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Abstract—To solve the difficulty of balancing privacy and 

availability in big data privacy protection technology, this study 

integrates the powerful feature extraction ability of convolutional 

neural network models with the efficiency of differential privacy 

technology in data privacy protection. An innovative privacy 

protection method combining gradient adaptive noise and 

adaptive step size control is proposed. The experiment findings 

denote that the research method outperforms existing advanced 

privacy protection technologies in terms of performance, with an 

average accuracy of 97.68% and a performance improvement of 

about 20% to 30%. In addition, for larger privacy budgets, 

increasing the threshold appropriately can further optimize the 

effectiveness of research methods. This indicates that through 

refined noise control and step size adjustment, not only can the 

privacy protection process be optimized, but also the high 

efficiency and accuracy of data processing can be maintained. In 

summary, while ensuring data utility, research methods can not 

only significantly reduce the risk of privacy breaches, but also 

optimize privacy protection mechanisms, achieving an ideal 

balance between protecting personal privacy and maximizing data 

utility. This innovative approach provides an efficient probability 

distribution function solution for the field of privacy protection, 

with the potential to promote further development of related 

technologies and applications. 
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I. INTRODUCTION 

With the advent of the big data era, data privacy protection 
has become an increasingly prominent issue. Domestic and 
foreign researchers have also conducted multiple studies on 
privacy protection from an academic perspective. Among them, 
the Convolutional Neural Network (CNN) model has 
developed rapidly in recent years and made significant progress 
in privacy protection fields such as image and speech 
recognition. However, CNN models often rely on massive data 
during the training process, which may contain sensitive 
information and can easily lead attackers with different 
background knowledge to steal improper benefits by directly 
accessing raw data or indirectly inferring model parameters [1-
2]. To address the risk of data privacy leakage faced by CNN 
models in practical applications, researchers have adopted 
various technical means to improve CNN models. For example, 
Zaimi R et al. proposed a deep learning method for detecting 
phishing websites using a CNN model to address the network 
threats posed by phishing attacks. The experiment findings 
indicated that one-dimensional CNN performed well in 
phishing detection, with an accuracy rate of up to 96.76% [3]. 
However, this method mainly targets specific types of attacks 
and does not address the data privacy leakage problem 

commonly faced by CNN models during the training. Kou X et 
al. proposed a privacy protection scheme using edge detection 
technology and CNN model to address the issue of image data 
leakage, to find a balance between protecting user privacy and 
ensuring data availability. The outcomes denoted that using 
edge detection technology for noise addition and feature 
processing could effectively prevent the leakage of sensitive 
information in images without sacrificing their practicality [4]. 
However, this scheme is only applicable to image data and does 
not consider the privacy protection needs of the model during 
the training process. Shi J et al. proposed a homomorphic 
encryption framework based on effective integer vectors to 
protect the privacy of users in binary CNN models. The 
outcomes denoted that the training accuracy of this method on 
the MNIST dataset reached 93.75% [5]. Although the method 
performs well on specific datasets, it has a large computational 
overhead and is difficult to scale to large-scale datasets and 
complex models. 

Differential Privacy (DP) is another privacy protection 
method different from CNN models. This method mainly 
ensures that even in the event of a data breach, it is impossible 
to trace specific personal identity information by introducing 
randomness into the data or algorithm, thereby protecting 
personal privacy from being leaked [6]. The core of this method 
is to inject noise into the dataset, reduce the impact of a single 
data record on the analysis results, and maintain the security of 
personal information [7]. At present, DP technology has been 
widely applied in big data environments, especially in data 
processing and analysis on cloud platforms [8]. For example, 
the US Census Bureau adopted DP technology to process data 
in the 2020 census to ensure that personal privacy will not be 
disclosed while providing statistical information [9]. However, 
the traditional DP technique has limitations in privacy budget 
allocation and noise addition mechanism, which can easily lead 
to data utility degradation and model performance loss. To 
reduce the risk of supply chain related data information leakage 
caused by traditional DP technology, Liu M et al. introduced the 
relevant DP mechanism of logistic regression model and 
proposed a new supply chain feature selection scheme. 
Experiments showed that this scheme not only effectively 
protected the privacy of supply chain data, but also improved 
data utilization efficiency and enhances prediction accuracy 
[10]. However, the method is mainly applicable to structured 
data, and it is difficult to be directly applied to unstructured data 
(e.g., images, text, etc.). Ma T et al. proposed a DP mechanism 
for publishing synthetic trajectory database data to enhance the 
utility of published trajectory data while protecting privacy. The 
outcomes denoted that this method outperformed other feature-
based trajectory synthesis methods in terms of data utility, 
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achieving a balance between privacy and utility under strict 
privacy protection [11]. However, the adaptability and 
robustness of the method in dynamic data environments still 
need to be further verified. 

In summary, although CNN models and DP techniques have 
made some progress in various privacy protection domains, 
there are still the following knowledge gaps: (1) Existing 
methods are inadequate in balancing privacy protection and 
data availability, and it is difficult to satisfy the needs of high 
privacy protection strength and high data utility at the same 
time; (2) The traditional DP techniques lack flexibility in 
privacy budget allocation and noise addition mechanism, which 
can easily lead to model performance degradation; (3) Existing 
schemes mostly target specific data types or attack scenarios, 
and lack versatility and robustness; (4) In dynamic data 
environments and diversified attack scenarios, the adaptability 
and stability of the existing methods need to be improved 
urgently. Researchers at home and abroad have adopted various 
technical means, such as edge detection techniques, 
homomorphic encryption frameworks, and logistic regression 
models to optimize the CNN model and DP technology to 
enhance the privacy protection capability of the CNN model 
and DP technology. These approaches still cannot fully satisfy 
the needs of different users for balancing privacy and usability 
in the field of big data privacy protection. To address the above 
problems, the study intends to fill the knowledge gaps in the 
following aspects: firstly, a gradient adaptive noise addition 
model is proposed based on CNN-DP, which solves the balance 
between privacy protection and data availability by adaptively 
allocating the privacy budget and optimizing the noise addition 
mechanism; secondly, an adaptive step-size privacy protection 
model is designed based on CNN-DP, which draws on the 
Polyak step-size updating idea and nonlinear extension of 
constraints based on passive attack algorithm to solve the 
convergence problem of the model due to privacy protection 
measures; finally, the proposed method is experimentally 

verified for its versatility and robustness under diverse datasets 
and attack scenarios, providing a new solution for the field of 
big data privacy protection. This research is divided into three 
sections. The first section describes how the CNN model was 
improved and how the optimal design model was built, 
respectively, the second section is a performance test of the new 
model, and the last section is a summary of the article. 

II. METHODS AND MATERIALS 

A. Construction of Gradient Adaptive Denoising Model 

Based on CNN-DP 

During the training, CNN models mainly focus on 
extracting information from the overall data distribution and do 
not particularly pay attention to individual data items [12]. 
Similarly, DP technology pays more attention to the overall 
statistical information of data after privacy protection when 
processing data publishing [13]. This consistency in data 
processing objectives provides a solid theoretical foundation 
for the combination of DP technology and CNN models. In 
addition, the training of CNN models requires high 
computational and communication resources, while DP, as a 
lightweight algorithm, the combination of the two can achieve 
complementary advantages [14]. Therefore, the study integrates 
DP algorithm with CNN model to achieve privacy protection in 
big data environment. However, the loss function of CNN 
models will slowly decrease during the convergence, and the 
loss function will affect the updating of parameters, so the 
parameters will change in a nonlinear and non-uniform form 
[15-16]. Based on this characteristic, the study ensures that the 
protective properties of DP are not compromised by allocating 
privacy budget reasonably in each iteration update. At the same 
time, by using gradient adaptive denoising, the constraint noise 
size is introduced to alleviate the overfitting phenomenon that 
may occur during CNN training, further improving the model's 
generalization ability. The gradient adaptive denoising process 
is shown in Fig. 1. 
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Fig. 1. Gradient adaptive noise injection process. 

From Fig. 1, in the gradient adaptive denoising process, the 
CNN model is first trained routinely, and the input data is 
processed through forward propagation to calculate the loss 
function. Subsequently, in the backpropagation stage, the 
gradient of the loss function with respect to the model 
parameters is calculated, which reflects the degree of influence 
of the model parameters on the loss function. At the same time, 
to introduce DP protection, the study also used Laplace function 
to add noise to the gradient based on the budget of DP and the 

sensitivity of the gradient. This addition of random noise helps 
to protect sensitive information in the training data and prevent 
attackers from inferring personal information by analyzing the 
gradient. The gradient after adding noise is used to update the 
model parameters, and the parameter update rule becomes the 
original gradient minus the proportionally reduced noise term, 
where the learning rate determines the size of the step size. 
Through this approach, the model gradually optimizes in each 
iteration while ensuring privacy protection. Throughout the 
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process, gradient adaptive denoising ensures the continuity of 
model training, while L2 regularization constraints are used to 
prevent overfitting, enhancing the model's generalization 
ability and achieving effective model training while protecting 
privacy. The expression for calculating the L2 regularization 
term is shown in Eq. (1). 
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In Eq. (1),   and n  represent the regularization 
coefficient and sample size, respectively, while   represents 
the weight parameter. The equation for calculating the loss 

function C  is denoted in Eq. (2). 


w

o
n

CC 2

2



              (2) 

In Eq. (2), oC
 represents the original loss function. The 

expression for gradient update calculation is shown in Eq. (3). 
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In Eq. (3),   and f  represent learning rate and global 
sensitivity, respectively, while   represents the total privacy 
budget. The DP privacy protection process is shown in Fig. 2. 

In Fig. 2, the core of the DP protection mechanism lies in 
injecting an appropriate amount of randomness into the data 
processing process to achieve it. Specifically, for any two 
adjacent datasets that differ only on one record, applying a 
random algorithm will result in highly similar probability 

distributions in their output. Even if individual records are 
added or deleted from the dataset, the changes in the output 
results are minimal, effectively reducing the risk of attackers 
inferring specific individual information based on algorithm 
outputs. This method provides strong protection for privacy 
information on the dataset by adding noise value constraints in 
data queries. The training of the CNN model is indicated in 
Fig. 3. 

In Fig. 3, the training of the CNN model is an iterative 
process. Firstly, the weights in the network are randomly 
initialized. In each iteration, the input samples will be passed 
layer by layer to the network, and the neurons in each layer will 
multiply the received data with the weights and sum them up. 
Subsequently, these weighted sums are nonlinearly transformed 
through activation functions to generate new feature 
representations. This process is repeated between layers of the 
network until the network outputs the predicted results. 
Secondly, the output outcomes are compared with the true 
labels of the samples and the loss function is calculated. The 
error signal is then backpropagated back to the network, from 
the output layer to the input layer, for adjusting the weights of 
each layer to reduce future errors. By continuously repeating 
this process, the network weights gradually adjust until the 
effectiveness of the model on the training data stabilizes, that is, 
convergence is achieved. The entire process is a manifestation 
of the stochastic gradient descent algorithm, which relies on the 
setting of initial weights and updates them in each iteration to 
optimize the loss function. Due to the correlation between the 
privacy protection level and privacy budget of DP, this study 
aims to protect user privacy while ensuring the usability of 
CNN models as much as possible by adjusting the privacy 
budget size reasonably. 
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Fig. 2. DP privacy protection process. 
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Fig. 3. The training process of the CNN model. 
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Fig. 4. Overall framework structure of CNN-DP-GAN model. 

The privacy budget t  calculation equation for the t th 
iteration is shown in Eq. (4). 

Ttdtt  1)1(1             (4) 

In Eq. (4), 1  and d  represent the initial privacy budget 
and the fixed amount of privacy budget added in each iteration, 

respectively, while T  represents the total number of iterations. 

The equation for calculating the total privacy budget   after 
all iterations is denoted in Eq. (5). 
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A CNN-DP Gradient Adaptive Noise (CNN-DP-GAN) 
model based on CNN-DP was proposed by studying various 
settings mentioned above. The overall framework structure of 
the model is denoted in Fig. 4. 

In Fig. 4, the CNN-DP-GAN model proposed by the 
research mainly consists of a gradient adaptive denoising 
module, a DP privacy protection module, and a CNN training 
module. The design of this model takes into account the 
stochastic fine-tuning characteristics of CNN gradient during 
the training process, and realizes the dynamic allocation of 
privacy budget during the disturbance process. To prevent 

excessive noise interference caused by improper privacy budget 
settings, the model also introduces L2 regularization constraints 
to regulate the noise level, ensuring a balance between privacy 
protection and model performance. 

B. Construction of an Adaptive Step Size Privacy Protection 

Model Based on CNN-DP-GAN 

Although the CNN-DP-GAN model optimizes the 
perturbation process by dynamically allocating privacy budgets, 
effectively balancing privacy protection and data availability, 
the introduced noise randomness can affect the convergence 
performance of the model, causing parameters to oscillate when 
approaching the optimal solution. In addition, the setting of step 
size parameters is usually complex and susceptible to various 
factors, resulting in theoretical convergence speeds often being 
lower than those in practical applications [17]. Therefore, to 
achieve fast and stable convergence of the model, it is necessary 
to balance the requirements of privacy protection and the 
efficiency of model training. To address the convergence issues 
caused by privacy breaches and noise interference, the CNN-
DP-GAN model was nonlinearly extended based on Polyak's 
step size concept and passive attack algorithm. Relaxation 
terms were introduced, and stable step size parameters were 
obtained by combining loss and gradient. By utilizing these 
measures, a novel adaptive step size privacy protection model 
based on CNN-DP-GAN was ultimately proposed, namely the 
CNN-DP-GAN Polyak model. 
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Fig. 5. Overall framework structure of CNN-DP-GAN-Polyak model. 

The overall framework structure of the CNN-DP-GAN 
Polyak model is shown in Fig. 5. 

In Fig. 5, the CNN-DP-GAN Polyak model proposed by the 
research mainly consists of four modules, namely DP privacy 
protection module, adaptive step size adjustment module, 
relaxation term constraint module, and convergence analysis 
module. Among them, the DP privacy protection module is 
responsible for introducing an appropriate amount of 

randomness during the model training process, by adding 
Laplace noise to the gradient or loss function to protect 
sensitive information in the training data. The adaptive step size 
adjustment module dynamically adjusts the step size 
parameters through the Polyak method, redefining the 
classification update rules for modifying weight vectors at the 
end of each round to adapt to real-time changes during model 
training. By monitoring the changes in gradient and loss 
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function, adaptive step size can more flexibly respond to the 
convergence behavior of the model, optimize the parameter 
update process, and improve training efficiency. At the same 
time, to enhance the robustness and flexibility of the model, the 
study also introduced relaxation terms to balance the constraints 
in the optimization process. This constraint helps alleviate 
overfitting issues and allows the model to maintain sensitivity 
to data features while meeting privacy protection requirements. 
The convergence analysis module can ensure that the model can 
effectively converge to the optimal solution during the iteration 
process. By analyzing the gradient and parameter update 
dynamics of the model, the convergence analysis module 
provides insights into the stability of model training, which 
helps to understand and predict the behavior of the model and 
make corresponding adjustments. 

However, for most nonlinear models, such as CNN models, 
the loss function obtained from the output results is often non 
convex, which makes direct application of the above methods 
may not be suitable [18]. Therefore, the study also adopted a 
linearization strategy to handle the loss function, to raise the 
applicability and optimization efficiency of the model. The 

equation for calculating the adaptive step size   after 
linearization is shown in Eq. (6). 
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In Eq. (6), 
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 represents the loss function value at 

parameter iw
, and 

)( ii wl
 represents the gradient of loss 

function il  with respect to parameter iw
. The calculation 

method for the loss function )(wl  for classification update is 
shown in Eq. (7). 
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In Eq. (7), 
iy  and 

)( i

w xh
 represent the true labels of the 

i th sample and the predicted output of the model, respectively, 

while m  represents the number of samples. The calculation 
expression for the stochastic gradient descent process is shown 
in Eq. (8). 
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In Eq. (8), jw
 represents the weight vector. The 

calculation equation for DP protection of gradient parameters is 
shown in Eq. (9). 
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In Eq. (9), 1tw
 and tw

 represent the model parameters 

after the ( 1t )th and t th iterations, respectively. The 
calculation expression for the parameter update process is 
shown in Eq. (10). 
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The expression for calculating the relaxation term constraint 
is shown in Eq. (11). 
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In Eq. (11), 1ts
 represents a non-negative relaxation 

variable. The neural network architecture and parameters used 
in the training process of the CNN-DP-GAN-Polyak model are 
shown in Fig. 6. 

In Fig. 6, the study used the classic deep learning framework 
to train the CNN-DP-GAN-Polyak model, ensuring the 
efficiency of the training process and the wide applicability of 
the model. At the same time, accuracy is utilized as a key 
indicator to assess the effectiveness of the model. By testing the 
model using a dataset within this framework, the relationship 
between model accuracy and privacy budget is analyzed.
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Fig. 6. Neural network architecture and parameters. 
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III. RESULTS 

A. Performance Testing of Gradient Adaptive Denoising 

Model Based on CNN-DP 

To validate the effectiveness of the proposed model, a 
suitable experimental environment was established. Windows 
10 operating system was adopted, equipped with Intel Core i7 
CPU, NVIDIA GeForce GPU, 64GB memory, and Python 3.7 
programming. The publicly available datasets MNIST, 
Fashion-MNIST, and CIFAR-10 were utilized as test data 
sources. These datasets were divided into training and testing 
sets in an 8:2 ratio. Among them, the MNIST dataset was 
collected by the National Institute of Standards and Technology 
in the United States, containing approximately 70000 
handwritten grayscale images with a size of 28 × 28. The 
Fashion-MNIST dataset was provided by a German fashion 
company and contains 70000 grayscale images of clothing 
products across 10 categories. CIFAR-10 was a color image 
dataset containing 10 categories of objects, with an image size 
of 32 × 32 and a total of 60000 images. These datasets are 
commonly used benchmark datasets in the fields of machine 
learning and computer vision, widely used for training and 
evaluating the effectiveness of models. In addition, parameter 
selection and optimization are key aspects to ensure model 
performance. Privacy budget is a core parameter in the DP 
technique to control the intensity of noise addition, where a 
smaller privacy budget implies stronger privacy protection but 
may lead to a decrease in data utility, and a larger privacy 
budget allows for higher data utility but less privacy protection 
intensity. The study employed a dynamic privacy budget 
allocation strategy, where the privacy budget for each iteration 
was calculated by Eq. (4) and Eq. (5). The noise scale 

determines the size of the noise added to the gradient, which 
directly affects the privacy-preserving strength and training 
stability of the model. The study set the initial and minimum 
values of the noise scale, and dynamically adjusted the noise 
size through the gradient adaptive noise addition mechanism. 
The initial and minimum values of the noise scale were mainly 
determined through experiments to ensure privacy protection 
while avoiding excessive noise interference with model training. 
The specific experimental parameter settings are denoted in 
Table I. 

TABLE I. EXPERIMENTAL PARAMETER SETTING 

Serial 

number 
Parameters 

MNI

ST 

Fashion-

MNIST 

CIFAR

-10 

1 
Sample size of batch 
data 

250 256 1500 

2 
Number of model 

training rounds 
100 100 100 

3 Noise scale initial value 2 2 15 

4 Noise scale minimum 0.18 0.16 0.10 

5 Privacy budget 1 1 1 

6 Learning rate 0.001 0.001 0.001 

7 
Regular term 

coefficient 
0.5 0.5 0.5 

8 
Gradient trimming 
value 

0.002 0.002 0.002 

Based on the parameter settings in Table I, the study first 
conducted ablation tests on the gradient adaptive denoising 
model proposed by the research under noisy conditions, with 
prediction accuracy as the testing indicator. The test results are 
shown in Fig. 7. 
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Fig. 7. The ablation test results of the CNN-DP-GAN model. 

Fig. 7(a) and Fig. 7(b) show the test results of five modules 
in the training set and testing set. In Fig. 7(a) and Fig. 7(b), with 
the increase of iteration times, the prediction accuracy of the 
five modules showed a steady improvement trend. Among them, 
the performance of the CNN module was the worst, with a 
maximum accuracy of only 50.08%. However, when further 
integrating the DP module and GAN module, the performance 
of the model was significantly improved. The highest accuracy 
of the CNN-DP-GAN model reached 98.38%. The reason 

behind this is that the gradient adaptive denoising method can 
encourage the model to tend towards selecting better solutions. 
In this way, the model not only maintained efficient predictive 
ability while protecting privacy, but also reduced the risk of 
overfitting through regularization, thereby improving the 
model's generalization ability. From this, each module 
component proposed in the study had a positive impact on the 
final model, which could effectively raise the prediction 
accuracy of the model. The addition of reasonable noise had 
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little impact on the accuracy of the CNN-DP-GAN model, and 
the CNN-DP-GAN model could achieve a balance between 
privacy and utility on the basis of quantification. In addition, to 
verify the performance differences between the proposed model 
and popular models of the same type, the study also introduced 
the Gradient Descent with Momentum algorithm based on 

Differential Privacy in CNN (DPGDM), the Differential Private 
Stochastic Gradient Descent (DP-SGD) based on deep learning 
and DP, and the Centralized Differential Privacy (CDP) model. 
The accuracy loss rate of the model was used as the test 
indicator for comparative testing. The test findings are denoted 
in Fig. 8. 
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Fig. 8. Accuracy loss rate test results for different models. 

Fig. 8(a) showcases the test findings of different models in 
the training set, and Fig. 8(b) showcases the test findings of 
different models in the test set. In Fig. 8(a), compared with 
other models, the CNN-DP-GAN model proposed by the 
research performed the best. At 600 iterations, the accuracy loss 
rates of DPGDM, DP-SGD, CDP, and CNN-DP-GAN models 
were 4.71%, 3.26%, 10.49%, and 1.31%, respectively. This 
indicated that the CNN-DP-GAN model had significant 
advantages in maintaining high accuracy and could effectively 
reduce loss rates. According to Fig. 8(b), at the same number of 
iterations, the accuracy loss rates of DPGDM, DP-SGD, CDP, 
and CNN-DP-GAN models were 4.18%, 2.96%, 9.01%, and 
1.08%, respectively. These results confirmed that the gradient 
adaptive denoising method not only had advantages in 
maintaining model performance, but also continuously 
optimized the loss rate during the iteration process, further 
enhancing the privacy protection ability of the model without 
sacrificing accuracy excessively. This strategy provides an 
effective technical means for achieving efficient and accurate 

data processing while protecting privacy. 

B. Performance Testing of Adaptive Step Size Privacy 

Protection Model Based on CNN-DP-GAN 

When using Laplace mechanism for privacy protection, 
privacy budget and sensitivity are key factors affecting the level 
of privacy protection. Therefore, the research mainly focused 
on these two core variables and explored how to achieve the 
optimal balance between model privacy protection and utility. 
The sensitivity and privacy budget values under different 
iteration times are shown in Table II. 

Due to the Laplace perturbation, the variance is equal to the 
ratio of sensitivity to privacy budget. Therefore, the study 
controlled the overall privacy budget to remain unchanged. 
According to Table II, experiments were conducted at different 
sensitivities to compare the average final accuracy of different 
models. The test results are indicated in Fig. 9. 

TABLE II. SENSITIVITY AND PRIVACY BUDGET TAKES FOR DIFFERENT NUMBER OF ITERATIONS 

Datasets Parameters Sensitivity Total budget 

MNIST Different number of iterations 

300 0.5 72.5 

600 0.5 141 

1200 0.5 279.5 

Fashion-MNIST Different number of iterations 

300 0.5 143 

600 0.5 283.5 

1200 0.5 960 

CIFAR-10 Different number of iterations 

300 0.5 217.5 

600 0.5 312.5 

1200 0.5 687.6 
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Fig. 9(a) and Fig. 9(b) show the comparison curve of the 
average final accuracy of the models in the MNIST, and 
CIFAR-10 dataset, respectively. In Fig. 9(a), compared with 
other models, the proposed model achieved better model 
performance while ensuring a balance between privacy and 
utility. The average final accuracies of DPGDM, DP-SGD, CDP, 
and CNN-DP-GAN Polyak models were 70.23%, 82.36%, 
86.08%, and 97.68%, respectively. In Fig. 9(b), the CNN-DP-
GAN Polyak model proposed by the research performed the 
best, with an average final accuracy of 92.08%, which was a 
performance improvement of 20% to 30% compared to other 
models. From this, it can be seen that under the constraint of 
data utility, the model could effectively minimize the risk of 
privacy leakage and optimize the privacy protection mechanism, 
thereby obtaining a probability distribution function that 
achieves the best balance between protecting privacy and 
maintaining data utility. The effectiveness of the research 
method was proved. Finally, the study also explored the impact 
of different privacy budgets on the adaptive step size 
adjustment process. The test results are indicated in Fig. 10. 

Fig. 10(a), (b), and (c) show the accuracy variation curves 
with threshold settings of 0.01, 0.1, and 1 at 300 iterations. 
From Fig. 10, in the early stages of iteration, when the privacy 
budget was set to 5, the adaptive step size adjustment method 
has not fully utilized its advantages, resulting in poor 
performance of the CNN-DP-GAN-Polyak model. As the 
iteration progressed, a smaller threshold setting could help 
improve the performance of the CNN-DP-GAN-Polyak model 
when the privacy budget was low. On the contrary, for larger 
privacy budgets, increasing the threshold appropriately could 
optimize the performance of the CNN-DP-GAN-Polyak model. 
This indicated that the setting of privacy budget and threshold 
needed to be dynamically adjusted based on iteration progress 
and privacy protection requirements to achieve the optimal 
balance between privacy protection and data utility. Through 
this meticulous adjustment, it was possible to maximize the 
predictive accuracy and practicality of the model while 
minimizing the risk of privacy breaches.
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Fig. 9. Comparison curves of final accuracy averages of different models. 
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Fig. 10. Accuracy variation curves for different threshold settings. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 3, 2025 

415 | P a g e  

www.ijacsa.thesai.org 

IV. CONCLUSION 

The rapid development of computer vision largely relies on 
the innovative construction of deep learning models and the 
participation of large-scale datasets. With the continuous 
advancement of technology, data privacy protection has 
gradually become a hot research topic. In practical application 
scenarios, CNN models face significant risks of data privacy 
breaches when handling tasks involving sensitive information. 
To effectively address this challenge, a novel big data privacy 
protection technique is proposed by combining CNN models 
with DP technology, utilizing gradient adaptive denoising 
method and adaptive step size privacy protection method. The 
outcomes denoted that the gradient adaptive denoising method 
could effectively guide the model to choose a better solution. In 
a noisy environment, the highest accuracy of the CNN-DP-
GAN model reached 98.38%, with an accuracy loss rate of only 
1.08%. In addition, compared with other advanced models, the 
CNN-DP-GAN-Polyak model proposed by the research 
performed the best, with an average final accuracy of 97.68%. 
As the iterative process progressed, especially with low privacy 
budgets, appropriate threshold settings have been shown to help 
improve the performance of the CNN-DP-GA-Polyak model. 
From this, the method proposed by the research can achieve 
good model performance while ensuring a balance between 
privacy protection and data utility. However, research mainly 
evaluates the performance of models in terms of privacy 
protection and data utility based on privacy budget and model 
accuracy. Future work can expand the focus to assess the ability 
of models to resist attackers with auxiliary background 
knowledge, thereby comprehensively improving the breadth 
and depth of model validation. 
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