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Abstract—In hazardous chemical laboratories, identifying 

and managing safety hazards is critical for effective safety 

management. This study, grounded in safety engineering 

principles, focuses on laboratory environments to develop an 

efficient hazard detection model using deep learning and object 

detection techniques. The lightweight YOLOv4-Tiny algorithm, 

with fewer parameters, was selected and optimized for detecting 

unsafe factors in laboratories. The CIOU loss function was 

employed to enhance the stability of candidate box regression, 

while three attention mechanism modules were embedded into 

the backbone feature extraction network and the feature 

pyramid's upsampling layer, forming an improved YOLOv4-

Tiny object detection algorithm. To support the detection tasks, a 

specialized dataset for laboratory hazards was created. The 

improved YOLOv4-Tiny model was then used to construct two 

detection models: one for identifying the status of chemical 

bottles and another for detecting general laboratory safety 

hazards. The chemical bottle status detection model achieved AP 

values of 93.06% (normal), 95.31% (disorderly stacking), and 

90.72% (label detachment), with an mAP of 93.03% and an FPS 

of 272, demonstrating both high accuracy and speed. The 

laboratory hazard detection model achieved AP values of 97.40%, 

90.14%, 96.80%, and 68.95% for normal experimenters, 

individuals not wearing protective equipment, individuals 

smoking, and open flames, respectively, with a mAP of 88.32% 

and an FPS of 116. These results confirm the effectiveness of the 

proposed models in accurately and efficiently identifying 

laboratory safety hazards. 
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I. INTRODUCTION 

According to statistics, laboratory accidents have 
accounted for 20% of safety incidents over the past century, 
second only to fire accidents. The chemicals and equipment 
used in laboratories are essential components of scientific 
research, supporting the development of related fields. 
However, the toxic, flammable, explosive, and corrosive 
properties of chemicals make laboratories prone to accidents 
such as poisoning, fires, explosions, and injuries during daily 
operations. Incomplete statistics show that globally, from 
2015 to 2024, there were 5,513 laboratory safety accidents, 
resulting in 5,592 injuries and 2,560 deaths. This indicates that 
the safety situation in laboratories is quite severe, with 
frequent accidents not only hindering the smooth progress of 
research but also threatening the safety of laboratory personnel. 
Therefore, researching emerging technologies to improve 
laboratory safety management is of great practical significance. 

The direct cause of accidents resulting in casualties is the 

presence of unsafe factors, specifically unsafe behaviors of 
personnel and unsafe conditions of equipment. Therefore, the 
key to preventing accidents lies in eliminating these unsafe 
factors. Traditional safety management relies on manual 
monitoring, which is not only inefficient but also passive. 

As machine learning, neural networks, and deep learning 
technologies mature, various industries are gradually moving 
towards informatization and intelligent development. In recent 
years, laboratory safety management technology has seen 
significant development opportunities. Intelligent safety 
management technologies have continuously emerged and 
been successfully applied in practical work, such as safety 
helmet detection and fall hazard warnings. The successful 
application of artificial intelligence in these areas has 
demonstrated its effectiveness in improving safety levels. 

Therefore, researching deep learning-based methods for 
detecting unsafe factors is crucial for enhancing the efficiency 
of laboratory safety management, speeding up accident 
response times, reducing the likelihood of accidents, and 
strengthening accident rescue capabilities. 

1) Unclear detection targets: Laboratory accidents are 

varied, including fires, explosions, injuries, poisoning, and 

electric shocks. Accidents often result from the combined 

effect of multiple factors, characterized by complexity, 

randomness, and suddenness. However, most existing 

technical solutions focus only on individual unsafe factors, 

lacking a systematic analysis and detection of overall unsafe 

factors in laboratories. 

2) Insufficient unsafe factor image datasets: The 

complexity and diversity of laboratory accidents lead to 

varying forms of unsafe factors, making the design and 

collection of image data challenging. The lack of unsafe factor 

image datasets is a pressing problem that needs to be 

addressed. 

3) Detection models need to meet requirements for real-

time, accuracy, and stability: The complex and changing 

laboratory environment imposes higher demands on the 

performance of detection algorithms. Due to the sudden nature 

of accidents, detection models must have real-time capabilities 

and high accuracy to promptly identify and handle unsafe 

factors, preventing accidents. 

To address the above issues, this paper selects the YOLO-
v4-tiny algorithm, which has smaller model parameters, for 
conducting research on laboratory unsafe factor detection. 
Subsequently, a dataset of laboratory unsafe factors was 
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established to verify that this method can detect unsafe factors 
while meeting the requirements for detection accuracy and 
speed. Section II summarizes related work on object detection, 
Section III proposes an improved object detection model, 
Section IV verifies the effectiveness of this method through 
experiments, and Section V concludes the effectiveness of this 
method. 

II. LITERATURE REVIEW 

This paper will collect existing work on automated target 
detection algorithm to highlight the shortcomings of existing 
research. 

A. Traditional Target Detection Algorithm 

Traditional object detection algorithms typically operate 
by analyzing the motion characteristics of objects, designing 
feature operators, and extracting these features from the 
frames to be analyzed. These algorithms often have complex 
structures, leading to low detection speeds and limited 
recognition accuracy. Viola and colleagues [1] [2] made a 
significant breakthrough by designing a model that achieved 
real-time face detection for the first time. Their model 
employed a sliding window detection method, extracting 
features of various sizes from different positions within the 
detection frames, and then using classifiers to categorize the 
objects. Due to the high computational demands of this 
approach, which exceeded the capabilities of computers at the 
time, the model incorporated techniques like "integral images" 
and "detection cascades" to optimize performance and 
enhance detection speed. 

To further improve detection speed and address the trade-
off between feature invariance and non-linearity in object 
detection tasks, Dalal and colleagues [3] introduced the 
Histogram of Oriented Gradients (HOG) descriptor. HOG was 
primarily designed for pedestrian detection, allowing the input 
image to be rescaled multiple times while keeping the 
candidate boxes at a fixed size, thereby achieving effective 
detection. 

The Deformable Part-based Model (DPM), proposed by 
Felzenszwalb and colleagues [4] [5], represents the apex of 
traditional object detection methods. The core concept of 
DPM involves segmenting the object into parts, such as 
detecting components like wheels and windshields when 
identifying a car. Building on DPM, Girshick and colleagues 
[6] integrated a cascade structure into the model, optimizing it 
to significantly increase detection speed—up to ten times 
faster—without sacrificing accuracy. This enhanced DPM 
model marked the peak of traditional object detection 
techniques in terms of both accuracy and speed. 

However, with the continuous advancements in computer 
parallel processing capabilities, deep learning-based object 
detection models have gradually surpassed traditional methods, 
offering superior detection accuracy and speed. 

B. Object Detection Algorithm Based on Convolutional 

Neural Network 

The predecessor of Convolutional Neural Networks 
(CNNs) was the structure proposed by Fukushima, which 
included pooling and convolutional layers [7]. Building on 

this, Lecun introduced the backpropagation algorithm, 
forming the basic architecture of CNNs [8]. However, due to 
the limited computational power at the time, CNNs did not 
gain widespread application. 

The AlexNet model, proposed by Hinton's team, won the 
image classification competition, demonstrating the powerful 
image processing capabilities of CNNs [9]. The AlexNet 
network consists of three fully connected layers and five 
convolutional layers, using ReLU as the activation function 
and Dropout to prevent overfitting, achieving a test error rate 
of only 15.3%. This success sparked widespread interest in 
applying CNNs to image processing tasks. Subsequently, 
Simonyan and others proposed VGG-Net, which deepened the 
network layers (16-19 layers) and used smaller convolutional 
kernels, reducing the error rate to 7.3% [10]. GoogLeNet 
further optimized the network structure by introducing the 
Inception module, enhancing detection performance without 
excessively increasing model parameters. In 2015, Kaiming 
He proposed ResNet, which solved the vanishing and 
exploding gradient problems in deep networks through a 
residual structure, allowing the network layers to exceed 
1,000[11]. 

CNN-based object detection algorithms are mainly divided 
into Two-stage and One-stage methods. Girshick proposed 
RCNN, the first deep learning-based object detection 
algorithm, marking a significant advancement in object 
detection [12]. Subsequently, Fast RCNN and Faster RCNN 
further optimized detection speed and model performance [13]. 
Unlike Two-stage methods, One-stage algorithms like YOLO 
can directly perform feature extraction, classification, and 
localization through CNNs, significantly improving detection 
speed [14]. The YOLO series algorithms have continued to 
evolve, with YOLO-v2 improving the network structure and 
enhancing the model's mAP [15], and YOLO-v3 further 
improving detection accuracy [16]. 

From the above discussion, it is evident that single-stage 
object detection algorithms have become mainstream. This 
paper constructs an unsafe factor detection model based on the 
YOLO series algorithms. 

C. Research Gaps 

While the use of artificial intelligence in managing the 
safety of hazardous chemical storage and usage has become an 
industry trend, research specifically focused on chemical 
laboratory management remains underdeveloped. The primary 
challenges include: 

1) Unclear detection targets: Current studies mainly 

address the management and safety of hazardous chemicals 

during transportation, lacking a systematic framework for 

identifying unsafe factors within chemical laboratories. 

Accidents in these labs—such as fires, explosions, and 

poisonings—are complex and varied, requiring a 

comprehensive analysis to pinpoint key unsafe factors. 

2) Insufficient image datasets: The unique operations and 

technologies in chemical laboratories lead to diverse unsafe 

scenarios, making data collection challenging. Existing 

datasets are inadequate for fully training and optimizing target 
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detection models in this context. 

3) Model performance requirements: Although 

convolutional neural network-based detection technologies 

have shown promise, their application in chemical labs 

demands higher real-time performance, accuracy, and stability. 

The unpredictability of accidents necessitates that detection 

models effectively identify and address unsafe factors in real-

time to prevent incidents. 

In summary, this paper focuses on chemical laboratories as 
a key area for hazardous chemical management. It aims to 
analyze accident types and causes using safety system analysis 
methods, identify specific hazard sources and risk levels, and 
customize and optimize a target detection model for the 
accurate identification of key unsafe factors. 

III. IMPROVED OBJECT DETECTION MODEL BASED ON 

ATTENTION MECHANISM 

If unsafe factors arise in a chemical laboratory, accidents 
can easily occur, leading to casualties. Therefore, it is crucial 
to control these factors before an accident happens. To enable 
the rapid and accurate identification of unsafe factors in 
chemical laboratories, this paper integrates an attention 
mechanism into the lightweight YOLO-v4-tiny model, further 
enhancing detection accuracy and speed, thereby laying the 
foundation for the identification and detection of such factors. 

A. YOLO-v4-Tiny Algorithm 

The YOLO-V4- tiny is a simplified version of the YOLO-
v4 algorithm, although the detection accuracy is slightly 
inferior, but because of the simplification of the structure, its 
model parameters are reduced from 60 million to 6 million, 
which is more suitable for engineering applications.  

The backbone feature extraction network of YOLO-v4-
tiny is CSPDarkNet53-Tiny. In addition to the network 
structure, the improvements of CSPDarkNet53-Tiny mainly 
include: changing the activation function of the convolutional 
network from LeakyReLU to Mish; the residual network 
structure is optimized to CSPnet. 

The formula for Mish activation function is: 

Mish = 𝑥 × 𝑡𝑎𝑛ℎ⁡(𝑙𝑛⁡(1 + 𝑒𝑥))  (1) 

Mish indicates the output of the activation function; x 
represents input. 

The YOLO-v4 network uses the LeakyReLU activation 
function. The Mish activation function versus the LeakyReLU 
function is shown in Fig. 1. As can be seen from Fig. 1, 
compared to LeakyReLU function, Mish function is smoother, 
allowing the network to mine deeper feature information. And 
unlike ReLU, which takes 0 directly in the negative region, 
Mish function is smoother at 0 and has better gradient flow 
towards negative values, thus making the model more accurate. 

The YOLO-v4-tiny model adjusts the original residual 
structure and uses the CSPnet residual structure. The CSPnet 
residual structure is shown in Fig. 2. 
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Fig. 1. Mish loss function. 
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Fig. 2. CSPnet residual structure. 

In the CSPnet structure, after the input of the feature layer 
(h,w,c), a convolution operation is performed first, and then 
the feature layer in the input network is divided into two parts 
(route) in the channel. The trunk part is further divided into 
two parts in the channel after a convolution operation. The 
trunk is merged with branch route_1 after one convolution 
operation, and the merged feature layer is merged with branch 
route and feat after one convolution operation. Finally, a 
maximum pooling operation is performed on the feature layer 
to obtain the processed feature layer (h/2, w/2, 2c). 

1) CSPDarkNet53-Tiny: The backbone feature extraction 

network of YOLO-v4-tiny model, CSPDarkNet53-Tiny, has 

better feature extraction capability and faster computation 

speed. CSPDarkNet53-Tiny consists of three basic 

convolution blocks and three CSPnet modules, as shown in 

Table I. 
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2) Mosaic data augmentation: The Mosaic is to stitch 

together four images into a single image, with the goal of 

enriching the background of detection targets and enhancing 

the model's generalization ability. The implementation method 

involves reading four images at once during model training, 

placing the augmented images in the four corners, and 

combining them into a new image. 

TABLE I NETWORK STRUCTURE OF CSPDARKNET53-TINY 

Convolution 

Module 
Step 

Number of 

Channels 
Input Output 

Input   416×416×3 416×416×3 

Convolution 

Block 
2 32 416×416×3 208×208×32 

Convolution 

Block 
2 64 208×208×32 104×104×64 

CSPnet Residual 

Block 
  104×104×64 52×52×128 

CSPnet Residual 

Block 
  52×52×128 26×26×256 

out1 26×26×256 

CSPnet Residual 
Block 

  26×26×256 13×13×512 

Convolution 

Block 
1 512 13×13×512 13×13×512 

out2 13×13×512 

B. Feature Pyramid of YOLO-v4-tiny 

Feature pyramid is a component of convolutional neural 
network which is convenient for model to detect objects of 
different scales. Its typical feature has a top-down structure, 
which is convenient for model to extract high-level semantic 
features on the feature layer. The YOLO-v4tiny model 
simplifies the feature pyramid and fuses the two feature layers 
output by the backbone feature extraction network. Its 
structure is shown in Fig. 3. 
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Fig. 3. YOLO-v4-tiny feature pyramid. 

Feature layer out2 after input feature pyramid, a layer of 
convolution operation is performed to obtain feature layer 
out2 ^' (13, 13, 256), and feature layer out2' is used for input 
YOLO Head for target detection. Feature layer out2' also 
needs to undergo up-sampling operation to obtain feature layer 
with dimensions (26,26,128). Feature layer out 1(26,26,256) 
input feature pyramid and merge into new feature layer out 1' 
(26,26, 384) on channel through CONCAT operation. The 
feature layer out 1' is used to input YOLO Head for target 
detection. 

C. Improved YOLO-v4-tiny Algorithm 

1) CIOU: Unlike IOU, which only focuses on the overlap 

rate between candidate boxes and real boxes, CIOU is 

optimized based on IOU. It considers the overlap rate, scale, 

penalty term and so on between the candidate frame and the 

real frame, which makes the regression of the candidate frame 

more stable. CIOU's formula is as follows: 

𝑣 =
4

𝜋2
(𝑎𝑟𝑐𝑡𝑎𝑛⁡

𝑤𝑔𝑡

ℎ𝑔𝑡
− 𝑎𝑟𝑐𝑡𝑎𝑛⁡

𝑤

ℎ
)
2

  (2) 

𝛼 =
𝑣

1−𝐼𝑂𝑈+𝑣
   (3) 

CIOU = 𝐼𝑂𝑈 −
𝜌2(𝑏,𝑏𝑔𝑡)

𝑐2
− 𝛼𝑣  (4) 

Where, c is the maximum distance between the point on 
the prediction box and the point on the real box, w is the width 
of the image, h is the height of the image, v is the similarity, 
𝑤𝑔𝑡 t represents the median value of the image width, ℎ𝑔𝑡  
represents the median value of the image height, 𝜌2(𝑏, 𝑏𝑔𝑡) 
represents the Euclidean distance between the center points of 
the two boxes. 

2) Loss function of YOLO-v4-tiny model: The loss 

function of YOLO-v4-tiny model was established based on 

CIOU, and the formula of the loss function of the model was 

obtained as follows: 

𝐿𝑜𝑠𝑠CIOU = 1 − 𝐼𝑂𝑈 +
𝜌2(𝑏,𝑏𝑔𝑡)

𝑐2
+ 𝛼𝑣 (5) 

3) The overall structure of YOLO-v4-tiny model with 

improved attention mechanism: The overall structure of 

YOLO-V4-tiny model includes backbone feature extraction 

network CSPDarknet53-Tiny, feature pyramid, attention 

mechanism module and feature prediction module YOLO 

Head. Three attention modules are embedded in the model, in 

which two attention mechanism modules are embedded after 

two output feature layers of the feature extraction network in 

the backbone of the YOLO-v4-tiny model, and the attention 

mechanism module is inserted after sampling layers on the 

feature pyramid. The model structure is shown in Fig. 4. 
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Fig. 4. An improved YOLO-v4-tiny model of attention mechanism. 
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IV. EXPERIMENT AND VERIFICATION 

In this section, the reliability and validity of the proposed 
method is verified through experiments. 

A. Experimental Environment 

In the process of establishing the laboratory dataset, 
personnel must first apply for access to the lab and can only 
proceed with experiments once they have obtained permission. 
The unsafe factor detection model is activated as soon as the 
personnel enter the laboratory, capturing one frame per second 
for detection. The model is designed to identify and label both 

normal and abnormal conditions, and it triggers an alarm if no 
personnel are detected. Key detection points include the use of 
safety gear, smoking behavior, the presence of open flames, 
improper storage of chemical bottles, and missing labels on 
bottles. Normal conditions are labeled as "Normal," while 
abnormal conditions are categorized based on the specific 
issue, such as "Fault," "Smoke," "Fire," or "Mis-drug." 
Typical abnormal states detected by the model are illustrated 
in Fig. 5. This data collection and recognition process is 
crucial for effective laboratory safety management. 

Open flames appear in the laboratoryProblem with the placement of medication bottles

 

Fig. 5. An improved YOLO-v4-tiny model of attention mechanism. 

Image data of unsafe factors in the laboratory were 
collected through on-site collection and network retrieval, and 
various kinds of original image data collected were shown in 
Table Ⅱ: 

TABLE II LABORATORY UNSAFE FACTORS IMAGE DATA 

Detection category quantity Detection category quantity 

Normal 200 Fault 200 

Smoke 200 Nor-drug 200 

Fire 200 Mis-drug 200 

Mix-drug 200 ALL 1400 

The original image data of the laboratory comes from 
online retrieval, field capture, simulation shooting, etc. Due to 
different image sources and formats, it is necessary to use 
OpenCV computer vision library to capture the original data in 
JPG format, and the unified size is 416×416. After that, the 
image, affine, noise and other operations in the data 
enhancement method were used to increase the laboratory 
image data, and 5,600 laboratory image data were obtained. 
After renaming, de-reweighting, scrambling and labeling 5600 
image data, the laboratory unsafe factor image dataset was 
constructed. The laboratory unsafe factors detection model 
adopts VOC data format. The data set was divided into 
training set, test set and verification set according to 7:2:1, and 
3920 training set data, 1120 test set data and 560 verification 
set data were obtained. Store the image data in the 
JPEGImages folder and the xml file in the Annotation folder. 

B. Testing Program 

The experimental environment parameters of the 
laboratory unsafe factors identification and detection model 
are shown in Table Ⅲ. 

TABLE III TRAINING ENVIRONMENT OF LABORATORY UNSAFE FACTORS 

IDENTIFICATION AND DETECTION MODEL 

Equipment Model (version) 

Operating system Windows10 

CPU Inter Core i7-10875H 

GPU RTX3060 

CUDA CUDA 10.0.1 

cuDNN cuDNN 7.0.5 

Deep learning module  PyTorch 1.6.0 

Scientific computing module numpy 1.18.5 

Computer vision module opencv opencv-python 4.6.0 

In this section, the control variable method is used for 
repeated experiments to determine the hyperparameters of the 
neural network, as shown in Table Ⅳ. 

TABLE IV LABORATORY UNSAFE FACTORS IDENTIFICATION AND 

DETECTION MODEL HYPERPARAMETERS 

Hyperparameter type Model hyperparameter values 

Number of activations Mish activation function 

Initial learning rate 1e-2 

epoch 1000 

batch_size 32 

Cost function Loss 
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In order to accelerate the training speed of the improved 
YOLO-v4-tiny model, the transfer learning training method is 
adopted, and the training weights of coco data set are taken as 
pre-training weights. The detection targets of the model were 
not wearing safety protective equipment, smoking behavior, 
Normal experimental personnel, and open Fire, which were 
labeled as Fault, Smoke, normal, and fire respectively. One-
hot coding was performed for different detection categories in 
the laboratory, as shown in Table Ⅴ. 

TABLE V ONE-HOT CODING OF THE TEST CATEGORIES IN THE 

LABORATORY 

Detection category Fault Smoke Normal Fire 

One-hot indicates (1,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1) 

C. Analysis of Drug Status Testing Results 

The medicine bottle state detection model trained 1000 
EPOchs in total, and the initial learning rate was set at 1e-2. 
During the training, the learning rate gradually decreased with 
EPOchs to speed up the fitting of loss values. By observing the 
training progress through the loss value of the model, the 
training process of the medicine bottle state detection model is 
shown in Fig. 6. 

 

Fig. 6. Loss curve of bottle condition detection model. 

Using coco data centrality weight as pre-training weight, 
the initial loss value of the model is 2.75, and after 14 
iterations, the loss value drops below 0.1. Later, with the 
increase of iterations, the loss value slowly declines, and after 
160 iterations, the loss value drops to 0.04. When the model is 
iterated to 1000 times, the loss value is stable at about 0.02, 
and the training of the medicine bottle state detection model is 
completed. The model parameters after the 1000th iteration 
were taken as the final model parameters, and the drug bottle 
state detection model was obtained. 

Part of the test results of the drug bottle state detection 
model are shown in Fig. 7. Fig. 7 shows the detection effect of 
different detection objects on the model. The blue box 
indicates that the model detects that the medicine bottle is in a 
disorderly place, the green box indicates that the model detects 
that the medicine bottle label is off, and the red box indicates 
that the model detects that the medicine bottle is normal. The 
confidence degree of the model to the test results is marked on 
the detection box. In order to evaluate the detection 
performance of the drug bottle state detection model, the 
YOLO-v4tiny model and the improved YOLO-v4-tiny model 
were evaluated on the drug bottle state verification set. The PR 
curves of the three categories of Nor-drug, Misdrug and Mix-
drug on different models are shown in Fig. 8. 
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Mix_drug 0.87

Nor_drug 0.99

 

Fig. 7. The test result of drug bottle state test model. 
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Fig. 8. PR curves of different detection categories on the drug bottle state detection model. 

It can be seen from the PR curves of the model that the 
improved model covers the PR curves of the YOLO-v4-tiny 
model for the three detection categories of Nor-drug, Mix-drug 
and Mis-drug, indicating that the model with improved 
attention mechanism has better detection performance. The AP 
values of the drug bottle status detection model in various 
categories and the average detection accuracy of the model are 
shown in Table Ⅵ. 

TABLE VI THE AP VALUE OF THE MEDICINE BOTTLE STATE DETECTION 

MODEL 

Detection category YOLO-v4-tiny Improved model 1 

Nor-drug 84.35% 93.06% 

Mis-drug 79.01% 90.72% 

Mix-drug 89.42% 95.31% 

MAP 84.26% 93.03% 
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A target detection model must not only accurately identify 
the target's location and classify the target correctly but also 
perform detection quickly to meet real-time processing 
requirements. Table Ⅶ presents the FPS (Frames Per Second) 
results of the bottle status detection model across different 
categories. 

TABLE VII FPS OF THE BOTTLE STATUS DETECTION MODEL FOR 

DIFFERENT CATEGORIES 

Detection Category FPS (Frames) Processing Speed per Frame (s) 

Nor-drug 272 0.0036 

Mis-drug 299 0.0033 

Mix-drug 2212 0.0004 

As shown in the Table Ⅶ, the model achieves an FPS of 
272 for "Nor-drug," with each image taking only 0.0036 
seconds to process. For "Mis-drug," the FPS is 299, with a 
processing time of 0.0033 seconds per image. The "Mix-drug" 
category achieves an FPS of 2212, with a processing time of 
just 0.0004 seconds per image. These results demonstrate that 
the bottle status detection model, improved with the attention 
mechanism, can achieve rapid detection of bottle statuses, 
meeting real-time processing requirements. 

D. Analysis of Results of Unsafe Factors Detection Model in 

Laboratory 

The unsafe factor detection model in the laboratory trained 
1000 EPOchs, and the initial learning rate was set at 1e-2, 
which gradually decreased with the number of iterations. The 
variation of model loss values with the number of iterations is 
shown in Fig. 9. The initial loss value of the model was 1.85, 
and when the model iterated to the 18th epoch, the loss value 
decreased to 0.09, and then the loss value decreased slowly, 
and at the 1000th epoch, the loss value decreased to 0.03, and 
the model loss value tended to be stable. The detection model 
of unsafe factors in laboratory was obtained. 

 

Fig. 9. Loss curve of laboratory unsafe factors detection model. 

Part of the image detection results of the unsafe factor 
detection model in the laboratory are shown in Fig. 10, and the 
confidence degree of the detection target is shown in Table 
Ⅷ. As can be seen from above figures and tables, the unsafe 
factors detection model in the laboratory can accurately select 
the target to be measured, and has a high degree of confidence 
in the detection results. It shows that the model can basically 
realize the detection of not wearing safety protective 
equipment, smoking and open flame. 
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Fig. 10. Test results of unsafe factors detection model in laboratory. 

Testing the YOLO-v4-tiny model and the improved 
YOLO-v4tiny model on the laboratory Unsafe Factor 
validation set, The PR curves of the improved YOLO-v4-tiny 
laboratory unsafe factor detection model and the original 
YOLO-v4-tiny model in the four categories of Normal, Fault, 
Smoke and Fire are shown in Fig. 11. 

It can be seen from the PR curves of various types of 
unsafe factors detection models in the laboratory that the PR 
curves of the model constructed in this paper wrap the original 
YOLO-v4-tiny model and have better performance in the 
unsafe factors detection task. The model showed excellent 
detection accuracy of Normal, Fault and Smoke in the whole 
recall rate, which basically reached more than 95%, indicating 
that the model had high detection performance for the three 
detection categories. However, it can be seen from the PR 
curve of the improved model for the detection category Fire 
that the model's detection performance of open flame needs to 
be improved, and the model's performance can be improved by 
increasing the number of training iterations. The AP values of 
the unsafe factors detection model in the laboratory and the 
average detection accuracy of the model are shown follow. 
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Fig. 11. PR curve of unsafe factors detection model in laboratory. 
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TABLE VIII AP VALUES OF UNSAFE FACTORS DETECTION MODEL IN 

LABORATORY IN VARIOUS CATEGORIES 

Target class Normal Fault Smoke Fire MAP 

AP 97.40% 90.14% 96.80% 68.95% 88.32% 

The AP values of the unsafe factors detection model in the 
laboratory reached 97.40%, 90.14% and 96.80% for Normal, 
Fault and Smoke, respectively, indicating that the model has a 
good detection effect on these three categories. The AP value 
of the model for open flame (Fire) reached 68.95%, and the 
average detection accuracy of the model reached 88.32%. The 
model basically meets the requirement of detecting unsafe 
factors in laboratory. The FPS values for each category 
detected by the unsafe factor detection model in the laboratory 
are shown in Table Ⅸ. 

TABLE IX FPS VALUES OF THE UNSAFE FACTOR DETECTION MODEL FOR 

EACH CATEGORY IN THE LABORATORY 

Detection Category FPS (Frames) Processing Speed per Frame (s) 

Normal 1110 0.0009 

Fault 846 0.0012 

Smoke 116 0.0086 

Fire 2937 0.0003 

As shown in the table, the model achieves an FPS of 1110 
for the "Normal" category, requiring only 0.0009 seconds to 
process each image. For the "Fault" category, the FPS is 846, 
with a processing time of 0.0012 seconds per image. The 
"Smoke" category has an FPS of 116, with each image taking 
0.0086 seconds to process. Lastly, the "Fire" category achieves 
an FPS of 2937, with a processing time of only 0.0003 seconds 
per image. The model meets the real-time processing 
requirements. 

V. CONCLUSION 

This study addresses the critical need for safety 
management in environments where hazardous chemicals are 
stored and used, such as laboratories. By leveraging safety 
engineering principles, a highly efficient model for identifying 
unsafe factors was developed, significantly enhancing the 
intelligence of laboratory safety monitoring. The study 
employed a lightweight YOLOv4-tiny algorithm, optimized 
with techniques such as CIOU for more stable bounding box 
regression and the integration of attention mechanism modules, 
to improve the model's performance in detecting unsafe factors. 
In addition, experiments were conducted to demonstrate the 
effectiveness of the improved algorithm. In summary, the 
main contributions are as follows: 

1) Proposing and optimizing the YOLOv4-tiny algorithm, 

making it more suitable for the task of recognizing unsafe 

factors in laboratories, while balancing lightweight design 

with high efficiency. 

2) Developing a dataset for unsafe laboratory conditions, 

providing crucial foundational data for future related research. 

3) Validating the potential of deep learning in laboratory 

safety monitoring, laying a solid technical foundation for the 

development of intelligent laboratory safety management 

systems. 

These contributions not only provide effective technical 
support for chemical laboratory safety monitoring but also 
offer valuable experience and data for future research and 
development in related technologies, further advancing the 
intelligence of laboratory safety management. 
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