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Abstract—Managing wastewater to effectively remove water 

pollution is inherently difficult. Ensuring that the treated water 

meets stringent standards is a main priority for several countries. 

Advances in control and optimization strategies can significantly 

improve the elimination of harmful substances, particularly in 

the case of carbon pollution. This paper presents a novel 

optimization-based approach for carbon removal in Activated 

Sludge Process (ASP) of Wastewater Treatment Plants 

(WWTPs). The developed pollution removal algorithm combined 

the concepts of Takagi-Sugeno (TS) fuzzy modeling, Model 

Predictive Control (MPC) and Grey Wolf Optimization (GWO), 

as a parameters-free metaheuristics algorithm, to boost the 

carbon elimination in terms of standard metrics, namely 

Chemical Oxygen Demand (COD), Biochemical Oxygen Demand 

(BOD5) and Total Suspended Solids (TSS). To enhance such a 

pollution removal, the proposed fuzzy predictive control for all 

wastewater variables, i.e. effluent volume, concentrations of 

heterotrophic biomass, biodegradable substrate and dissolved 

oxygen, is formulated as a constrained optimization problem. 

The MPC parameters’ tuning process is therefore performed to 

select appropriate values for weighting coefficients, prediction 

and control horizons of local TS sub-models. To demonstrate the 

effectiveness of the proposed parameters-free GWO algorithm, 

comparisons with homologous state-of-the-art solvers such as 

Particle Swarm Optimization (PSO) and Genetic Algorithm 

(GA), as well as the standard commonly used Parallel Distributed 

Compensation (PDC) technique, are carried out in terms of key 

purification indices COD, BOD5, and TSS. Additionally, an 

ANOVA study is conducted to evaluate the reported competing 

metaheuristics using Friedman ranking and post-hoc tests. The 

main findings highlight the superiority of the proposed GWO-

based carbon pollution removal in WWTPs with elimination 

efficiencies of 93.9% for COD, 93.4% for BOD5, and 94.1% for 

TSS, in comparison with lower percentages for PSO, GA and 

PDC techniques. 
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I. INTRODUCTION 

Wastewater is a major environmental problem that poses a 
threat to ecosystems and human health [1]. Contaminants in 
untreated wastewater, including organic pollutants, pathogens, 
and heavy metals, can lead to serious health risks and disrupt 
the balance of ecosystems [2]. To address the critical issue of 
water pollution and ensure a sustainable future, a wide range of 

strategies and regulations are being implemented to improve 
water quality, safeguard public health and protect the 
environment [3]. The modeling [4] and control [5] of WWTPs 
are gaining growing attention, with considerable efforts 
dedicated to improving their performance. Advanced automatic 
control, artificial intelligence and soft computing approaches 
have led to the development of various models aimed at 
enhancing the overall effectiveness of WWTPs [6]. 

Wastewater treatment involves several stages each aimed at 
removing different contaminants. The secondary treatment, 
which is biological, is the most crucial phase in the overall 
process, aimed at removing organic matter from the water, as 
well as nitrogen and phosphorus. Biological treatment through 
ASPs is the most widely adopted solution for addressing 
pollution and removing toxicity from wastewater [7]. In an 
ASP, wastewater is aerated in a tank where bacteria break 
down organic pollutants in the presence of oxygen. After 
aeration, the treated water flows to a clarifier, where the 
activated sludge settles out. Some of the sludge is re-circulated 
into the aeration tank to maintain microorganism 
concentration. The primary goal of ASP is to produce treated 
wastewater that meets regulatory standards for effluent quality, 
mainly in terms of BOD5, TSS, and COD [8]. It also aims to 
maintain appropriate dissolved oxygen levels to avoid anoxic 
conditions. However, achieving these objectives is challenging 
due to several factors. Variability in influent characteristics, 
such as changes in flow rate and pollutant concentrations, 
requires constant adjustments to maintain consistent effluent 
quality. The behavior of microbial communities is influenced 
by numerous factors, including temperature, pH, and nutrient 
availability, making it difficult to maintain an optimal balance. 
Furthermore, the interactions between various biological, 
chemical, and physical processes within the system are highly 
complex and difficult to model accurately [9]. As a result, 
ensuring optimal treatment performance demands the use of 
sophisticated modeling and advanced control strategies, 
making the management of ASPs a persistent and significant 
challenge. 

Over the years, numerous control strategies have been 
proposed for WWTPs. These techniques differ in their targeted 
objectives, which are typically defined in terms of optimizing 
dissolved oxygen and enhancing harmful substances removal. 
In study [10], a comprehensive framework is proposed for 
evaluating various control techniques of WWTPs. Feedback 
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strategies for simultaneous evaluation of economics, energy, 
and removal of nutrients are addressed. In study [11], a two-
stage linear control scheme is developed to regulate the 
effluent substrate concentration. Static inner-loop controller is 
designed using a metaheuristic algorithm for parameters 
selection. Strategies of static feedback with pole placement 
[12] and model predictive control [13] are investigated based 
on an established TS fuzzy representation for ASPs. In study 
[14], authors examined the design of fuzzy controllers for 
dissolved oxygen and nitrate dynamics under varying 
conditions. In [15], a PDC technique is designed under linear 
matrix inequalities (LMI) constraints of stabilization. In study 
[16], model predictive control, PID regulation, data-driven and 
neural networks are investigated to optimize nitrogen removal 
offering a flexible and adaptive approach to process control. In 
[17], authors implemented cascaded PI and event-based control 
strategies for WWTPs using the nitrogen-to-energy index as a 
performance indicator. In study [18], various artificial 
intelligence-based strategies are explored with a particular 
focus on aeration control. In study [19], authors developed 
deep learning-based simulators to improve the control of 
phosphorus removal processes. In study [20], authors proposed 
a nonlinear predictive control strategy to manage the nonlinear 
dynamics inherent in WWTPs and enhancing the control 
performance and stability. In study [21], a neuro-fuzzy based 
MPC controller is designed to estimate key process variables 
and adjust aeration levels for cost-effective nutrient removal. In 
[22], authors proposed an economic-oriented MPC ensuring 
ammonia concentration within specified limits. 

In addition to these aforementioned state-of-the-art control 
strategies, the application of metaheuristics algorithms has 
become increasingly significant in addressing the complexities 
inherent in WWTPs. In study [23], a dynamic multi-objective 
PSO algorithm is proposed for dissolved oxygen and nitrate 
dynamics. In study [24], a GA optimizer is used to modify the 
set-point of PI controller for dissolved oxygen variables. Two 
levels are used: at the higher one, GA determines the optimal 
dissolved oxygen set-point based on operational conditions and 
at the lower, a PI controller adjusts the aeration to reach the 
set-point. In study [25], various metaheuristics are integrated 
with a fuzzy inference system to enhance the modeling 
accuracy of WWTPs. The achieved prediction capabilities 
guarantee more effective management and compliance with 
environmental standards. In study [26], a coyote optimization 
algorithm is employed to optimize the adaptive controller 
parameters for dissolved oxygen concentration in a biological 
sequential batch reactor. In [27], authors proposed a framework 
to optimize the aeration in WWTPs. A neural network predicts 
energy consumption and dynamically adjusts PI controllers. In 
[28], an extreme learning machine with metaheuristic 
algorithms is designed for the modeling of water quality 
parameters in Nigeria. 

In this context, advanced optimization strategies are crucial 
to effectively manage WWTPs. Metaheuristics have emerged 
as powerful tools for controlling complex systems, offering 
competing solutions to the challenges inherent in biological 
processes [29]. Due to the strict quality requirements set by 

international standards as well as the increasing complexity of 
WWTPs, it becomes essential to optimize all biochemical 
variables involved in the purification process to ensure more 
effective pollutant removal and guarantee the compliance with 
increasingly stringent water quality standards. Indeed, there are 
few contributions in the literature that address the enhancement 
of all pollutants removal. Most proposed optimization 
strategies focus on economic objectives, and many studies 
often limit their scope to the dynamics of dissolved oxygen to 
minimize energy consumption, neglecting other critical 
variables such as wastewater influent volume, biomass growth, 
substrate concentration, and others. On the other hand, most 
metaheuristics of the literature suffer from the problem of 
choosing and tuning their control parameters. The efficiency of 
such algorithms is strongly linked to the tuning of parameters 
of the algorithm itself, often tedious and time-consuming in 
design. Thus, the use of a metaheuristic with a reduced number 
of algorithmic parameters, or even without parameters, can 
circumvent such a design problem and offers more simplicity 
in the optimization process. GWO algorithms as a parameters-
free metaheuristics thus present an interesting and justified 
choice for optimizing the wastewater treatment. Therefore, the 
use of a GWO algorithm combined to a nonlinear multi-input 
multi-output model, which accounts for all state variables of 
ASPs, as well as an efficient automatic control strategy, is 
essential to further enhance the purification challenges and the 
carbon pollution removal. In this paper, an intelligent carbon 
pollution removal strategy, based on an established TS fuzzy 
modeling and MPC combined with a GWO metaheuristic 
tuning policy is proposed to manage all intervening variables in 
WWTPs and enhancing the performance of purification in 
terms of BOD5, COD and TSS metrics. The uniqueness and 
main contributions of this work are summarized as follows: 
(1) A powerful and parameters-free GWO metaheuristic is 
proposed to adjust the many effective gains of the designed 
fuzzy MPC controllers and consequently boost the carbon 
pollution removal in WWTPs. (2) The enhancement of overall 
purification variables is aimed and the commonly used BOD5, 
COD and TSS indices are considered to quantify the carbon 
removal efficiency. (3) Performance is evaluated in terms of 
reproducibility, algorithmic convergence, and solution quality. 
(4) Comparisons to the most commonly used state-of-the-art 
algorithms, i.e. PSO and GA optimizers, as well as the PDC 
technique are performed. (5) An ANOVA based on Friedman 
ranking and post-hoc tests is carried out. 

The rest of the paper is organized as follows. Section II 
presents the modeling part as well as a preliminary survey on 
the nonlinear ASP model for carbon removal, along with its 
equivalent TS fuzzy representation and the MPC strategy. The 
main indices and measures for quantifying carbon removal 
efficiency, namely BOD5, COD and TSS, are also provided. In 
Section III, the MPC gains tuning problem is introduced and 
formulated as an optimization problem under operational 
constraints. The proposed parameters-free GWO algorithm is 
presented in Section IV. Section V provides demonstrative 
results and discussions to assess the effectiveness of the 
proposed GWO-based approach in enhancing carbon removal 
in WWTPs. Finally, Section VI concludes the paper. 
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II. MODELING AND PRELIMINARIES 

A. Activated Sludge Process 

As shown in Fig. 1, a typical architecture of ASP consists 
of a bioreactor, a decanter/clarifier, and a sludge recycling pipe 
[8]. The wastewater is mixed with activated sludge in the 
bioreactor, where dissolved oxygen is supplied to support the 
growth of microorganisms that degrade organic pollutants. 
Following the aeration phase, the mixture flows into the 
decanter, where the sludge settles to the bottom, allowing the 
clarified water to rise to the top. The treated water is then 
separated for further processing or discharge, while a portion of 
the settled sludge is recycled back into the bioreactor via the 
sludge recycling pipe, maintaining the optimal concentration of 
microorganisms for continuous treatment. 

 
Fig. 1. Layout of an activated sludge treatment procedure. 

Focusing on the carbon removal, a reduced dynamic model 
based on the commonly used Activated Sludge Model N°.1 is 
retained to describe all the nonlinear dynamics of the plant. It is 
assumed that the purified water is free of particulate substances 
and the concentrations of soluble components are equal at inlet 
and outlet of the decanter: 
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where 
V  is a regulation gain, 

refV  is the volume reference, 

Rf  and 
Wf  are the fraction rates of recycling and extraction 

flows, respectively, 
S  is the half-saturation rate of substrate, 

OH  is the oxygen saturation rate for biomass, 
O  is the 

oxygen regulation gain, 
,O satS  is the saturation concentration of 

oxygen, 
Hb  is the heterotrophic biomass mortality rate, 

H  is 

the biomass growth rate, f  is the fraction of particulate 

products, and 
HY  is the substrate/biomass conversion rate. 

B. TS Fuzzy Modeling 

From the nonlinear model (1) of ASP system, an equivalent 
quasi-LPV form can be derived as follows [30, 31]: 
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where  , X u  is a parameters vector of the system state 

variables 
nX R  and control inputs 

mu R ,   ,A X u  

and   ,B X u are non-constant state-space matrices given 

by the following Eq. (3) and Eq. (4) expressions: 
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Looking at the state-space form given in Eq. (2)-(4), three 
non-constant terms, known as model nonlinearities, which 
constitute the set of TS fuzzy premise variables are expressed 
as follows: 
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A global state-space TS fuzzy model of the WWTP carbon 
removal dynamics is therefore obtained by defuzzification of 
local LTI sub-models as given in Eq. (6): 
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where 
4X R , 4u R  and 4y R are the system state, 

input and output vectors, respectively, 4 4

i

A R and 

4 4

i

B R  denote the constant state-space matrices, 

  3

1 2 3, ,z z z z R  is the vector of premise variables, 

 . 0i   is the ith activation function, and 32 8r    is the 

number of local sub-models. 

The convex polytopic transformation of premise variables 
of Eq. (5) yields the following expression of all fuzzy 
activation functions: 

                       

                       

                       

                       

1 2 3 1 2 3

1 1 1 1 2 1 3 2 1 1 1 2 2 3

1 2 3 1 2 3

3 1 1 2 2 1 3 4 1 1 2 2 2 3

1 2 3 1 2 3

5 2 1 1 2 1 3 6 2 1 1 2 2 3

1 2 3 1 2 3

7 2 1 2 2 1 3 8 2 1 2 2 2 3

;

;

;

;

t F z t F z t F z t t F z t F z t F z t

t F z t F z t F z t t F z t F z t F z t

t F z t F z t F z t t F z t F z t F z t

t F z t F z t F z t t F z t F z t F z t

 

 

 

 

 

 

 

 

z z

z z

z z

z z

                          (7) 

where  1,2 .jF  denote the convex partition terms expressed 

as function of upper and lower bounds of the premise variables 

jz  and jz , respectively: 
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where   
,

maxj jz z
X u

 and  
,

, minj jz z
X u

 are the upper 

and lower bounds of premise variables, respectively. 

A complete TS fuzzy model as given in Eq. (6) is therefore 
established by computing the constant state-space matrices (3)-
(4) with all possible combinations of the bounds of premise 
variables (5) and activation functions (7). On the other hand, 
the validity of the established TS fuzzy model is evaluated 
using the well-known Variance Accounted For (VAF %) 
metric defined as follows [15]: 
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where 
iy  and ˆ

iy  are the outputs of the nonlinear and TS 

fuzzy models, respectively,  var .  is the mathematical 

variance function,  , , ,BH S Oi V X S S . 

C. Model Predictive Control Design 

To achieve an efficient carbon pollution removal in the 
WWTP, a fuzzy Model Predictive Control (MPC) approach is 
proposed. The principle aims to compute a sequence of TS 
fuzzy local control laws where only the first element is applied 
to the process [32, 33]. Such a control sequence is updated at 
each sampling time to minimize the following quadratic cost 
function: 
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where 
pN N  and 

cN N  are the prediction and control 

horizons, respectively, 0T Q Q  and 0T R R  are the 

weighting matrices,  |e t l t  is the tracking error between 

the desired and predicted system outputs. 

Based on the established TS fuzzy representation (6) of the 
WWTP carbon removal model, a distributed MPC strategy is 
proposed. The local predictive controllers are designed using 
the same fuzzy sets and activation functions as those in the TS 
fuzzy model. The defuzzification of the overall MPC laws is 
then performed and applied to the nonlinear model (1) of the 
studied WWTP. 

III. OPTIMIZATION PROBLEM FORMULATION 

The removal of organic carbon is a crucial step to ensure 
the effluent water quality and compliance with environmental 
regulations. Three primary metrics are commonly used to 
evaluate and measure the efficiency of carbon removal in 
wastewater: Chemical Oxygen Demand (COD), Biochemical 
Oxygen Demand over five days (BOD5), and Total Suspended 
Solids (TSS). Each of these metrics serves as an indicator of 
organic material and pollutants in the water, providing essential 
information about the performance of the treatment process. 
These quality indicators are quantified using the ASP’s 
purification variables such as biodegradable substrate (SS), 
particulate inert organic matter (XI), slowly biodegradable 
substrate (XS), active heterotrophic biomass (XBH), active 
autotrophic biomass (XBA), and particulate byproducts from 
biomass decay (XP). 

For both the influent and effluent, the calculation of these 
performance metrics is performed using the following formula 
[8]: 

 S S I BH BA PCOD S X X X X X                     (11) 
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    (12) 

 0.75 S I BH BA PTSS X X X X X                  (13) 

The closed-loop performance of WWTPs in terms of COD, 
BOD5 and TSS metrics is clearly dependent on the appropriate 
choice of MPC design parameters controlling the purification 
variables. Up to now, no efficient tuning technique exists to 
select optimal MPC parameters, i.e. weighting coefficients 

 R  and horizons  ,p cN N  N N , under complex and 

time-varying operational conditions. The selection of optimal 
values for these gains is often done by time-consuming and 
tedious trials-errors based procedures. The hardness of such a 
tuning problem increases further with the complexity and 
dimensionality of the system. To overcome this hard challenge, 
the idea to formulate such a tuning task as an optimization 
problem is proposed as follows: 
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where  ;d d

low up   W W W WRD  denotes the 

initial bounded d-dimensional search space and W  is the 

vector of decision variables, unknowns of the problem. 

Such a problem is solved to found optimal values of MPC 

parameters  * * *

, ,, ,*

i p i c i iN N W . In this optimization 

process, the Integral of Absolute Error (IAE) and Integral of 
Square Error (ISE) are considered as performance criteria. An 
appropriate external penalty technique is proposed to handle 

the MPC constraints 0c pN N  as follows: 

   ,
0

exp 1000
c p

IAE i i

p

N N
f e dt

N

  
    

 
W W

   (15) 

   2

,
0

exp 1000
c p

ISE i i

p

N N
f e dt

N

  
    

 
W W

   (16) 

where    . , , , ,i BH S Oe i V X S S   denotes the tracking 

error between the desired set-point and system’s output for 
each ASP dynamics. 

IV. PROPOSED GREY WOLF OPTIMIZER 

The proposed Grey Wolf Optimization (GWO) algorithm is 
a parameters-free metaheuristic method inspired by the social 
behavior and hunting mechanism of grey wolves in nature [34]. 
In the social hierarchy of wolves, there is a leader known as the 
α-wolf, who is responsible for making decisions related to 
hunting, food distribution and resting areas. The β-wolves, who 
are at the secondary level, assist the α-wolf in decision-making. 
The δ-wolves, take on roles such as scouting and sentry duties. 
Finally, the ω-wolves occupy the lowest level in the hierarchy 
and are responsible for maintaining a balanced relationship 
within population. 

In a d-dimensional search space, each wolf is characterized 

by its position  ,1 ,2 ,, ,...,i i i i

k k k k dx x xx . The position of the 

prey is denoted as  ,1 ,2 ,, ,...,p p p p

k k k k dx x xx . The best solution 

of GWO is considered as α. The second and third best ones are 
respectively considered as β and δ. The rest of the wolves have 
their positions updated randomly around the prey. Hunting 
process includes the following three main steps [34]: 
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1) Encircling: The grey wolves’ encircling behavior to 

hunt for a prey can be expressed as follows: 

1

i p

k k k k  x x                                           (17) 

p i

k k k k  x x                                            (18) 

 2 0,1k k k   U                                    (19) 

where k  is a random number between 2 and 0, k  is 

linearly decreased from 2 to 0 over the iterations courses, and 

 0,1U  is a uniformly random number in  0,1 . 

2) Hunting: The best candidate solutions α, β and δ 

wolves, have the better recognition of the prey’s potential 

position. The top three solutions 
,1best

kx , 
,2best

kx ,
,3best

kx  are 

stored to guide the other wolves toward the prey’s potential 

location by updating their positions as follows: 

,1 ,2 ,3

1
3

best best best
i k k k
k

 


x x x
x                       (20) 

where

,1

1,

best

k k k k

  x x
,

,2

2,

best

k k k k

  x x
, 

,3

3,

best

k k k k

  x x
, the coefficients vectors 1,k

, 2,k
 and 

3,k
 as well as k

 , k

  and k

  are computed as follows: 

   

 

1, 1, 1, 2, 2, 2,

3, 3, 3, 1,

2, 3,

2 0,1 , 2 0,1

2 0,1 ,

,

k k k k k k

i

k k k k k k k

i i

k k k k k k k k

 

   

     

   

 

    



    

     

x x

x x x x

U U

U

 (21) 

3) Attacking: Grey wolves finish the hunting process by 

attacking the prey until it stops moving. In order to model the 

attacking process, the value of k  is linearly decreased from 2 

to 0 over iterations and involves the reduction of the fluctuation 

rate of 
k  which is a random value in the range 2 , 2k k  . 

A pseudo-code for the proposed GWO algorithm is given 
in Algorithm 1 [35, 36]. 

Algorithm 1: Grey Wolf Optimizer 

 Randomly initialize the grey wolves’ population. 

2 
Initialize ,0j , ,0j  and ,0

i

j
. 

3 
Evaluate the objective function for each search agent and select

0


x

, 0


x

 and 0


x

. 

4 Update the position of the current search agent. 

5 
Update ,j k

, ,j k
and ,

i

j k
. 

6 Evaluate the objective values of all GWO search agents. 

7 
Update the positions k


x

, k


x

 and k


x

. 

8 Check the termination criterion and repeat iterations. 

V. SIMULATION RESULTS AND DISCUSSION 

A. Numerical Experimentations 

In this study, the most commonly used state-of-the-art 
metaheuristics, such as Genetic Algorithm (GA) [37] and 
Particle Swarm Optimizer (PSO) [38] are considered for the 
performance evaluation and comparison. All competing 
metaheuristics are independently executed on an AMD Ryzen 
5 CPU, 3.3 GHz, and 8.0 GB of RAM. Population cardinality 

of 100popn   and maximum iterations of 500itern   are set. 

Specific control parameters of GA and PSO algorithms are 
given as follows: 

‒ GWO [35, 36]: parameters-free algorithm. 

‒ GA [37]: mutation rate 0.02, crossover probability 1.  

‒ PSO [38]: inertial factor 1, coefficients of cognitive 
and social accelerations 1.5 and 2, respectively. 

Numerical parameters of the WWTP system are derived 
from literatures [8]. All reported algorithms are independently 
executed 10 runs. Results are summarized in Table I, Table II 
and Table III where STD and ET metrics denote the standard 
deviation and elapsed time, respectively. Convergence histories 
and data distribution for the metaheuristics optimization are 
depicted in Fig. 2 and Fig. 3, respectively. 

For the IAE and ISE criteria, demonstrative results in Fig. 2 
show the convergence behaviors of the reported algorithms to 
solve problem (14)-(16) and highlight the exploration-
exploitation capabilities of each of the compared algorithms. 
Based on these curves, the superiority of GWO algorithm is 
clearly observed in terms of convergence fastness, quality of 
the obtained solution and the balance between global and local 
search capabilities. Indeed, a better exploration of the search 
space is shown at the first iterations of the optimization process 
where the GWO optimizer ensures more significant transitions 
between the evaluated cost function values compared to those 
of the reported GA and PSO ones. During last iterations, better 
exploitation of promising neighboring regions likely to contain 
the global optimum of the considered WWTPs carbon removal 
problem is guaranteed for the GWO solver. 

The Box-and-Whisker plots of Fig. 3 display the statistical 
data distribution through their quartiles for the optimization 
results over 10 independent runs of problem (14)-(16). Tighter 
and symmetrical shapes are obtained for the GWO algorithm, 
thus showing the high performance of search reproducibility 
leading to minimal values of standard deviations STD, both for 
the ISE and IAE criteria. 

All these findings from measures of Tables I to Table III as 
well as curves of Fig. 2 and Fig. 3 confirm the outperforming 
of the GWO algorithm, as a parameters-free metaheuristic, 
followed by the reported PSO and GA with less competitive 
performance and tedious process for tuning of the main control 
algorithmic parameters. 
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TABLE I.  NUMERICAL OPTIMIZATION RESULTS OVER 10 INDEPENDENT RUNS OF PROBLEM (14)-(16) 

Criteria 
Algorithms 

GA PSO GWO 

IAE 

Best 1.5244e+8 1.0259e+8 7.9002e+7 

Mean 2.1253e+8 1.5244e+8 1.0166e+8 

Worst 2.7180e+8 2.7762e+8 1.5956e+8 

STD 4.007e+7 5.3916e+7 2.3261e+7 

COD (%) 89.9 91.1 93.9 

BOD5 (%) 90.8 92 93.4 

TSS (%) 91.6 92.2 94.1 

ET (sec) 6.1458e+4 4.2635e+4 2.2441e+4 

ISE 

Best 1.3579e+16 3.3837e+15 2.7222e+15 

Mean 2.0811e+16 8.9913e+15 4.9479e+15 

Worst 2.9132e+16 3.2867e+16 7.4036e+15 

STD 5.730e+15 8.7072e+15 1.5908e+15 

COD (%) 89.7 90.7 93.4 

BOD5 (%) 89.2 91.1 92.8 

TSS (%) 90.6 91.8 93.3 

ET (sec) 5.0509e+4 4.7070e+4 1.6781e+04 

TABLE II.  DECISION VARIABLES FOR THE MEAN CASE OF OPTIMIZATION (14)-(16): IAE CRITERION 

TS sub-model 

Tuning algorithms 

GA PSO GWO 

*  
*

cN  
*

pN  *  
*

cN  
*

pN  *  
*

cN  
*

pN  

1 0.510 6 8 0.04 2 15 0.241 2 10 

2 0.253 6 10 0.550 2 14 0.07 6 8 

3 0.337 4 11 0.972 8 15 0.202 4 7 

4 0.474 7 12 1 4 15 0.04 7 15 

5 0.270 4 11 0.063 4 5 0.075 6 7 

6 0.143 4 12 0.04 2 15 0.04 2 14 

7 0.548 6 13 0.935 8 12 0.04 2 6 

8 0.407 5 15 1 2 15 0.533 2 15 

TABLE III.  DECISION VARIABLES FOR THE MEAN CASE OF OPTIMIZATION (14)-(16): ISE CRITERION 

TS sub-model 

Tuning algorithms 

GA PSO GWO 

*  
*

cN  
*

pN  *  
*

cN  
*

pN  *  
*

cN  
*

pN  

1 0.886 6 10 0.390 2 5 0.091 4 12 

2 0.351 7 9 0.065 5 6 0.05 4 5 

3 0.529 7 10 0.709 8 15 0.075 3 10 

4 0.04 4 10 0.04 8 15 0.04 4 5 

5 0.316 6 9 0.127 7 8 0.182 3 6 

6 0.496 6 11 0.04 2 15 0.04 2 13 

7 0.04 6 11 1.00 8 12 0.04 3 8 

8 0.586 6 14 0.999 2 15 0.644 2 15 
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Fig. 2. Convergence histories of the reported optimization algorithms: (a) IAE criterion; (b) ISE criterion. 

 

Fig. 3. Box-and-Whisker plots of the algorithms’ reproducibility capacities: (a) IAE criterion; (b) ISE criterion. 

B. ANOVA Tests and Comparison 

Performance assessment of the metaheuristics is a crucial 
stage in any optimization. Various studies have been addressed 
for comparisons and statistical analyses of this category of 
algorithms [39, 40]. In this study, ANOVA tests, mainly in the 
form of Friedman ranking and paired comparison Fisher’s LSD 
post-hoc test, are carried out and analyzed. 

Considering the performance criteria IAE and ISE of (15) 
and (16), a statistical comparison based on Friedman ranking 
and Fisher’s LSD post-hoc test is performed according to the 
cost functions values of 10 independent executions [41, 42]. 
The optimization scores-based ranking of the reported GA, 
PSO and GWO algorithms is performed in the sense of 
Friedman. For the 03 reported algorithms and 10 executions, 

the Friedman test leads to the computed statistics 2

1 128F   

and 2

2 146F   for IAE and ISE criteria, respectively. Based 

on the chi-square distribution, the critical value with two 
degrees of freedom and 95% level of confidence is equal to

2 2 2

2,0.95 2 162 F F     . The null hypothesis is rejected and 

there are significant differences between performances of the 
proposed optimization metaheuristics. To further explore these 
differences, Fisher’s LSD post-hoc test is applied to determine 

which algorithms differ from each other. When the absolute 
difference of the ranks’ sum of two algorithms exceeds a 
critical value, they are considered significantly different. Based 
on the statistical formula in [41, 42], the critical value is 4.9047 
for the IAE criterion and 4.2476 for the ISE one. Paired 
comparisons are summarized in Tables IV and V where the 
underlined values highlight significant differences between the 
reported algorithms. From this ANOVA, one can conclude that 
the GA algorithm performs the worst according to both the 
IAE and ISE criteria and the GWO is the best, outperforming 
each one of the other algorithms. 

TABLE IV.  PAIRED COMPARISON OF ALGORITHMS: IAE CRITERION 

 PSO GWO 

GA 8 16 

PSO - 8 

TABLE V.  PAIRED COMPARISON OF ALGORITHMS: ISE CRITERION 

 PSO GWO 

GA 10 17 

PSO - 7 
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C. Carbon Removal Performance 

To assess the effectiveness of the established TS fuzzy 
model, numerical simulations are firstly performed to represent 
and compare the time-domain responses of the modeled ASP 
dynamics, including the effluent volume and the concentrations 
of heterotrophic biomass, biodegradable substrate, and 
dissolved oxygen. Randomized input profiles are applied over 
a simulation horizon of 60 hours as shown in Fig. 4. The 
transient responses comparing the initial nonlinear model of 
ASP with the established TS fuzzy one are compared based on 
the VAF (%) metric of (9) as shown in Fig. 5. Input profiles in 
Fig. 4 are randomly distributed over a horizon with several 
transitions to well excite all dynamics. The curves of Fig. 5 
quantifying the difference between time-domain responses of 
the system highlight the close similarity when considering its 
nonlinear model and its equivalent TS fuzzy model. High VAF 
(%) measures are achieved for all modeled ASP’s dynamics 
with values exceeding 99% for the biomass and biodegradable 
substrate concentrations, and ranging from 82% to 97% for the 
dissolved oxygen one. The ability of TS fuzzy modeling to 
mimic the nonlinear dynamic behavior of the carbon removal 
process is guaranteed. The established TS fuzzy structure thus 
accurately replicates the nonlinear dynamics of the initial ASP 
system (1) and such a linear and time-variant (LTI) structure 
can be easily considered for control design purposes. 

The proposed GWO-tuned MPC strategy is applied on the 
nonlinear model (1) of the activated sludge process over a 
simulation horizon of 100 hours. The time-domain responses of 
the control approach are illustrated and compared with those of 
PDC-based one as shown in Fig. 6 to Fig. 9. Curves illustrate 
the closed-loop performance of the controlled carbon removal 
variables in terms of set-point accuracy, fastness and damping 
of transient responses. More superior performance for effluent 
volume, biodegradable substrate, heterotrophic biomass and 
dissolved oxygen concentrations are guaranteed in comparison 
with the PDC-based control case [15]. 

 
Fig. 4. Evolution of input profiles: influent flow, heterotrophic biomass and 

biodegradable substrate concentrations, and air flow in the bioreactor. 

 
Fig. 5. VAF metrics for the TS fuzzy modeling process evaluation. 

To evaluate the impact of the proposed GWO-optimization 
approach on purification efficiency and carbon removal, key 
performance indicators are compared between influent and 
effluent waters. In this assessment, variations in COD, BOD5, 
and TSS serve as critical metrics to determine the effectiveness 
of each method. These indicators must comply with regulatory 
standards with maximum permissible values of 30 mg/L for 
BOD5, 30 mg/L for TSS, and 125 mg/L for COD. Meeting 
these thresholds ensures that the treatment process is effective 
and aligned with environmental regulations, while any 
exceedance would indicate the need for further adjustments. 
For this purpose, results of Fig. 10, Fig. 11 and Fig. 12 depict 
the quantification of pollution removal efficiency. 

 

Fig. 6.  Step-responses of the effluent’s volume dynamics. 
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Fig. 7. Step-responses of the heterotrophic biomass concentration dynamics. 

For the IAE criterion, results of Fig. 10 show that the COD 
removal efficiency reaches 89.9% for GA, 91.1% for PSO, and 
93.9% for GWO. Similarly, the BOD5 elimination is recorded 
at 90.8% for GA, 92.0% for PSO, and 93.4% for GWO as 
shown in Fig. 11. Regarding the TSS removal of Fig. 12, GA 
achieves 91.6%, PSO attains 92.2%, and GWO remains the 
most effective with 94.1%, thus highlighting its superior 
performance. For the ISE case, the COD elimination rates are 
about 89.7% for GA, 90.7% for PSO, and 93.4% for GWO. 
Likewise, for the BOD5 removal, GA achieves 89.2%, PSO 
attains 91.1%, and GWO outperforms both with 92.8%. Lastly, 
for the TSS removal, GA reaches 90.6%, PSO achieves 91.8%, 
and GWO leads with 93.3%. For the compared PDC technique, 
removal efficiencies are 90.7% for COD, 90.5% for BOD5, 
and 91.8% for TSS remaining lower than those of the GWO-
based removal case. 

 
Fig. 8. Step-responses of the biodegradable substrate concentration 

dynamics. 

 
Fig. 9. Step-responses of the dissolved oxygen concentration dynamics. 

D. Discussion 

In this study, research findings can be summarized into 
three main points: numerical experimentations of optimization 
process, GWO-based MPC control of ASP pollutant dynamics, 
and quantification of carbon removal efficiency through COD, 
BOD5 and TSS performance metrics. 

For numerical experimentations, obtained results of Table I 
to Table II as well as those of Fig. 2 and Fig3, show that the 
proposed GWO algorithm demonstrates better convergence 
capabilities for both the IAE and ISE criteria, confirming its 
efficiency in balancing the exploration and exploitation 
capabilities. These demonstrative results indicate that the 
GWO outperforms the other compared GA and PSO 
algorithms due to its ability to thoroughly explore the search 
space in the early iterations before gradually shifting to 
effective exploitation to refine the best solutions. This well-
controlled combination enables GWO to avoid premature 
convergence and reach the lowest cost values efficiently. 
Moreover, GWO stands out for its high convergence speed, 
allowing it to achieve optimal solutions faster than the other 
algorithms. The PSO solver also performs well, maintaining a 
good balance between exploration and exploitation, though it is 
slightly less effective than GWO in fine-tuning solutions in the 
later stages. The GA algorithm exhibits weaker performance 
due to premature convergence, as it stabilizes too early and 
struggles to escape local optima, preventing it from reaching 
optimal solutions. All these findings confirm the superiority of 
the suggested GWO solver as parameters-free and most 
efficient algorithm, followed by PSO, while the GA optimizer 
remains the least effective due to its limited exploration and 
early stagnation. 

Based on results of Fig. 4 and Fig. 5, one can observe that 
the established TS fuzzy model is valid in terms of nonlinear 
dynamical behavior reproduction. Time-domain responses of 
the modeled carbon removal variables are close since using the 
initial nonlinear model (1) and the TS fuzzy one (6). This 
demonstrates the capability of the TS fuzzy representation 
approach in capturing the nonlinear characteristics of the initial 
ASP plant. From these results, it is evident that the proposed 
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TS fuzzy model accurately replicates the dynamic behavior of 
the initial nonlinear ASP system. Based on this obtained state-
space LTI representation, results on the MPC control design 
are carried out and compared with those of the classical PDC 
approach. Such a comparison clearly highlights the superiority 
of the TS fuzzy MPC design traduced by the high set-point 
tracking performance in terms of accuracy, fastness and 
damping. These competing performances are clearly evident to 
boost the carbon pollution removal in maintaining the 
controlled ASP dynamics around predefined set-point values. 
The controlled WWTP system exhibits precision, fastness and 
well-damping of the transient responses for the effluent 
volume, as well as for the concentrations of heterotrophic 
biomass, biodegradable substrate, and dissolved oxygen. This 
proposed metaheuristics-based control strategy ensures a high 
level of input profiles tracking, though further improvements 
could be considered, particularly for the biodegradable 
substrate concentration dynamics. For the other variables, i.e., 

effluent volume, biomass concentration, and dissolved oxygen 
concentration, the GWO-tuned MPC strategy demonstrates 
effective tracking, achieving convergence with minimal steady-
state error and no significant overshoot. These closed-loop 
time-domain results highlight the effectiveness of the proposed 
approach, making it a highly promising solution for wastewater 
treatment control. 

Finally, can observe that the defined regulatory standards of 
COD, BOD5 and TSS for effluent water quality are effectively 
met, demonstrating the efficiency of all proposed optimization 
approaches, also in comparison with the most commonly used 
PDC-based technique for carbon pollution removal. All these 
results demonstrate that while all optimization approaches 
ensure compliance with environmental standards, the GWO 
optimizer systematically achieves the highest pollutant removal 
rates, making it the most effective strategy for enhancing the 
carbon removal in wastewater treatment. 

  
Fig. 10. Quantification of the pollution COD removal efficiency: (a) IAE criterion;(b) ISE criterion. 

 
Fig. 11. Quantification of the pollution BOD5 removal efficiency: (a) IAE criterion; (b) ISE criterion. 
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Fig. 12. Quantification of the pollution TSS removal efficiency: (a) IAE criterion; (b) ISE criterion. 

VI. CONCLUSION 

In this paper, an advanced and intelligent carbon pollution 
removal strategy has been proposed for an activated sludge 
process of wastewater treatment plants. The proposed pollution 
removal algorithm combined the concepts of Takagi-Sugeno 
fuzzy modeling, predictive control MPC and parameters-free 
GWO metaheuristics to boost the carbon elimination in terms 
of standard COD, BOD5 and TSS metrics. The performance of 
GWO algorithm, having the advantage of not requiring tuning 
parameters unlike other metaheuristics, outperformed the 
compared homologous solvers GA and PSO, as well as the 
PDC technique. The MPC-based carbon removal problem, 
which involves selecting the optimal prediction and control 
horizons as well as the weighting coefficients, has been 
formulated as an optimization problem with constraints and 
efficiently solved using the proposed GWO algorithm. The 
obtained results, supported by comparisons and nonparametric 
statistical analyses using ANOVA Friedman ranking and post-
hoc tests, confirmed the effectiveness and robustness of the 
proposed water pollution removal strategy. Key wastewater 
treatment performance metrics, including COD, BOD5, and 
TSS, have been used to evaluate the efficiency of the proposed 
GWO-based control methodology. The effluent quality was 
significantly enhanced, achieving a purification yield of 94% 
for COD, 93% for BOD5, and 94% for TSS removal, thereby 
complying with the regulatory standards established for 
wastewater treatment plants. The findings of this study hold 
promising implications for the broader scope of wastewater 
treatment optimization, particularly in tackling other pollutants 
such as nitrogen and phosphorus. They also highlight the 
effectiveness of GWO in addressing the complex and nonlinear 
dynamics of wastewater treatment systems. By optimizing 
nonlinear TS fuzzy MPC parameters, the proposed strategy 
offers improved stability, convergence, and solution quality. 
This work contributes to advanced control techniques for 
wastewater treatment, emphasizing the importance of 
metaheuristics algorithms in process optimization. The 
proposed wastewater purification algorithm combining 
metaheuristics optimization and fuzzy predictive control is 

useful for the community of WWTPs management as a 
comprehensive framework modeling, control and optimization 
for improving pollution removal efficiency. 

Future research will focus on exploring multi-objective 
optimization to simultaneously optimize conflicting criteria, 
such as pollutant removal efficiency, energy consumption, and 
operational costs. 
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