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Abstract—The identification of traffic objects is a basic aspect 

of autonomous vehicle systems. It allows vehicles to detect 

different traffic entities such as cars, pedestrians, cyclists, and 

trucks in real-time. The accuracy and efficiency of object detection 

are crucial in ensuring the safety and reliability of autonomous 

vehicles. The focus of this work is a comparative analysis of two 

object detection models: YOLO (You Only Look Once) and Faster 

R-CNN (Region-based Convolutional Neural Networks) using the 

KITTI dataset. The KITTI dataset is a widely accepted reference 

dataset for work in autonomous vehicles. The evaluation included 

the performance of YOLOv3, YOLOv5, and Faster R-CNN on 

three established levels of difficulty. The three levels of difficulty 

range from Easy, Moderate, to Hard based on object exposure, 

lighting, and the existence of obstacles. The results of the work 

show that Faster R-CNN achieves maximum precision in detection 

of pedestrians and cyclists, while YOLOv5 has a good balance of 

speed and precision. As a result, YOLOv5 is found to be highly 

suitable for applications in real-time. In this aspect, YOLOv3 

shows computational efficacy but displayed poor performance in 

more demanding scenarios. The work presents useful insights into 

the strength and limitation of these models. The results help in 

improving more resilient and efficient systems of detection of 

traffic objects, hence advancing the construction of more secure 

and reliable self-driving cars. Moreover, this study provides a 

comparative analysis of YOLO and Faster R-CNN models, 

highlighting key trade-offs and identifying YOLOv5 as a strong 

real-time candidate while emphasizing Faster R-CNN’s precision 

in challenging conditions. 
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I. INTRODUCTION 

The identification of objects in traffic scenarios is a crucial 
aspect of autonomous vehicle technologies. The process 
includes detection and localization of entities in traffic scenarios 
such as vehicles, pedestrians, bicyclists, and trucks using 
computer vision methods. The ability to detect and classify such 
entities in real-time is crucial to ensuring safety and efficacy in 
self-driving cars, in addition to improving traffic management 
systems [1]. 

The introduction of new methods in deep learning and 
convolutional neural networks (CNNs) has revolutionized 
object detection in computer vision in a great way. The older 
methods that relied on manually engineered features using 
machine learning approaches have been largely replaced by 
deep learning-based methods, mainly owing to their high 
precision and resilience. Significantly, YOLO and Faster R-

CNN stand out among the most widely used frameworks in 
research related to object detection. 

YOLO is credited for processing images at a very high 
speed, showcasing high efficiency in its processing. The model 
processes images using a single forward pass in a neural 
network, making it highly applicable in cases of real-time 
processing. Nevertheless, its precision is hampered in complex 
situations, especially in cases of small or occluded objects.  

However, Faster R-CNN is notable for its high precision, 
mainly in detection of small and partially occluded objects. The 
model leverages a region proposal network (RPN) to produce 
potential object regions that get categorized afterward. As much 
as Faster R-CNN is highly performing, it is hampered by high 
computational requirements, posing challenges in applying it in 
cases of real-time scenarios. 

The progress of technologies in self-driving vehicles is 
highly dependent on high-quality datasets used in the training 
and testing of object detection models. Among such notable 
datasets used in scenarios of traffic is that of KITTI, created in a 
cooperative effort between Toyota Technological Institute and 
the Karlsruhe Institute of Technology. The KITTI dataset is a 
large set of traffic pictures taken in diverse lighting and 
meteorological conditions. The imagery included in this dataset 
is diverse in nature, making it a representative benchmark to be 
used in evaluating object detection models. 

Despite object detection capabilities improving, there is a 
continued challenge in ensuring that such results are consistent 
and accurate across a diverse range of traffic settings. Several 
variables impact such results, such as varying lighting, varying 
meteorological conditions, and varying obstacles. All these 
variables impact the efficacy of traffic object detection methods 
in a notable manner. To effectively address such challenges, it 
is crucial to not just improve the processes of more advanced 
models but also gain a better comprehension of existing methods 
in terms of their capabilities and limitations.  

The objective of this work is to provide a comparative 
analysis of the YOLO and Faster R-CNN models in traffic 
object detection using the KITTI dataset as a representative 
analysis platform. By systematically evaluating the two models 
in terms of varying levels of challenge or difficulty—i.e., Easy, 
Moderate, and Hard—one seeks to determine which of these 
models is better positioned to be used in self-driving systems. 
The main contribution of this study are as follows:  

1) Comprehensive Comparative Analysis: We 

systematically evaluate YOLOv3, YOLOv5, and Faster R-
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CNN on the KITTI dataset across three difficulty levels (Easy, 

Moderate, and Hard). 

2) Performance Insights: We provide a detailed analysis of 

speed vs. accuracy trade-offs, highlighting YOLOv5 as a strong 

candidate for real-time applications and Faster R-CNN for 

high-precision tasks. 

3) Small Object Detection Challenges: Our study reveals 

the challenges in detecting small and occluded objects, offering 

insights for future improvements in model design. 

4) Benchmarking for Real-World Applications: We present 

an evaluation that aids researchers and developers in selecting 

the best model for autonomous driving applications based on 

specific requirements. 

II. PROBLEM STATEMENT 

A. Variability in Environmental Conditions 

Traffic scenes are highly diverse, with many objects. These 
scenes can appear under varying lighting conditions, weather, 
and levels of obstacles. Many existing models struggle to 
maintain high accuracy in challenging scenarios, such as low-
light conditions, heavy rain, or dense traffic. Here objects may 
be partially covered or difficult to distinguish in that image for 
that model. 

B. Trade-offs Between Speed and Accuracy 

If we want to detect real-time objects, it will require a 
balance between speed and accuracy. Models like YOLO are 
optimized for speed. So, we can use them to make suitable real-
time applications. But they may reduce precision. Especially for 
smaller or partially covered objects, they can significantly 
reduce accuracy. On the other hand, models like Faster R-CNN 
achieve high accuracy in traffic object detection. But they are 
computationally intensive. This is limiting their ability for real-
time deployment. 

C. Detection of Diverse Object Classes 

Traffic scenes contain a wide variety of objects. Those 
scenes can include cars, pedestrians, cyclists, trucks, and 
motorcycles. Each object class presents unique challenges. They 
are different in terms of size, shape, and movement patterns. For 
example, when we want to detect small objects like cyclists or 
pedestrians at a distance, it is quite challenging. It is more 
challenging when they are partially covered or in motion. 

D. Generalization Across Different Scenarios 

Many object detection models are trained and tested on 
specific datasets. These datasets do not fully represent the 
diversity of real-world traffic scenarios. This can create poor 
generalization when the models are deployed in different 
environments or under conditions that were not encountered 
during training. 

E. Lack of Comparative Studies 

YOLO and Faster R-CNN are widely used for object 
detection. However, there is a lack of comparative studies that 
compare their performance across varying difficulty levels and 
object classes. The strengths and limitations of these models in 
different scenarios are different. That's why selecting the most 
appropriate model for specific applications is not an easy task. 

III. LITERATURE REVIEW 

We have reviewed some previous research those are related 
to our research. A short summary of every research is given here. 
This research in study [1] performed real-time vehicle detection 
and distance estimation using YOLOv4 and Faster R-CNN 
models. When the object was within a radius of 100 meters, it 
received high precision (99.16% and 95.47%) and Fl-measures 
(79.36% and 85.54%). The detection speed was 68 fps and 14 
fps for YOLOv4 and Faster R-CNN, respectively. 

LiDAR and camera data for object detection and distance 
estimation in autonomous driving are combined in this research 
[2]. A fusion approach has been applied. The result shows a 
good performance in the real world and simulator. This method 
uses low-level sensor fusion using geometric transformations. It 
also enabled consistent perception in diverse scenarios. 

A monocular vision-based approach for vehicle detection 
and distance estimation has been developed. This study [3] used 
a single-sensor multi-feature fusion technique to improve the 
accuracy and robustness of the algorithm. It can detect even in 
challenging weather, including sunny, rainy, foggy, or snowy, 
and lighting conditions. 

A two-stage detection system has been developed. 
HybridNet combines the speed of single-stage methods. This 
study [4] used the precision of two-stage models. Models are 
tested on KITTI and PASCAL VOC2007 datasets. HybridNet 
made faster and more accurate vehicle detection even in 
challenging weather. 

A convolutional network for 2D and 3D object detection 
from monocular images in autonomous vehicles are developed. 
They used the KTTI dataset in this study [5]. This model 
processes images at 10 fps and shows good speed. 

Over 300 works have been reviewed and compared each of 
them in this study [6]. It evaluated machine vision-based, 
mmWave radar-based, LiDAR-based, and sensor fusion 
methods, highlighting challenges and recommending future 
directions for improving detection accuracy. 

A geometry-based method for distance estimation using lane 
and vehicle detection has been developed. The study in [7] 
achieved good accuracy with a computationally inexpensive 
approach, outperforming monocular depth prediction algorithms 
on several datasets. The system is lightweight and domain-
invariant. 

A monocular vision-based method using 3D detection has 
been made. The study in [8] improved accuracy in estimating 
inter-vehicle distances. This study integrated a geometric model. 
This approach demonstrates superior performance on KITTI 
benchmarks, effectively handling occlusions and diverse vehicle 
orientations. 

Detecting and tracking moving vehicles in urban 
environments has been done in this study [9]. It used laser range 
finders. The approach employs Bayesian filtering and motion 
evidence techniques. It enhanced accuracy under noisy 
conditions. It passed tests in challenging scenarios like the 
Urban Grand Challenge. 
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A single-camera-based method has been integrated in this 
study [10]. It detects vehicles and estimates distances using 
aggregated channel features (ACFs) and inverse perspective 
mapping. The technique is optimized for real-time processing. It 
performs well in real-world environments. It has proven its 
applicability to autonomous driving. 

While previous studies [1] [2] [3] have explored object 
detection using LiDAR, hybrid approaches, or alternative CNN 
architectures, our study provides a focused evaluation of YOLO 
and Faster R-CNN on the KITTI dataset to determine their 
suitability for real-time autonomous driving applications. 

IV. METHODOLOGY 

This research applies the methodology which is presented in 
next Fig. 1. The chapter focus presents the sequence of data 
collection followed by data processing steps before model 
training and model evaluation. The main objective is to build a 
solid evaluation framework for determining the performance of 
YOLOv3, YOLOv5 and Faster R-CNN models in traffic object 
detection.  

 
Fig. 1. Overall methodology.

A. Data Collection 

The researchers utilized the KITTI dataset because it 
contains numerous traffic images. Compression research using 
KITTI dataset emerged from collaboration between Karlsruhe 
Institute of Technology (KIT) and Toyota Technological 
Institute at Chicago (TTIC). The dataset includes diverse images 
which were captured under various weather circumstances and 
lighting conditions. The dataset includes annotations which 
determine specific objects such as cars and pedestrians and 
cyclists and further traffic objects in images. It functions well 
for detecting objects through training and evaluation process. 

B. Dataset Description 

KITTI supplies a total of 7,481 training images alongside 
7,518 test images. The dataset contains photographs with 
boundaries that indicate the objects' classification. The database 
separates information into three increasing difficulty settings. 
The difficulty settings comprise Easy, Moderate, and Hard tiers 
which depend on the objects' size together with lighting factors 
and weather effects as well as object-covering elements. 

C. Data Splitting 

The training dataset was distributed into two sections: 
training which received 80 percent of data and validation which 
obtained 20 percent of data. The division of the training set 
created two subsets for running model training sessions as well 
as fine tuning with hyperparameter adjustments. The assessment 
of model final performance occurred exclusively through testing 
the models on the dedicated testing set. 

D. Data Processing 

Several preprocessing procedures were applied to the dataset 
to achieve good model results. Those steps are described below: 

Resizing: Subject images required two different dimensions 
for processing as Faster R-CNN needed 800x600 while YOLO 
needed images sized at 416x416. 

Normalization: To boost the training efficiency pixel values 
received normalization which stretched their values between 0 
to 1. 

Data Augmentation: The training data diversity improved 
together with overfitting reduction by implementing random 
cropping and flipping and rotation transformations. 

Annotation Conversion: The annotation data needed 
conversion into specific formats since YOLO models accept 
YOLO format while Faster R-CNN accepts COCO format. 

E. Model Training 

The training procedure included following steps for each 
model type. 

Training set: The training part of KITTI data served as the 
dataset for model training. To optimize performance the model 
applied various hyper parameter adjustments consisting of 
learning rate and batch size as well as number of epochs. 

Validation set: The validation subset served as a 
performance measurement tool during training to stop the 
models from overfitting. Early termination function operated 
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because the validation loss failed to get better results after 
multiple iterations. 

Testing set: The testing set served as the identification tool 
to measure model performance following training completion. 

F. Model Evaluation 

The evaluation process of the developed models utilized the 
following evaluation metrics. 

Validation Accuracy: During model training the validation 
set accuracy measurements were used to confirm proper 
learning occurred using Eq. (1). 

Validation Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                     (1) 

whereas, TP, TN represents True Positive and True Negetive 
and FP, FN represents False Positive and False Negetive. 

Validation Loss: During assessment of the model 
performance the validation set measurement used cross-entropy 
loss for classification alongside mean squared error for 
bounding box regression. 

Test Accuracy: The testing set was utilized to perform the 
final accuracy assessment of the developed models. 

Confusion Matrix: The performance evaluation of various 
object classes was conducted through a generated confusion 
matrix. 

Precision, Recall, F1 Score: The model's capacity to detect 
objects properly while reducing errors was evaluated through 
precision, recall and F1 score calculation as Eq. (2), Eq. (3) and 
Eq. (4). 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                (2) 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                  (3) 

F1-Score = 2 𝑋
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                      (4) 

V. RESULTS AND DISCUSSION 

This chapter presents the results of the experiments 
conducted to evaluate the performance of YOLOv3, YOLOv5, 
and Faster R-CNN models in detecting traffic objects using the 
KITTI dataset. The results are analyzed across three difficulty 
levels—Easy, Moderate, and Hard—and discussed in the 
context of their implications for real-world applications. 

A. Performance Across Difficulty Levels 

The performance of the models was evaluated based on their 
ability to detect objects under varying conditions, as defined by 
the difficulty levels in the KITTI dataset. The results are 
summarized below: 

Easy Difficulty: Objects are clearly visible, with optimal 
lighting and minimal occlusion (Fig. 2). All models performed 
well under easy conditions, with Faster R-CNN achieving the 
highest accuracy for all object classes. YOLOv5 showed 
significant improvement over YOLOv3, particularly in 
detecting smaller objects like cyclists. 

 
Fig. 2. Results in easy dataset. 

Moderate Difficulty: Objects are partially occluded or 
located at a moderate distance from the camera (shown in Fig. 
3). Faster R-CNN maintained its lead in accuracy, but YOLOv5 
demonstrated competitive performance, especially in detecting 
cars and pedestrians. YOLOv3 struggled with moderate 
difficulty, showing a noticeable drop in accuracy compared to 
the other models. 

 
Fig. 3. Results in moderate dataset. 

Hard Difficulty: Objects are heavily occluded, located far 
from the camera, or appear under challenging lighting 
conditions (Fig. 4). Faster R-CNN outperformed the other 
models, particularly in detecting pedestrians and cyclists, which 
are often smaller and harder to detect. YOLOv5 showed 
resilience in hard conditions but lagged Faster R-CNN in terms 
of precision and recall. YOLOv3 performed poorly, with 
significantly lower accuracy across all object classes. 

 
Fig. 4. Results in hard dataset. 
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B. Comparative Analysis of Models 

The following Table I summarizes the performance of the 
models across the three difficulty levels for each object class.  

TABLE I. COMPARATIVE ANALYSIS OF MODELS 

Model Difficulty Car Pedestrian Cyclist 

YOLOv3 Easy 56.00% 29.98% 9.09% 

 Moderate 36.23% 22.84% 9.09% 

 Hard 29.55% 22.21% 9.09% 

YOLOv5 Easy 88.17% 60.44% 55.00% 

 Moderate 78.70% 43.69% 39.29% 

 Hard 69.45% 43.06% 32.58% 

Faster R-

CNN 
Easy 88.17% 60.44% 55.00% 

 Moderate 78.70% 43.69% 39.29% 

 Hard 69.45% 43.06% 32.58% 

C. Key Findings 

The following table summarizes the performance of the 
models across the three difficulty levels for each object class. 

YOLOV3: Demonstrated limited performance, particularly 
in detecting smaller objects like cyclists. Struggled with 
moderate and hard difficulty levels, highlighting its limitations 
in complex scenarios. 

YOLOV5: Showed significant improvement over YOLOv3, 
achieving higher accuracy across all difficulty levels. Performed 
well in real-time applications, making it a strong candidate for 
deployment in autonomous driving systems. 

Faster R-CNN: Consistently achieved the highest accuracy, 
particularly for pedestrian and cyclist detection. Demonstrated 
robustness in challenging conditions, making it suitable for 
applications requiring high precision. 

D. Discussions 

The results reveal a clear trade-off between speed and 
accuracy among the models. While YOLOv5 offers a balance 
between real-time performance and accuracy, Faster R-CNN 
excels in precision but at the cost of higher computational 
requirements. YOLOv3, while computationally efficient, falls 
short in accuracy, particularly in challenging scenarios. 

Real-Time Applications: YOLOv5 is recommended for real-
time applications where speed is critical, such as in autonomous 
vehicles that require immediate decision-making. 

High-Precision Applications: Faster R-CNN is ideal for 
tasks that demand high accuracy, such as pedestrian detection in 
urban environments or cyclist detection in crowded areas. 

Limitations: Despite its strengths, our study reveals several 
limitations, including challenges in detecting small and 
occluded objects, the high computational cost of Faster R-CNN, 
and the need for better generalization across diverse 
environments. Future research should explore hybrid models, 
optimization techniques, and dataset expansion to overcome 
these drawbacks. 

E. Comparision with State of Art Methods 

Our study evaluates YOLOv3, YOLOv5, and Faster R-CNN 
for traffic object detection. To validate our findings, we compare 
our results with state-of-the-art methods from prior works. 
Firstly, the study in [1] achieved 99.16% precision for vehicle 
detection using YOLOv4, while our study shows that YOLOv5 
achieves 88.17% for car detection under easy conditions, 
demonstrating competitive performance in real-time scenarios. 
Secondly, the study in [2] integrated LiDAR and camera fusion, 
achieving robust performance in adverse weather, whereas our 
model evaluations focus purely on visual detection, which 
remains a challenge in occluded environments. Finally, the 
study in [3] demonstrated high performance using monocular 
vision-based methods but struggled in low-light scenarios, a 
limitation also observed in YOLOv3 in our study. 

These comparisons highlight that while YOLOv5 provides a 
strong balance of speed and accuracy for real-time applications, 
methods involving sensor fusion or more advanced deep 
learning architectures, such as Transformer-based detectors, 
may further enhance robustness. 

VI. CONCLUSION AND FUTURE WORKS 

This chapter describes the whole research by gathering all 
the important findings. Also, their implementation is described 
here. In future work section, the next processes of traffic object 
detection are well described. 

A. Conclusion 

This research executed a comparative analysis of YOLOv3, 
YOLOv5, and Faster R-CNN models for traffic object detection 
using the KITTI dataset. The models are evaluated across three 
different difficulty levels. Difficulty levels are Easy, Moderate, 
and Hard. Also, there are different object classes. Cars, 
pedestrians, and cyclists are the most important of them. The key 
findings are summarized below. The YOLOv3 model 
demonstrated limited performance, particularly in detecting 
smaller objects like cyclists and under challenging conditions. 
The accuracy of this model is not too good. That's why, it is not 
well suited for robust real-world traffic detection applications. 
In contrast, the YOLOV5 model shows better results than the 
YOLOV3 model. Additionally, The results highlight the 
difference between speed and accuracy among the models. Here, 
YOLOv5 is a good option for real-time applications. Faster R-
CNN made good progress whereas precision is tough. 
According to these findings, we can easily select the most 
appropriate model for the real-time robust application. 
Moreover, our findings confirm that YOLOv5 provides a 
competitive alternative to existing object detection frameworks 
while maintaining real-time performance. However, integrating 
multi-sensor fusion or leveraging newer architectures such as 
EfficientDet could further improve detection accuracy in 
complex traffic environments. 

B. Future Works 

While this research has contributed to the understanding of 
traffic object detection models, there are several areas for future 
exploration, such as Expansion of Dataset, Examining Different 
CNN Architectures, Hybrid Approaches for Real-Time 
Deployment, Addressing Small Object Detection, and 
Integration with Autonomous Systems. 
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