 2000 Unhealthy Reduce ventilation, discomfort likely  

2001 - 3000 Hazardous 
Severely hazardous, immediate ventilation 

needed 

A. Air Quality Index Calculation 

EPA’s formula for calculation of the AQI according to Eq. 
(1) and based on the Breakpoint Table for constants [15]. For 
each pollutant P, the sensor gives a concentration reading CP. 
This reading is typically an average over some period of time. 
The index for that pollutant is given by the following Eq. (1): 

𝐼𝑃 = (
𝐼ℎ𝑖𝑔ℎ − 𝐼𝑙𝑜𝑤

𝐶ℎ𝑖𝑔ℎ − 𝐶𝑙𝑜𝑤
⁄ ) ∗ (𝐶𝑃 − 𝐶𝑙𝑜𝑤) + 𝐼𝑙𝑜𝑤(1) 

Where: 

 CP: The concentration of pollutant P. 

 Clow, Chigh: The low/high concentration breakpoints that 
contain CP. These breakpoints are defined by the EPA 
in the Breakpoint Table (below). 

 Ilow, Ihigh: The low/high index range associated with 
concentration breakpoints for CP. 

Having calculated the index for each pollutant, the AQI is 
simply the maximum index across all pollutants. 

In this paper, the Air Quality Index (AQI) for TVOC and 
CO2 is designed to communicate the quality of indoor air based 
on the combined levels of Total Volatile Organic Compounds 
(TVOC) and Carbon Dioxide (CO2). Unlike the standard AQI 
based on criteria pollutants, this index focuses on common 
indoor pollutants and provides a practical metric for indoor 
environmental management. This customized approach seeks to 
translate the combined levels of TVOC and CO2 into an easily 
understandable metric, providing guidance on the quality of the 
indoor air. 

X. DATASET ACQUISITION AND CHARACTERISTICS 

A. Data Acquisition 

 Sample Count: The dataset consists of 1500 individual 
data points, each representing a single measurement of 

CO2 and TVOC levels. Data is separated into training-, 
testing- and validation datasets. 

 Temporal Resolution: The data was collected at 2.17 
samples/second. 

 Environmental Conditions: Samples were acquired 
during a wide array of environmental conditions 
including high and low temp, wind speed conditions, 
humidity. Environmental values were not used in this 
study to focus on Co2 and TVOC. Using a Nano 33 BLE 
sense microcontroller we can further study the impact of 
both Temperature and Humidity on the measurement of 
the CO2 and TVOC concentrations. 

 Sensor Calibration: The CCS811 sensor is manufacturer 
calibrated. We were keen to operate the sensor for long 
periods before use to maintain data integrity. 

B. Dataset Characteristics 

 Class Distribution: The distribution of 500 test samples 
across the six AQI categories of the test set is shown in 
Table IV. 

TABLE IV TESTSET SAMPLES DISTRIBUTION 

Class Number of samples Percentage 

Excellent 71 0.142 

Good 81 0.162 

Hazardous 80 0.160 

Moderate 102 0.204 

Poor 91 0.182 

Unhealthy Total 75 0.150 

 Class Balance: The dataset exhibits very low-class 
imbalance, with the 'Good' and 'Moderate' categories 
being more represented than the 'Excellent' and 
'Unhealthy' categories. This imbalance is due to the 
limited occurrence of 'Excellent' and 'Unhealthy' 
conditions in real-world data. We could have addressed 
this imbalance by using the common techniques, e.g., 
oversampling, under sampling, or cost-sensitive 
learning. 

C. Potential Biases and Limitations 

 Real-world vs. Lab-Controlled Conditions: The data 
was collected under real-world environmental 
conditions. The variations in environmental conditions 
(e.g., temperature and humidity fluctuations) may affect 
sensor readings and represent a potential source of bias. 
However, we feel that using real-world data provides 
greater ecological validity of the derived model. 

 Sensor Limitations: The CCS811 sensor has known 
limitations in terms of cross-sensitivity to different 
VOCs and potential drift over time. While we used 
frequent cross-validate the obtained data, these 
limitations are acknowledged, and future studies will 
explore integrating the use of more reliable and accurate 
sensors, such as electrochemical sensors. 
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XI. ENVIRONMENTAL DATA POINTS ARE OMITTED 

This study is specifically for evaluating TVOC and CO2 
readings. Data points gathered from other environmental aspects 
were not considered in this research. A second real-world dataset 
of sensor readings was acquired from a CCS811 sensor under 
varying environmental conditions and exposures. The dataset, 
contains 2363 samples collected over several hours. The sensor 
was exposed to smoke, sanitizer with 70% alcohol, and Adidas 
perfume. The dataset includes columns representing CO2 
concentration (in ppm) and TVOC concentration (in ppb). The 
high correlation in the shape of the CO2 and TVOC 
concentration curves in your CCS811 sensor data is a common 
and interesting observation. Here's an interpretation of this 
phenomenon, considering the sensor's characteristics and the 
environmental context: 

A. Interpretation 

The strong correlation between CO2 and TVOC 
concentrations likely stems from a combination of factors: 

1) CCS811 sensor operation: The CCS811 is primarily a 

metal-oxide gas sensor. It measures the change in resistance of 

a metal oxide layer when exposed to various gases. While 

designed to estimate CO2 and TVOC levels, the underlying 

sensing mechanism is not perfectly selective for each gas 

individually. In other words, there's some cross-sensitivity. The 

sensor might respond to changes in the overall composition of 

VOCs, and this change in VOC composition often occurs 

alongside changes in CO2. The sensor's algorithm tries to 

separate CO2 and TVOC signals, but the underlying 

measurements are still correlated. 

2) Common sources: Many real-world sources emit both 

CO2 and VOCs simultaneously. 

3) Human activity: Human respiration releases CO2. At the 

same time, activities like using cleaning products, cooking, and 

personal care products (perfume, deodorant, etc.) release VOCs. 

In an indoor environment, where these activities occur together, 

you'd expect CO2 and TVOC levels to rise and fall in tandem. 

o Combustion: Smoke, as mentioned, is a product of 

combustion. Combustion processes produce both 

CO2 and a wide range of VOCs. Therefore, smoke 

exposure would naturally lead to a correlated 

increase in both signals. 

o Sanitizers: Alcohol-based sanitizers release alcohol 

vapors (which are VOCs). While the alcohol itself 

might not directly produce CO2, the presence of a 

sanitizer often correlates with human activity 

(cleaning, etc.) that does produce CO2. 

4) Ventilation: Ventilation patterns can influence both CO2 

and VOC concentrations in a similar way. If ventilation is poor, 

both CO2 and VOCs will build up. If ventilation is good, both 

will be diluted and removed. This shared influence of ventilation 

reinforces the correlation between the two signals. 

5) Environmental context: The specific environmental 

conditions during data acquisition play a crucial role. If the 

sensor was in a relatively closed environment with limited air 

exchange and exposed to activities that generate both CO2 and 

VOCs, the correlation would be more pronounced. 

B. Implications for Analysis 

 Distinguish Sources: The correlation makes it more 
challenging to distinguish the specific sources of 
pollutants. For example, it might be difficult to 
definitively say that a CO2 peak is solely due to human 
respiration versus a combination of respiration and a 
nearby VOC source. 

 Calibration: the sensor's calibration and the algorithm's 
accuracy can be affected by the cross-sensitivity and the 
inherent correlation between CO2 and VOCs. 

 Multi-Sensor Fusion: To improve the accuracy of 
individual CO2 and TVOC measurements, we might 
consider combining the CCS811 with other sensors that 
are more selective for specific gases (e.g., a non-
dispersive infrared (NDIR) CO2 sensor). 

 Data Interpretation: When interpreting the data, we 
avoided drawing overly specific conclusions based 
solely on the CO2 and TVOC readings. Consider the 
context of the measurements and the limitations of the 
sensor. 

In summary, the high correlation between CO2 and TVOC 
levels in our CCS811 data is a result of the sensor's operating 
principles, the co-occurrence of CO2 and VOC sources in the 
real world, and the influence of factors like ventilation. It's 
important to understand these factors to interpret the data 
accurately and avoid oversimplification. 

Fig. 2 shows a sample of the data used for estimation of the 
indoor air quality index and a sudden variation during intended 
exposure of the sensor to a TVOC. The calculation begins by 
assessing each pollutant separately. A sub-index is generated for 
both TVOC and CO2 concentrations using a piecewise linear 
interpolation approach and user defined breakpoints. The 
measured TVOC concentration is compared to predefined 
levels, which are based on guidance from different scientific 
studies and building standards. 

 

Fig. 2. Sample TVOC and CO2 signal change over time when exposed to a 

TVOC. 

The measured CO2 concentration is also compared to its 
predefined levels and translated to a sub-index. The levels are 
based on standards recommendations for CO2 levels in indoor 
spaces. The individual sub-indices for TVOC and CO2 are then 
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combined to generate a single, overall AQI value. In the 
previous codes, the combining of the individual sub-indices has 
been done by taking the higher index between the two. This 
approach helps to quickly communicate to the user the worst-
case scenario for the combined TVOC and CO2 readings. While 
the example uses a maximum, other methods for combining can 
include averaging or weighting. The AQI for TVOC and CO2 
provides a way to understand the status of your indoor air based 
on common indicators of indoor air quality using EPA like 
methods but without the standard EPA's breakpoints and 
requirements for the pollutants. 

C. Classifier Models Architecture 

Detailed architectures of each of the 8 models implemented 
includes the key components, layers, and configurations for each 
as follows: 

1) Transformer neural network model: The Transformer 

model is a deep learning model based on the attention 

mechanism as shown in Fig. 3. While it is primarily for 

sequence-to-sequence tasks, it is configured here for sequence 

classification. 

a) Transformer model architecture: The transformer 

architecture implemented in this paper leverages a series of 

custom layers to process input data, ultimately classifying it 

into predefined air quality categories. The architecture begins 

with an Input Embedding layer, responsible for mapping the 

input features (CO2 and TVOC levels) into a higher-

dimensional embedding space. This is followed by Positional 

Encoding, a crucial step that introduces information about the 

relative positions of the input sequence, which in this case 

consists of a single time step representing one set of feature 

values. The core of the transformer encoder is encapsulated 

within the Encoder Layer, which first applies multi-head self-

attention using the Multi Head Attention layer, allowing the 

model to weigh the importance of different features within the 

input. Then a feed-forward network is used which further 

refines the transformed representation. Layer normalization and 

dropout are applied to both outputs to stabilize the training, 

mitigate overfitting and ensure the layer outputs are in a 

consistent and stable range for easier training. These 

components work in tandem to extract relevant patterns and 

relationships from the input data. The output is then processed 

by the model using a global average pooling layer before the 

classification layers. The transformer model is built using the 

class Transformer Classifier, which encapsulates all previously 

mentioned layers as part of the model architecture and defines 

the forward propagation through these layers via 

the call method. The final classification is performed using 

the Output Layer, which uses a fully connected dense layer with 

a softmax activation, providing a probability distribution across 

the different air quality categories. The model includes a 

custom train_step method to train the model by using the 

functional call, which is used for inference. 

The get_config method is also implemented for all custom 

layers to ensure that model can be easily saved and loaded in 

the future. Finally, the model is compiled with the ADAM 

optimizer, categorical cross entropy as loss function and 

accuracy as metric, and it is trained using the reshaped data to 

feed into the network and subsequently it is used to predict the 

labels on test set and generate classification reports, ROC 

curves, and confusion matrices. 

 

Fig. 3. Architecture of the TNN model. 

TABLE V TRANSFORMER MODEL'S STRUCTURE AND COMPLEXITY 

Layer/Component Type Input Shape Output Shape Parameters Activation 

Input Embedding Input Embedding Layer (None, 2) (None, 64) 192 Linear 

Positional Encoding Positional Encoding Layer (None, 64) (None, 64) 0 Linear 

Encoder Layer (x1) Encoder Layer (None, 64) (None, 64) 57,344 Various 

Multi-Head Attention Multi Head Attention Layer (None, 64) (None, 64) 49,408 Softmax 

Query, Key, Value Dense Dense Layers (None, 64) (None, 64) 12,288 x3 Linear 

Output Dense Dense Layer (None, 64) (None, 64) 4160 Linear 

Feed Forward Network 

(FFN) 
Feed Forward Network Layer (None, 64) (None, 64) 7,808 ReLU+Linear 

Dense 1 Dense Layer (None, 64) (None, 128) 8,320 ReLU 

Dense 2 Dense Layer (None, 128) (None, 64) 8,256 Linear 
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Layer Normalization Layer Normalization Layer (None, 64) (None, 64) 128 Linear 

Dropout Dropout Layer (None, 64) (None, 64) 0 None 

Global Average Pooling GlobalAveragePooling1D Layer (None, 1, 64) (None, 64) 0 None 

Output Layer Output Layer (None, 64) (None, 6) 390 Softmax 

Output Dense Dense Layer (None, 64) (None, 6) 390 Softmax 

Total Trainable Parameters    57,926  

In the context of machine learning models, "Parameters" 
refer to the internal settings within the model that are adjusted 
during the training process, enabling the model to learn patterns 
and make accurate predictions. "Tunable Parameters," on the 
other hand, are the hyperparameters that a user typically adjusts 
externally to optimize the model's performance, influencing how 
the model learns. "Default Values" indicate the specific 
parameter values that are used in the provided code when no 
specific settings are explicitly made, offering a baseline 
configuration for the models. The provided notes further explain 
how these parameters affect the behavior and performance of 
each model, providing essential insight for effective use. This 
information is designed to support tasks such as hyperparameter 
tuning, which focuses on adjusting the tunable parameters to 
achieve better results; model understanding, which provides an 
overview of how different model architectures are configured; 
comparison, which facilitates the comparison of models based 
on their settings; and model selection, which informs the choice 
of model appropriate for specific task. It is important to 
recognize that these parameters often have interdependencies; 
therefore, optimizing one parameter may change the optimal 
settings for another. Furthermore, the best values are highly 
dataset-dependent, meaning that different datasets might benefit 
from different configurations. Grid search and random search 
are popular tuning techniques that are employed alongside a 
good understanding of the parameter behavior in order to 
achieve optimal results. While default parameter values offer a 
good starting point, these parameters can often be improved 
using careful hyperparameter tuning to improve a models 
generalization ability and achieve a higher level of performance. 
Table V shows the key hyper parameters for several common 
machine learning models. For transformer 
models, embed_dim dictates the size of input embeddings, 
while num_heads specify the number of attention heads, 
and ff_dim defines the hidden layer size in the feedforward 
network. A rate parameter allows for dropout implementation to 
combat overfitting. It's worth noting that maxlen is a fixed, non-
tunable parameter in the given implementation. For 
convolutional neural networks (CNNs), the number of filters 
and kernel_size in the Conv1D layers are crucial, with 
flexibility to add various activation functions and layers. In 
recurrent neural networks (RNNs), specifically GRU 
layers, units represent the number of hidden units 
and activation sets the activation function. A dropout rate 
controls regularization and the number of layers is another 
potential hyperparameter. Similarly, for simple 
RNNs, units, activation, dropout and the number of layers is all 
tunable. For Support Vector Machines (SVMs), C is a 
regularization parameter, kernel defines the kernel type (like 
RBF, linear, or polynomial), gamma is a kernel coefficient 
(often scaled by default), and degree is specific to the 
polynomial kernel. In the realm of tree-based models, random 
forests include n_estimators, the number of trees, max_depth, 

the maximum tree depth, and min_samples_split, defining the 
minimum samples required to split a node. Numerous other 
parameters are also tunable. Gradient boosting models, such as 
Gradient Boosted Decision Trees (GBDT), share parameters 
like n_estimators and max_depth and adds learning_rate which 
scales each tree's contribution and loss sets the loss function. 
Finally, in K-Nearest Neighbors (KNN), n_neighbors determine 
the number of neighbors to consider, weights specify how 
neighbors are weighted and algorithm selects the method for 
calculating neighbor distance. 

2) Convolutional Neural Network (CNN): The 

Convolutional Neural Network (CNN) implemented in this 

program serves as a deep learning model designed for image and 

sequential data processing, utilizing convolutional operations to 

extract relevant features. In this context, its purpose is to classify 

air quality based on sequential patterns derived from the input 

data. The network begins with an input layer that accepts two 

features, which are subsequently reshaped to have dimensions 

(2, 1), making them compatible with the convolutional 

operation. The core of the CNN comprises two 1D convolutional 

layers (Conv1D). The first layer employs 64 filters with a kernel 

size of 3 and a ReLU activation, while the second layer has 128 

filters with the same kernel size and ReLU activation function. 

These layers apply the convolutions to the reshaped input, 

thereby extracting feature maps that highlight relevant patterns 

within the data. A Flatten layer then transforms the 2D feature 

maps into a 1D feature vector, preparing the output for fully 

connected layers. The flattened output is then passed through a 

fully connected dense layer with a ReLU activation, followed by 

a Dropout layer to mitigate overfitting by randomly disabling a 

percentage of the connections during training. Finally, an output 

layer, implemented as a dense layer with a softmax activation, 

produces a probability distribution across the six different air 

quality categories. The key parameters defining this network 

include the number of filters in each convolutional layer, which 

is set to [64, 128], the kernel size set to 3, and ReLU used as the 

activation function. Thus, the CNN serves to classify air quality 

by analyzing the spatial representation of the input features. 

3) Gated Recurrent Unit (GRU): The Gated Recurrent Unit 

(GRU) is implemented as a recurrent neural network designed 

for sequence processing and classification, employing gates to 

manage information flow. The GRU model starts with an input 

layer that takes two features, CO2 and TVOC, which are then 

reshaped to represent a single time step with these two features. 

Following this, a single GRU layer with 64 units is used to 

capture any sequential relationships within the data. To reduce 

overfitting, a dropout layer is then applied to the GRU output. 

This is followed by a dense layer with a ReLU activation to learn 

from the GRU outputs, and another dropout layer for 
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regularization. Finally, an output layer, implemented as a dense 

layer with softmax activation, generates the classification 

probability across the six air quality categories. The key 

parameters of this GRU model include 64 units in the GRU 

layer, ReLU as the activation function and a dropout rate of 0.5. 

The purpose of the GRU model within this program is for the 

time-based classification of air quality, leveraging the model's 

ability to capture any sequential information within the data. 
4) Recurrent Neural Network (RNN): A Recurrent Neural 

Network (RNN) is employed as another type of recurrent neural 

network aimed at sequence processing and classification using 

recurrent connections. The RNN model has an input layer that 

takes two features, CO2 and TVOC, at each time step. It 

reshapes the input to have one time step. A single Simple 

RNN layer with 64 units is then used to capture sequential 

information. To mitigate overfitting, a dropout layer is applied 

after the RNN layer. The output from the RNN is fed into a fully 

connected layer with a ReLU activation function, and another 

dropout layer for regularization. Finally, the output layer with a 

softmax activation generates the classification probability for 

each of the six air quality classes. The key parameters for this 

RNN model include 64 units in the RNN layer, ReLU as the 

activation function for the RNN units and a dropout rate of 0.5. 

The purpose of the RNN in this program is for time-based 

classification, leveraging its ability to capture any sequence 

information in the input data. 

5) Support Vector Machine (SVM): The Support Vector 

Machine (SVM) is a supervised learning model used for making 

predictions based on decision boundaries. It takes scaled 2-

dimensional features (CO2, TVOC) as input and uses a Radial 

Basis Function (RBF) kernel to create decision boundaries. 

A Calibrated Classifier CV is used to apply cross-validation 

calibration using isotonic regression, ensuring output 

probabilities are well-calibrated and reliable. The key 

parameters for this SVM model include a regularization 

parameter 'C' set to 1.0, 'rbf' as the kernel type, and ‘scale’ as the 

gamma coefficient for the kernel and isotonic as the probability 

calibration method. The SVM aims to classify air quality based 

on identifying complex decision boundaries in the feature space. 

6) Random Forest (RF): The Random Forest model uses an 

ensemble learning method for classifying the air quality data. 

This model constructs multiple decision trees based on random 

samples of the features and data points, creating a robust 

classifier that is less prone to overfitting. The Random Forest 

model takes scaled 2-dimensional features (CO2, TVOC) as 

input and constructs an ensemble of 100 decision trees. The final 

classification is then based on the average predictions across all 

of the trees. The number of estimators is set to 100, and 

a random_state of 42 ensures reproducibility. The main purpose 

of the Random Forest model within the program is the 

classification of air quality by using the combined knowledge of 

multiple decision trees. 

7) Gradient Boosting (GB): Gradient Boosting is another 

ensemble learning method that classifies by training weak 

learners in a stage-wise fashion, where each subsequent tree 

minimizes the loss incurred by the preceding tree. This model 

also takes scaled 2-dimensional features (CO2, TVOC) as input 

and constructs an ensemble of decision trees, but unlike the 

random forest model, the trees are added sequentially with each 

subsequent tree minimizing the error from past predictions. Key 

parameters for this Gradient Boosting model include 100 

boosting stages, a learning rate of 0.1, a maximum depth of 3 for 

individual trees, a random state of 42, and a 'log_loss' function 

that is optimized by the trees. In the program, the purpose of the 

Gradient Boosting model is to classify air quality by sequentially 

training multiple models, reducing the error of prediction in each 

iteration. 

8) K-Nearest Neighbors (KNN): The K-Nearest Neighbors 

(KNN) model is an instance-based learning method that 

classifies data based on the majority of its neighbors. This model 

takes the scaled 2-dimensional features (CO2, TVOC) and 

classifies each data point based on the label of the n_neighbors 

number of closest samples, using Euclidean distance to 

determine closeness. The key parameters for the KNN model 

include n_neighbors (default value set to 5), uniform as the 

weighting function, and 'auto' as the algorithm used to compute 

the nearest neighbors. The main purpose of the KNN model is 

to classify the air quality based on the category of the closest 

datapoints from the training data. 

D. Key Parameters of the Classifier Models 

Table VI summarizes the key parameters of the 8 models. 
The parameters that are most likely to be tuned or of interest 
when using these models are summarized in Table III. 

TABLE VI MODEL PARAMETERS 

Mo

del 
Key Tunable Parameters Default Values 

TN

N 

embed_dim, num_heads, ff

_dim, rate (dropout) 

embed_dim=32, num_heads=2, ff_d

im=32, rate=0.1 

CN

N 

filters (Conv1D), kernel_si

ze (Conv1D), activation 

filters=[64, 
128], kernel_size=3, activation='relu

' 

GR

U 

units (GRU), activation, dr

opout 

units=64, activation='relu', dropout=

0.5 

RN

N 

units (SimpleRNN), activat

ion 

units=64, activation='relu', dropout=

0.5 

SV

M 

C, kernel, gamma (RBF), d

egree (Polynomial) 

C=1.0, kernel='rbf', gamma='scale', 

degree=3 

RF 
n_estimators, max_depth, 

min_samples 

n_estimators=100, max_depth=Non

e, min_samples_split=2 

GB 
n_estimators, learning_rate

, max_depth 

n_estimators=100, learning_rate=0.

1, max_depth=3, loss='log_loss' 

KN

N 

n_neighbors, weights, algor

ithm 

n_neighbors=5, weights='uniform', a

lgorithm='auto' 

Table V gives a detailed view of the Transformer model's 
structure and complexity.  The computational complexity of the 
Transformer model described is primarily influenced by the 
multi-head attention mechanism and the feed-forward networks 
within the encoder layers. The multi-head attention has a time 
complexity of approximately O (n^2 * d), where 'n' is the 
sequence length and 'd' is the embedding dimension. However, 
in this specific implementation, the sequence length is fixed at 
1, therefore, the attention mechanism's computational 
complexity is closer to O(d), where d represents the embedding 
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dimension. The feed-forward networks have a complexity of O 
(d * f), where 'f' is the hidden layer size in the FFN. Since the 
Global Average Pooling, Output and Normalization layers have 
a relatively smaller time complexity, the overall complexity of 
this particular Transformer architecture with a sequence length 
of 1, can be approximated by O(d * f + d), where d is the 
embedding dimension and f is the feed forward dimension, 
indicating that complexity scales linearly with the embedding 
dimension and FFN dimension. Additionally, the dropout layers 
do not affect the overall time complexity of the model. 

E. Algorithm of Air Quality Model Comparison and 

Evaluation 

1. Initialization: 

 Define air quality categories (Excellent, 

Good, Moderate, Poor, Unhealthy, 

Hazardous). 

 Define functions to categorize air quality 

based on CO2 and TVOC levels. 

 Define a function to upload a CSV data file. 

2. Data Generation: 

 Generate a training dataset with a specified 

number of samples for each air quality 

category. 

 Generate a test dataset similarly. 

 Save both the training and test datasets to 

separate CSV files. 

3. Data Loading and Preprocessing: 

 Load the training and test datasets from the 

CSV files into pandas Data Frames. 

 Extract the CO2 and TVOC features as input 

(X) and the air quality categories as the 

target (y). 

 Scale the input features using Standard 

Scale. 

 Encode the target labels using Label 

Encoder. 

 Reshape/prepare the input data as required 

for each model type (e.g., for CNNs, 

transformers). 

 Convert categorical labels into a one-hot 

encoded format. 

4. Model Training and Evaluation: 

 Define, initialize and create instances of each 

of the 8 model types (TNN, CNN, GRU, 

RNN, SVM, RF, GB and KNN). 

 For each model: 

o Train the model using the 

preprocessed training data (and use 

cross-validation or grid search for 

hyperparameter tuning). 

o Predict on the test data to generate 

predictions and probabilities  

o Evaluate the model using the actual 

test data and the model predictions 

using performance measures 

(accuracy, precision, recall, f1-

score, ROC-AUC, log loss and 

confusion matrix). 

o Store performance metrics, 

including accuracy, classification 

report, and any relevant data for 

later analysis. 

 Plot relevant training and evaluation 

metrics (loss curves, confusion matrix, 

ROC curves). 

5. Summary and Output: 

 Collect and store the results of all 8 model 

types into a suitable data structure (e.g., 

dictionary). 

 Present a summary table using pandas, 

displaying: 

o The name of each model. 

o The accuracy obtained from each 

model. 

o Classification report string with the 

performance metrics. 

o Additional info like ROC, log loss 

and loss curves for applicable 

models. 

6. Print summary table: 

 Print the performance summary table to the 

console. 

XII. SYSTEM PERFORMANCE EVALUATION METRICS 

There exists a variety of measures for judging the 
performance. In our research, we have considered the following 
four performance measures as discussed in detail in the literature 
[11, 13]: 

Precision =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
  (2) 
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Recall (Sensitivity)  =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (3) 

Specificity =
𝑇𝑁

(𝑇𝑁+𝐹𝐴)
  (4) 

Accuracy =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
 (5) 

All of the above quantities are normally expressed as 
percentages. The various terms appearing in the above equations 
are: True Positive (TP), False Positive (FP), True Negative (TN) 
and False Negative (FN). 

Sokolova et al. [12] have shown that the accuracy measure 
does not distinguish between the numbers of correct labels of 
different classes. Sensitivity and specificity separately estimate 
a classifier’s performance on different classes. It has been shown 
that higher accuracy does not guarantee overall better 
performance of an algorithm and that a combination of measures 
gives a balanced evaluation of the algorithm’s performance. In 
this paper, we have used the Youden index and F-measure to 
evaluate the performance of our system: 

Youden Index =  Sensitivity −  (1 − Specificity)  (6) 

Fβ =  (1 +  β²)  ∗  (Precision ∗  Recall) / (β² ∗
 Precision +  Recall)     (7) 

where β is a weighting constant that evenly balances the F-
score when β=1, favors precision when β> 1, and recall 
otherwise. The Youden index evaluates the classifiers 
performance to a finer degree with respect to both classes. 
Youden Index: Balances sensitivity and specificity, providing a 
single measure of overall test performance. It ranges from -1 to 
+1, with higher values indicating better performance. F-Measure 
(F-score): Balances precision and recall, particularly when there 
is a trade-off between correctly predicting positives and 
capturing all actual positives. It also ranges from 0 to 1, with 
higher values indicating better performance. Seven performance 
metrics [11-14] are used to evaluate performance of the AQCS. 
The Sensitivity metric measures the rate of positive cases. The 
Specificity metric measures the proportion of positive cases that 
are correctly identified. The Accuracy represents the population 
of the correctly predicted examples, which is not an appropriate 
evaluation criterion in imbalanced data sets, and we will not put 
on much attention to it. The F- value combines the Precision and 
Recall and gets a higher value when both of Precision and Recall 
are high. F-SCORE is the harmonic mean of precision and 

sensitivity. For each class the ROC-AUC curves are given in 
addition to the Confusion Matrix. 

Log loss, also known as cross-entropy loss or logistic loss, is 
a metric used to evaluate the performance of classification 
models, particularly those that output probabilities (like logistic 
regression, neural networks with softmax output, etc.). Unlike 
accuracy, which only looks at whether the predictions are correct 
or not, log loss focuses on the probabilities associated with the 
predictions, penalizing models that are confident but wrong 
more heavily. For multi-class problems (where there are more 
than two classes), log loss generalizes to: 

Log Loss = − (1 / N)  ∗  Σ Σ [y_{ij}  ∗  log(p_{ij})] (8) 

Where: 

 y is the actual class label (either 0 or 1). 

 p_{ij} is the probability predicted by the model that the 
sample i belongs to class j. 

 log is the natural logarithm. 

 N is the number of samples 

To obtain a single loss value, we need to average the loss 
across all of the N samples that we have in the dataset. log loss 
is a valuable metric for classification models that produce 
probabilities. It penalizes confident incorrect predictions and 
provides a more nuanced understanding of model performance 
beyond accuracy alone. 

XIII. RESULTS AND DISCUSSION 

Table VII summarizes the performance of the 8 implemented 
models. The performance of each implemented model is 
carefully evaluated and demonstrate robust performance. To 
gain a deeper understanding of the model's capabilities, metrics 
such as precision, recall, and F1-score from the classification 
reports are examined. This analysis provides insights into each 
model's ability to correctly classify each category while 
highlighting any biases. ROC curves and confusion matrices are 
further analyzed to evaluate each model’s performance and to 
explain why each model behaves the way it does, including how 
well each model is able to identify different classes and if they 
make any systematic errors. Additionally, for the deep learning 
models (CNN, RNN, GRU, and Transformer), the training and 
validation loss curves are studied to evaluate their learning 
behavior over time and to assess how well the models were able 
to learn the patterns in the data set. 

TABLE VII PERFORMANCE METRICS FOR STRATIFIED KFOLD CROSS-VALIDATION 

Model 

Average 

Cross-

Validation 

Accuracy 

Test 

Accuracy 
Precision Recall Specificity Youden Index 

Positive 

Likelihood 

Negative 

Likelihood 

Discriminant 

Power 

TNN 0.999           0.986                     0.986    0.986        0.997      0.983            352.14             0.014             5.58 

CNN   0.999         0.998       0.998 0.998 0.999        0.997         2495.00         0.002 7.73 

GRU                            0.999           0.996       0.996           0.996 0.999       0.995           1245.00 0.004 6.97 

RNN                            1.000         0.998       0.998    0.998         0.999         0.997        2495.00     0.002            7.73 

Bi-
LSTM                            

 0.999          0.996       0.996    0.996        0.999         0.995          1245.00         0.004          6.97 

SVM                            0.995 0.996       0.996                 0.996        0.999     0.995           1245.00         0.004             6.97 

RF                            1.000          0.998       0.998    0.998        0.999     0.997           2495.00    0.002            7.738 

GB 0.998           1.000       1.000 1.000        1.000        1.000             0.00000   0.000             0.000 

KNN 0.998         1.000 1.000    1.000        1.000       1.000         0.00000              0.000           0.000 

https://en.wikipedia.org/wiki/Harmonic_mean#Harmonic_mean_of_two_numbers
https://en.wikipedia.org/wiki/Information_retrieval#Precision
https://en.wikipedia.org/wiki/Sensitivity_(test)
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Fig. 4. (a) Transformer’s ROC curve and (b) transformer’s training and 

validation loss curve and (c) confusion matrix for the transformer model. 

Support Vector Machine (SVM), Random Forest, Gradient 
Boosting, and KNN have a simplified loss curve, while neural 
network-based models like the Transformer, CNN, GRU, and 
RNN have a "traditional" loss curve. Neural networks use 
iterative training (gradient descent) with a loss function, 
allowing loss to be tracked and plotted over epochs. SVM, 
Random Forest, etc. Use non-iterative or different optimization 
methods without a typical loss curve per training epoch. These 
models have a single fit procedure, without per-epoch updates, 
and thus no intermediate steps to measure the loss in the same 
way as neural networks. The "simplified loss curve" plots their 
final accuracy as a proxy, not a real per-epoch training loss. 

This analysis delves into why certain models perform better 
than others, moving beyond simple accuracy comparisons to 
explore the underlying reasons rooted in model architecture, 
data characteristics, and algorithmic approaches. It examines 
how each model's inherent biases or assumptions affect results. 
For instance, the effectiveness of tree-based models like 
Random Forest for this specific classification problem, which 
may not generalize well to other datasets, is explored. The 
success of K-Nearest Neighbors (KNN) is discussed in relation 
to the specific data patterns and relationships. Fig. 4 shows 
transformer’s ROC curve, transformer’s training and validation 
loss curve and confusion matrix for the transformer model. The 
analysis investigates why a linear Support Vector Machine 
(SVM) might struggle with non-linearly separable classes, 
unlike tree-based methods that can effectively handle such 
scenarios. Model complexity is also considered, acknowledging 
that deep learning models are more capable of capturing intricate 
relationships than models like KNN, which are built on simpler 
data assumptions. The specific parameters of the models and 
their influence on performance is also discussed, such as the 
successful performance of Gradient Boosting and its parameters. 

The analysis further examines the effectiveness of Random 
Forest, KNN, and Gradient Boosting, which often achieve near-
perfect accuracy. The role of randomness in the sampling and 
feature selection in the Random Forest is discussed, including 
the way it leads to generalizable decision boundaries, also how 
the averaging of predictions across many trees provides robust 
classification. The explanation of KNN covers its core concept 
that similar points fall within the same category based on 
Euclidean distance. Furthermore, it explains why this approach 
is effective on this dataset and how that effectiveness may not 
be valid in real world scenarios. The sequential error 
minimization in Gradient Boosting is discussed, including how 
gradient descent enables subsequent trees to learn in the 
direction of a more optimal solution. 

The analysis also explains how the neural network models, 
specifically CNNs, RNNs/GRUs, and Transformers, learn from 
the data. It details how convolutional layers in CNNs extract 
spatial features or patterns by capturing local dependencies. It 
also discusses how the recurrent nature of RNNs/GRUs helps in 
learning temporal dependencies, especially how the gate 
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mechanism in GRUs facilitates handling of temporal data. The 
analysis then explains how self-attention mechanism of the 
transformer model works on this data set and how the dense 
layers of the transformer classifiers the data, also the role of the 
embedding and positional encoding layers in capturing relevant 
information. Speculations are made regarding what types of 
features and relationships the models might have learned from 
the data, including whether they correlate certain air quality 
categories more with CO2 or TVOC and whether the model's 
weights prioritize certain features or value ranges. 

Finally, the practical trade-offs between model complexity 
and inference speed are discussed. This includes whether the 
deep learning models have a longer inference time due to their 
complexity compared to the much faster random forest or KNN 
models and what is their impact on real time systems, and when 
computational expense is a significant concern and when it can 
be tolerated. Table VIII compares the 8 models implemented. 
This table highlights each model’s strengths, weaknesses, and 
typical applications. This table provides a comprehensive 
comparison of all 8 models, and allows us to make informed 
choices based on their strengths, weaknesses, and suitability. 

TABLE VIII MODEL COMPARISON 

Model Strengths Weaknesses Applications 

TNN 
- Captures long-range dependencies well. - 

Highly parallelizable training. 
Computationally expensive. 

- Text classification, sentiment analysis, 

machine translation, image recognition, time-

series. 

CNN 
- Excellent for spatial hierarchy processing. 

- Efficient in identifying local patterns. 
Can be sensitive to translations/rotations. 

- Image recognition, object detection, image 

segmentation, time-series analysis, audio 

processing. 

GRU 

- Captures sequential information 

effectively. - Handles long sequences better 

than basic RNNs due to gating mechanism. 

Can be computationally intensive on long 

sequences. 

- Natural language processing (NLP), time-

series analysis, speech recognition, machine 

translation. 

RNN 
- Can capture temporal dependencies well. - 

Simple to implement 

Difficult to train for long sequences, vanishing 

and exploding gradient. 

- NLP, speech processing, time-series 

forecasting, machine translation. 

SVM  

- Effective in high-dimensional spaces. - 

Can model non-linear decision boundaries 

with RBF kernel. 

Can be computationally intensive on large 

datasets. 

- Image classification, text classification, 

bioinformatics, outlier detection. 

RF 
- Robust to outliers and non-linearities. - 

Good generalization performance. 

Can be harder to interpret compared to single 

decision trees. 

- Classification and regression tasks, feature 

importance ranking, medical diagnosis, financial 

modeling. 

GB 

- Achieves high predictive accuracy and 

flexible for different loss functions. - 

Effective for complex datasets. 

Can be prone to overfitting with noisy data. 

- Structured classification and regression tasks, 

ranking tasks, fraud detection, recommendation 

systems. 

KNN 
- Simple to implement and easy to 

understand. - No explicit training phase. 

Computationally expensive in inference with 

large datasets. 

- Classification and regression tasks, image 

recognition, recommendation systems, anomaly 

detection. 

Deep learning models, such as Transformers, Convolutional 
Neural Networks (CNNs), Gated Recurrent Units (GRUs), and 
Recurrent Neural Networks (RNNs), are powerful tools that 
shine when dealing with complex data structures and requiring 
intricate feature learning. These models often excel at capturing 
nuanced patterns within data but come with a significant demand 
for computational resources, often requiring substantial 
processing power and training time. Conversely, classical 
machine learning models like Support Vector Machines (SVM), 
Random Forests, Gradient Boosting algorithms, and K-Nearest 
Neighbors (KNN) offer a different set of advantages. These 
models are generally faster to train and easier to interpret, 
making them suitable when speed and transparency are 
important considerations. 

When dealing specifically with sequential data, such as time 
series or text, the strengths of certain deep learning models 
become particularly apparent. Transformers, GRUs, and RNNs 
are explicitly designed to process sequence data, allowing them 
to learn dependencies and temporal patterns that other models 
might miss. Ensemble methods, as exemplified by Random 
Forest and Gradient Boosting, offer another approach by 
combining the predictions of multiple learners. This technique 

enhances the robustness and overall performance of the models, 
often leading to more reliable results. 

The computational cost associated with these different 
model types can vary greatly, especially when the size of the 
dataset changes. For instance, KNN has a very low training cost 
due to its simple algorithm, whereas complex neural networks 
can have high training times because they involve numerous 
iterations and parameter updates. This contrast highlights the 
importance of choosing a model that aligns with available 
resources and time constraints. Furthermore, interpretability is 
another important aspect to consider. Decision-tree based 
models like Random Forest and Gradient Boosting are often 
easier to interpret because their decision-making process can be 
traced through the tree structure. 

In the context of air quality classification based on CO2 and 
TVOC levels, different models may be preferred based on the 
desired outcome. If the relationships between CO2/TVOC and 
the air quality category are exceptionally complex, deep learning 
models like Transformers, CNNs, GRUs, and RNNs can be 
well-suited. If, however, speed of deployment and inference is 
paramount, a simple model like KNN may be a better fit due to 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 3, 2025 

321 | P a g e  

www.ijacsa.thesai.org 

its low computational overhead. In scenarios where accuracy is 
a top priority and deep learning is not required, ensemble 
methods such as Random Forest and Gradient Boosting can 
offer a good balance between performance and computational 
efficiency, potentially providing high accuracy without needing 
the complexity of very deep learning models. 

XIV. COMPUTATIONAL COMPLEXITIES OF THE 8 MODELS 

Table IX summarizes the computational complexities of the 
8 models. It provides a breakdown of both time and space 
complexity, along with explanations. 

TABLE IX COMPUTATIONAL COMPLEXITY SUMMARY 

Model 

Time 

Complexity 

(Training) 

Time 

Complexity 

(Inference) 

Space 

Complexity 

(Training) 

Space 

Complexity 

(Inference) 

Notes 

TNN 
O(N^2 * D 

+ N * D^2) 
O(N * D^2) O(N * D) O(N * D) 

N = Sequence Length (Here always 1), D = Embedding dimension. Training 
Complexity is dominated by attention layers' N^2. The model's size mainly 

determines space complexity 

CNN 
O(C * K * 

M * N) 

O(C * K * M 

* N) 

O(P + 

CKM*N) 

O(P + C * 

K * M) 

C = Number of channels, K = Kernel size, M = Feature maps, N = Training data. 

Training time is influenced by Convolutional operation. Space complexity is 

driven by the number of parameters (P). Inference is a subset of training 
complexity. 

GRU O(N * H^2) O(N * H^2) O(N * H) O(H) 

N = Sequence Length (Here always 1) and H = Hidden units. Time complexity 

dominated by matrix multiplication during recurrent processing. Space complexity 

is for the number of parameters and hidden state size. 

RNN O(N * H^2) O(N * H^2) O(N * H) O(H) 

N = Sequence Length (Here always 1) and H = Hidden units. The time complexity 

of each sequence item processed is O(H^2), so is the space complexity O(H) per 

sequence. Space is for the weight and the hidden states. 

SVM  
O(N^2) to 

O(N^3) 
O(N_sv * D) O(N * D) 

O(N_sv * 

D) 

N is the number of training samples. D is the dimension of each data point. N_sv 

is the number of support vectors. Training complexity depends on kernel choice 

and optimization. Memory consumption related to the storing of all data and 
support vectors. 

RF 
O(T * M * 
log(N)) 

O(T * M) O(T * M) O(T * M) 

T = Number of Trees, M = Number of features, N= Number of training data. 

Training time is determined by building each decision tree. Space is dominated by 

storing the trained trees. 

GB 
O(T * N * 
M) 

O(T * M) O(T * M) O(T * M) 

T = Number of trees, M = Number of features, N = Number of samples. Similar 

complexity to AdaBoost but might be slightly higher as it can be optimized by a 

loss function rather than simply weighing. 

KNN O(1) O(N * M) O(N * M) O(1) 

N = Number of training samples, M = Number of features. Training is very fast 

with KNN, its mostly a lookup. Inference complexity increases with dataset 

size.Space complexity is for storing entire dataset and no parameters. 

where, 

 O( ) - Big O Notation: Represents the upper bound of the 
growth rate of an algorithm's runtime or memory usage. 
It focuses on how the complexity scales with input size. 

 N: Number of training samples, Sequence Length 

 D: Embedding Dimensions, Feature Dimensions 

 C: Number of channels in the convolutional layer 

 K: Kernel size in the convolutional layer 

 M: Number of feature maps, number of features in 
general 

 H: Number of hidden units in the recurrent layers (GRU, 
RNN). 

 T: Number of trees in ensemble methods (Random 
Forest, Gradient Boosting). 

 N_sv: Number of support vectors in SVM. 

 R: Number of rules in the fuzzy logic systems 

 I: Input Calculation complexity within the fuzzy logic 
system. 

The time complexity of training a model reflects how the 
computational time scales with the amount of training data, 
while the time complexity of inference represents how the 
computation time scales when the model is used for predictions 
on new, unseen data. Space complexity during training pertains 
to the memory required during the training process, and space 
complexity during inference indicates the memory consumption 
for making predictions. It's important to note that Big O notation 
provides a theoretical measure, and practical performance can 
vary based on implementation details, hardware capabilities, and 
the specific dataset being used. Some complexity estimations are 
approximations because of the non-uniformity of internal 
operations, particularly in the case of more complex methods. 
For ensemble methods like Random Forest and Gradient 
Boosting, time and space complexity are notably influenced by 
the number of trees or weak learners involved in the model. The 
comparison in the table highlights that for scenarios with very 
large datasets, models with lower training complexities, such as 
KNN, SVM with simple kernels, or simpler decision trees, 
might be preferred to reduce training time. In real-time inference 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 3, 2025 

322 | P a g e  

www.ijacsa.thesai.org 

scenarios, models with lower inference time complexities, such 
as KNN, might be more appropriate for applications needing fast 
responses. Finally, models with high space complexities might 
not be feasible for use on devices that are limited by memory 
constraints, making practical considerations a crucial part of 
model selection. 

XV. CONCLUSION AND FUTURE WORK 

This study presented a comprehensive comparative analysis 
of eight diverse machine learning and deep learning models for 
intelligent real-time Air Quality Index (AQI) classification using 
sensor data, specifically within a smart home digital twin 
framework. The models evaluated included classical algorithms 
like Support Vector Machines (SVM), K-Nearest Neighbors 
(KNN), and Random Forest, alongside advanced deep learning 
architectures such as Transformer, Convolutional Neural 
Networks (CNN), Gated Recurrent Units (GRU), and Recurrent 
Neural Networks (RNN). 

For smart home indoor air quality (IAQ) 
classification, Gradient Boosting (GB) or Random Forest (RF) 
are the most highly recommended models. They provide perfect 
classification accuracy, precision, recall, specificity, Youden 
Index, and F1-score while maintaining relatively fast inference 
speeds, making them ideal for real-time monitoring in resource-
constrained smart home environments. K-Nearest Neighbors 
(KNN) is a very strong alternative, especially when extremely 
low space complexity (memory usage) is paramount, despite 
having a slightly higher inference complexity. Other complex 
models such as TNN, CNN, RNN, and GRU, while performing 
well, have higher computational costs that do not justify their 
usage, in comparison to the other models. SVM should also be 
avoided because of its higher complexity. The perfect 
performance across all models suggests that the classification 
task is relatively simple for all, meaning that additional 
complexity does not increase model performance. 

Future work for the IAQ classification model should focus 
on several key areas to ensure its practical and effective 
deployment. Performance should be fine-tuned through 
hyperparameter optimization to balance accuracy, speed, and 
resource consumption, and deployment should be optimized for 
low-resource devices by implementing techniques like 
quantization, compression, and edge computing. Expanding the 
model to identify anomalies and integrating it with existing 
smart home systems will enhance its usability and value. Future 
research should focus on several key areas to further enhance the 
practical application of these models within smart home digital 
twins: First, we propose investigating ensemble and hybrid 
approaches to further improve the robustness and accuracy of 
real-time AQI classification in varied and complex 
environments. Second, it's critical to prioritize the development 
of explainable AI (XAI) techniques to gain a better 
understanding of the decision-making processes in deep learning 
models, ensuring that the digital twin's responses are both 
effective and transparent. Finally, expanding the scope to 
include additional pollutants and multi-sensor data would enable 
a more comprehensive and reliable AQI classification, allowing 
the digital twin to respond more effectively to various scenarios. 
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