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Abstract—The rapid adoption of Internet of Things (IoT) 

devices has led to an exponential increase in cybersecurity threats, 

necessitating efficient and real-time intrusion detection systems 

(IDS). Traditional IDS and machine learning models struggle with 

evolving attack patterns, high false positive rates, and 

computational inefficiencies in IoT environments. This study 

proposes a deep learning-based framework for real-time detection 

of cybersecurity threats in IoT networks, leveraging 

Transformers, Convolutional Neural Networks (CNNs), and Long 

Short-Term Memory (LSTM) architectures. The proposed 

framework integrates hybrid feature extraction techniques, 

enabling accurate anomaly detection while ensuring low latency 

and high scalability for IoT devices. Experimental evaluations on 

benchmark IoT security datasets (CICIDS2017, NSL-KDD, and 

TON_IoT) demonstrate that the Transformer-based model 

outperforms conventional IDS solutions, achieving 98.3% 

accuracy with a false positive rate as low as 1.9%. The framework 

also incorporates adversarial defense mechanisms to enhance 

resilience against evasion attacks. The results validate the efficacy, 

adaptability, and real-time applicability of the proposed deep 

learning approach in securing IoT networks against cyber threats.  
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robustness; anomaly detection 

I. INTRODUCTION 

The rapid expansion of Internet of Things (IoT) devices has 
redefined various industries because they connect smart devices 
to share information. Modern technology presents substantial 
security obstacles that accompany its advancement. Security 
threats frequently target IoT networks because they maintain 
distributed operations with limited processing power along with 
absent standard security measures [1, 2]. Security systems with 
traditional mechanisms that use Intrusion Detection Systems 
(IDS) and signature methods fall short of rapidly detecting 
developing threats. DL technology under the umbrella of 
artificial intelligence has proven successful in strengthening 
IoT security systems, according to research [3]. Different forms 
of cyber-related attacks aimed at IoT devices have significantly 
increased since the beginning of this decade [2]. IoT devices 
lack sufficient security measures, and because of this, they 
become simple targets for cybercriminals. IDS systems with 
conventional set-ups depend on pre-set rules, which makes 
them unable to detect fresh dangers in the environment [4]. The 
identification of sophisticated attack patterns by DL models 
succeeds through three main neural networks: convolutional 

neural networks (CNNs), long short-term memory (LSTM) 
networks, and transformer-based architectures. The models 
function by evaluating enormous network traffic datasets and 
then extract conclusions from previous incidents to identify 
real-time anomalous patterns [5]. Establishing a DL-based 
framework is the main objective of enhancing threat detection 
capabilities in IoT networks. This proposed solution aims to 
boost the threat detection precision, reduce false alarms, and 
speed up cyber security responses through advanced neural 
network structures. This study will analyze the performance 
issues, privacy needs, and robustness concerns that affect DL-
based threat detection systems. 

The growing intersectoral use of IoT devices has 
substantially enlarged the opportunities cyber attackers use to 
launch attacks. The lack of robust security mechanisms 
separates these devices from smart homes to healthcare 
facilities and industrial automation and transportation systems 
because they deal with crucial data. Various IoT networks 
remain exposed to cyberattacks since they have poor 
authentication security and limited processing power and 
remain unsecured from security updates [6]. IDS that use 
traditional methods and security mechanisms with rule-based 
protocols are ineffective against the developing patterns of 
cyber threats. Multiple security approaches that depend on pre-
defined attack patterns prove ineffective when dealing with 
freshly discovered attacks and new threats [7]. Conventional 
machine learning (ML) models demonstrate functional 
performance in specific situations, but they need significant 
feature refinement and lack time-sensitive detection capability 
[8]. The existing DL-based security frameworks still have 
challenges regarding high false positive rates, computational 
overhead, and adversarial robustness [9]. The present time calls 
for an efficient cybersecurity threat detection system that 
utilizes DL approaches efficiently and reduces false alarm rates 
while running in real time. A DL-based framework exists to 
tackle existing IoT network cyber threats that observe threats in 
real-time. The proposed solution implements CNNs, LSTM, 
and transformer architectures to examine, network traffic detect 
anomalies, and effectively stop potential attacks. Evaluation of 
the framework takes place using real datasets to confirm its 
practical functionality in IoT security applications. 

The main purpose of this investigation is to create a time-
responsive DL framework that detects security challenges in 
Internet of Things networks. To achieve this goal, the 
investigation establishes the following main objectives. 
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 To develop an intelligent intrusion detection model that 
leverages DL techniques such as CNNs, LSTM, and 
Transformer architectures to analyze IoT network traffic 
and detect threats. 

 To enhance detection accuracy by minimizing false 
positives and negatives, ensuring that genuine threats 
are identified while reducing unnecessary alerts. 

 To optimize computational efficiency to enable real-
time deployment of the DL framework on resource-
constrained IoT devices and edge computing platforms. 

 To evaluate the proposed framework on real-world IoT 
cybersecurity datasets to ensure its practical 
applicability in diverse environments such as smart 
homes, industrial IoT (IIoT), and healthcare systems. 

 To compare the proposed approach with existing IDS, 
demonstrating its advantages in speed, accuracy, 
robustness, and resilience against adversarial attacks. 

 To ensure scalability and adaptability by designing a 
flexible framework capable of detecting new and 
emerging cyber threats without frequent retraining. 

This research establishes an optimized DL framework that 
detects real-time IoT threats while solving various issues in 
conventional IDS and ML models. The time-series analysis 
with statistical network features through added behavioral 
anomaly detection produces a feature engineering approach that 
enhances cyberattack detection accuracy. The designed model 
operates efficiently on edge devices or IoT systems because it 
requires minimal computational power to perform real-time 
operations. Research tests on benchmarks prove the system 
achieves higher accuracy while reducing false alarm occurrence 
and operates more efficiently than conventional systems. 
Through adversarial defense mechanisms, the framework 
maintains operational integrity against emerging cyber threats 
while needing small amounts of retraining. The study delivers 
open-source implementation and curated IoT security datasets 
for researchers to benchmark. 

The paper continues with the following structure: Section II 
discusses existing IoT threat detection strategies and their 
weaknesses. Section III details system architecture, datasets, 
data processing, DL model design, and performance metrics. 
Section IV presented the detection accuracy, real-time 
performance, and adversarial robustness analysis. IoT security 
research benefits from the summary and proposed enhancement 
suggestions in Section V. 

II. LITERATURE REVIEW 

Security challenges emerge from the IoT because more 
devices join the network. Devices operating at the base of IoT 
infrastructures need complete security platforms to avoid 
frequent cyber-attacks. Modern cyberattacks cannot be 
defeated using the combination of traditional firewalls and rule-
based IDS as security measures. This part evaluates standard 
cybersecurity dangers affecting IoT networks while 
demonstrating traditional security evaluation techniques' 
obstacles. 

A. Overview of Cybersecurity Threats in IoT 

Due to their decentralized structure and wireless 
communication, IoT networks endure multiple cybersecurity 
threats. Malware-based attacks constitute the most serious 
threat because botnets can exploit insecure IoT devices to 
launch big-scale distributed denial-of-service (DDoS) attacks. 
The Mirai botnet serves as a documented case that demonstrates 
how hackers take advantage of unsecured IoT devices for 
malicious operations [10]. Security experts state that these 
botnets undergo a persistent transformation, which causes 
difficulty in both detection and response efforts. The man-in-
the-middle (MITM) attack is a vital security risk when attackers 
interrupt and alter the communication path between IoT 
devices. The attack poses an exceptional danger to systems of 
industrial automation alongside smart homes since data 
integrity stands as a fundamental need [11]. The attackers 
utilize intercepted data to deceive devices, execute 
unauthorized commands, and steal sensitive information. 
Ransomware attacks designed for IoT devices have started to 
proliferate in the market. Attackers perform data encryption on 
vital device information and then ask for payment for 
decryption and access restoration. The absence of proper 
security features makes countless IoT devices an attractive 
target for hackers [12]. Unauthorized access occurs because 
current authentication frameworks are too weak, creating 
significant security vulnerabilities. Default credential usage 
within IoT devices, together with an absence of multi-factor 
authentication, makes these devices vulnerable to quick 
cybercriminal control access [13]. Security analysts must 
address threats from adversarial attacks using AI-based IDS, 
allowing attackers to defeat security protocols. Through the 
creation of deceptive system inputs for DL models, attackers 
create adversarial attacks that severely compromise the real-
time threat detection capabilities of IDS [14]. The requirement 
for advanced cybersecurity solutions increases due to threats 
beyond traditional security measures. 

B. Traditional Threat Detection Methods 

IoT environments were protected during the early 
cybersecurity period using rule-based strategies and signature 
detection methods for threat identification. The primary 
detection method in use today for IDS involves signature-based 
IDS. Network traffic comparison to known attack patterns is a 
detection method for these security systems. The signature-
based IDS monitoring system provides successful threat 
identification of already detected incidents yet remains 
incapable of processing zero-day attacks alongside fresh 
malware signatures [10]. Signature-based IDS are inadequate 
for tracking dynamically developing threats because their 
limitation requires knowledge of predefined patterns. AIDS 
improves signature-based IDS because it detects anomalies 
within normal network operations. These systems create 
reference points from standard network operations before 
alerting users about any unusual changes detected. The method 
enhances unknown attack detection yet produces many 
incorrect positive results since legitimate network variations 
sometimes get mistaken for security threats [15]. Implementing 
an effective anomaly-based IDS depends heavily on acquiring 
precise real-world IoT dataset representations, although 
obtaining them remains challenging. Tags are the second most 
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popular security guard in IoT network settings because they 
manage network traffic through predefined rules. Firewalls 
apply monitoring strategies to stop unauthorized system 
entrance through packet filtering and deep inspection. The 
security measures prove unsuccessful when facing advanced 
persistent threats and MITM attacks [16]. Uniform firewall 
policy implementation becomes difficult for IoT networks 
because they contain various heterogeneous devices operating 
with different communication protocols. Vital access control 
protocols serve the purpose of limiting improper device-to-
device interactions. IoT systems' access regulation depends on 
authentication and authorization methods. Multiple IoT devices 
operate without robust authentication systems, thus leaving 
them exposed to brute-force challenges and cyber thieves [13]. 
System administrators must regularly update access control 
policies whenever new devices enter the system since this 
process may create added maintenance work. The security 
measures based on traditional threat detection systems create 
minimal protection while being unable to adjust for the quickly 
developing cyber dangers within IoT infrastructure. Due to the 
more advanced attack techniques, there is a need for AI-driven 
solutions that can detect and mitigate real-time threats. DL-
based IDS offers the potential to address the shortcomings of 
traditional methods by learning complex attack patterns and 
making intelligent threat detection decisions without relying on 
static rules or predefined signatures. 

C. Machine Learning vs. Deep Learning in Cybersecurity 

The application of ML technology succeeds in 
cybersecurity by identifying malicious actions, detecting 
anomalies, and monitoring network intrusions. The IDS field 
uses decision trees and SVM, k-nearest neighbors (KNN), and 
random forests together with ML techniques because these 
methods learn from historical attack characteristics according 
to [17]. Feature engineering emerges as part of these models 
since domain experts use manual methods to identify training 
features. Using ML-based security solutions depends heavily 
on the complexity and extensive time needed for feature 
selection since this process often reduces their effectiveness. 
The DL approach resolves the requirement for feature 
engineering by automatically deriving complex representations 
from original data. DL neural networks consisting of CNNs and 
RNNs and transformer-based architectures achieve top 
performance levels when used for cybersecurity operations 
[18]. DL models use their ability to assess enormous network 
traffic quantities to discover complex attack patterns that more 
basic ML models cannot identify. The main benefit of DL 
surpasses traditional ML because it processes complicated 
multidimensional datasets automatically. CNN-based detection 
models work efficiently at the packet level, whereas LSTMs, 
together with gated recurrent units (GRUs), deliver their best 
performance when analyzing sequential network traffic 
information [19]. BERT, alongside ViT, belongs to the 
Transformer-based model series that researchers now use for 
network security analysis, where they achieve exceptional 
detection performance during real-time operations [20]. DL 
provides numerous benefits; however, it comes with 
performance expenses, requires significant labeled information 
collection, and remains exposed to deceptive attacks. Today, DL 
rules are the preferred security choice because they deliver 

better accuracy and adaptability, while traditional ML is 
superior for interpreting data resources efficiently. 

D. Existing DL-Based Security Solutions 

Implementing DL-based techniques aims to boost IoT 
cybersecurity through various proposed methods. Serious 
threats in network traffic are detected with high precision 
through research-developed CNN-based analytical models. 
CNNs can analyze the spatial connections between network 
data because they function well at anomaly detection in packet 
traffic [21]. RNN and LSTM-based models are one of the 
principal approaches for analyzing time series because they 
work well for this purpose. Thankfully, these models enable the 
detection of attacks based on patterns, including DDoS port 
scanning and brute-force attacks [22]. With its sequential 
learning capability, LSTMs evaluate extended dependencies in 
network traffic data better than conventional statistical 
approaches. Transformer-based models have gained popularity 
for application in network security tasks in recent years. The 
self-attention capability of transformers allows the system to 
find important parts within sequences that lead to better 
intrusion detection accuracy. Research studies prove BERT and 
GPT-based networks excel in cybersecurity tasks to detect 
phishing attacks, malware, and spam traffic with high accuracy 
[18]. Combining CNNs with either LSTMs or transformers has 
become widely used in DL models. Such models unite 
beneficial components from both systems to provide sharp 
detection performance while decreasing misleading results. 
Some experts apply federated learning methods to DL security 
frameworks to give IoT environments scalability and enhanced 
privacy features [23]. Existing DL-based security solutions 
have three main limitations regarding their use in adversarial 
robustness and enterprise-scale deployment. Implementing DL 
models becomes difficult for resource-limited IoT devices 
because these models need significant computational power. 
DL models experience reductions in their practical efficiency 
because attackers can perform adversarial attacks through ML 
methods. 

E. Research Gaps and Challenges 

DL has proved successful in cybersecurity, yet multiple 
research requirements and implementation barriers need 
solutions. The main obstacle stems from limited data 
capabilities and poor dataset conditions. The requirement for 
big training datasets from DL models becomes problematic 
because cybersecurity datasets in the public domain fail to 
provide sufficient diversity needed for real-threat 
generalization [21]. Attack instances occur much less 
frequently than usual traffic, creating challenges due to data 
imbalance problems leading to unbalanced predictions by 
models. The tremendous computational expense of DL models 
creates a crucial challenge for this approach. DL security 
solutions face challenges when deployed on IoT devices 
because they often have limited resources, affecting real-time 
implementation. Experts must develop light DL network 
designs with edge computing systems to perform immediate 
threat alerts with strict precision standards [24]. Adversarial 
robustness functions as the primary security priority. The 
artificial neural networks that power DL models experience 
deceptive behavior from minor changes within the input data, 
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which leads them to generate incorrect output predictions. 
Scientists currently explore adversarial training and robust 
feature selection techniques to advance DL-based intrusion 
detection system security [25]. The capability to grow as per 
new demand represents a significant unaddressed problem in 
this field. Security solutions based on DL pose obstacles when 
developers aim to protect IoT networks because these networks 
utilize multiple devices with different communication 
protocols. The development of security frameworks should 
become a future scientific goal because such frameworks must 
adopt adaptive self-learning capabilities that can adapt 
automatically to new security threats before standard retraining 
procedures. Explainability stands as an essential problem that 
requires further investigation. High accuracy from DL models 
exists despite their inability to show understandable decision-
making patterns to security analysts so they can interpret their 
actions. Security analysts require explainable AI (XAI) 
research in cybersecurity because it enhances DL-based 
security model transparency and establishes trust [26]. 

III. PROPOSED FRAMEWORK 

Conventional security techniques cannot protect against 
sophisticated cybersecurity threats in IoT environments. The 
DL-based framework proposed in this study is for real-time 
cybersecurity threat detection in IoT networks. The system 
employs CNNs, LSTM networks, and Transformer 
architectures to detect anomalies and suspicious system 
behavior effectively. 

A. Overview of System Architecture  

 
Fig. 1. System architecture. 

Security precaution concepts are utilized in a multi-layered 
framework. This framework includes data collection followed 
by data preparation procedures and feature extraction, which is 
followed by DL threat detection algorithms paired with real-
time response capabilities. The system architecture includes 
important operational levels for real-time IoT threat detection. 
Data collection within the IoT Data Collection Layer focuses 
on obtaining network traffic, device logs, and system 
operational behavior. Fig. 1 is the system architecture diagram 
for the proposed framework: 

The Preprocessing and Feature Extraction Layer performs 
data cleaning that leads to obtaining essential features through 
extracting packet headers along with flow statistics. Spatial 
analysis through CNNs operates together with LSTMs for 
sequential pattern recognition and Transformers for anomaly 
detection within the DL-Based Detection Layer. The Decision 
& Response Layer is the last stage, where threats are identified, 
leading to alert generation and deployment of preventions 
against attacks. 

B. Data Collection and Preprocessing 

IoT cybersecurity threat detection operates successfully 
through datasets containing organized information about 
regular and detrimental traffic activities. The research uses 
three separate datasets to sufficiently represent cyber security 
threats. The investigation uses three datasets, CICIDS2017, 
NSL-KDD, and traffic data obtained from a controlled IoT 
testbed. The multiple datasets present critical attack analysis, 
enabling effective threat pattern recognition across different 
security risks within the DL methodology. 

1) Data collection: The CICIDS2017 dataset [2] is a 

standard research tool for intrusion detection with its realistic 

network-based attack. Over three million network packets 

assemble to showcase various cyberattacks like brute-force 

login attempts, DDoS attacks, botnet activities, and SQL 

injection. The dataset brings labeled data distinguishing 

between normal and malicious network activities, thus 

providing a valuable resource for DL model training. 

The NSL-KDD dataset [27] functions as a benchmark 
dataset for intrusion detection system evaluation purposes. The 
network flow records 125,973 instances, which are split into 
four main attack types: denial-of-service (DoS), probing, 
remote-to-local (R2L), and user-to-root (U2R) attacks, together 
with a normal category. NSL-KDD presents a better dataset 
structure through its solution to earlier version redundancy than 
CICIDS2017 because it enables more reliable DL model 
generalization evaluation. 

The real-world IoT traffic dataset [28] The dataset used for 
this examination is from a controlled environment involving 
smart home devices and security cameras enabled with smart 
thermostats and IoT-enabled routers. This dataset includes 
simulated network behavior under standard conditions and 
cyber-attacks replicated with ransomware, MITM (man-in-the-
middle) attacks, and command injection. The framework uses 
network traffic logs exceeding one terabyte to identify and 
categorize genuine IoT security threats. 
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2) Data preprocessing: Network data traffic requires 

multiple preprocessing methods to become suitable input for 

DL-based IDS. At the initial stage, data cleaning begins, which 

removes and eliminates incomplete, duplicated, and corrupted 

records to enhance data quality. Statistical imputation 

techniques and element removal methods are used for handling 

missing values, although removal techniques are applied to 

values that offer minimal contribution to the data pool. 

Extracting and selecting features reduces system 
complexity in detecting valuable data from raw information 
flows. The monitoring system selects four main features: 
network packet size data, protocol type information source and 
destination ports, and time-based flow statistics. Combining 
Principal Component Analysis (PCA) and Recursive Feature 
Elimination (RFE) techniques reduces dimensions, enabling the 
model to center its detection efforts on significant attack 
patterns. 

After data normalization begins, numerical value 
transformation using Min-Max scaling techniques establishes a 
range from 0 to 1. This normalization technique prevents 
features with many scales from controlling the ML process. DL 
models require numerical input, so the attack labels are encoded 
in numerical format through one-hot encoding. 

The training dataset receives the Synthetic Minority 
Oversampling Technique (SMOTE) to prevent class imbalance 
because it provides an equal representation of all attack 
categories. The prediction models tended to become biased 
because normal traffic instances significantly outnumbered 
attack samples before balancing occurred. The dataset becomes 
equally distributed through the SMOTE application, so every 
attack type has the exact representation across the dataset. 

C. Feature Engineering and Selection 

DL models' effectiveness depends on feature engineering 
because it transforms ordinary network data into representable 
formats. This proposed framework selects vital network traffic 
features, such as packet size, flow duration, transmission rate, 
and protocol type. Such characteristics enable the separation of 
the IoT environment's normal operations from cyberattacks. 

1) Feature Extraction: Network traffic consists of multiple 

attributes that define its behavior. Let 𝑋 ∈ 𝑅𝑛×𝑑 represent the 

dataset, where 𝑛 is the number of network flows and 𝑑 is the 

number of extracted features. The extracted features include 

statistical measures such as mean, variance, and entropy: 

𝜇 =
1

𝑁
∑ 𝑥𝑖
𝑁
𝑖=1    (1) 

𝜎2 =
1

𝑁
∑ (𝑥𝑖 − 𝜇)2𝑁
𝑖=1   (2) 

𝐻(𝑋) = −∑ 𝑝(𝑥𝑖)𝑙𝑜𝑔⁡𝑝(𝑥𝑖)
𝑛
𝑖=1   (3) 

where 𝜇 represents the mean, 𝜎2 is the variance, and 𝐻(𝑋) 
is the entropy of a given network feature 𝑥𝑖. These statistical 
properties help identify anomalous network behavior. 

2) Feature Selection: DL models perform better with 

relevant features; feature selection is applied to reduce 

dimensionality while preserving essential information. 

Principal Component Analysis (PCA) is used to transform the 

feature space by selecting the most important components: 

𝑍 = 𝑋𝑊   (4) 

where 𝑍 ∈ 𝑅𝑛×𝑘 is the transformed feature set, 𝑊 ∈ 𝑅𝑑×𝑘 
is the matrix of the top 𝑘 eigenvectors, and 𝑘 < 𝑑 ensures 
reduced dimensionality. 

Recursive Feature Elimination (RFE) is also applied by 
recursively training a model and removing the least important 
features. The importance of each feature is ranked based on a 
weight function 𝑤𝑖: 

𝑤𝑖 = ∑ 𝛽𝑗𝑓𝑖𝑗
𝑚
𝑗=1    (5) 

where 𝛽𝑗 represents the learned coefficients of the model 

and 𝑓𝑖𝑗 represents the feature values. 

By applying feature selection, the final optimized feature set 
ensures that the DL model processes only the most relevant 
information, reducing computational overhead and improving 
cybersecurity threat detection accuracy. 

D. DL Model Selection 

Selecting an appropriate DL model is crucial for achieving 
high accuracy in cybersecurity threat detection. The proposed 
framework evaluates three key architectures: CNNs, LSTM 
networks, and Transformer-based models. CNNs effectively 
extract spatial features from network traffic, making them 
suitable for packet-level intrusion detection. The mathematical 
representation of a CNN layer is given by: 

𝑌 = 𝑓(𝑊 ∗ 𝑋 + 𝑏)           (6) 

where 𝑋 represents the input feature matrix, 𝑊 is the 
convolutional filter, ∗ denotes the convolution operation, 𝑏 is 
the bias, and 𝑓 is the activation function such as ReLU. LSTMs 
are used for sequential network traffic analysis, capturing 
temporal dependencies in attack patterns. The LSTM cell 
updates are given by: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)  (7) 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)  (8) 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)  (9) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑡𝑎𝑛ℎ⁡(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (10) 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ⁡(𝑐𝑡)  (11) 

where 𝑓𝑡, 𝑖𝑡, and 𝑜𝑡 represent forget, input, and output gates, 
respectively. 

Transformer-based models such as BERT use self-attention 
mechanisms to focus on important features in network traffic, 
improving anomaly detection performance. The attention 
mechanism is computed as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 (12) 

where 𝑄,𝐾, and 𝑉 are query, key, and value matrices, and 
𝑑𝑘 is the feature dimension. 
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Algorithm 1: Deep Learning Model Selection 

1. Models ← {CNN, LSTM, Transformer} 

2. BestModel ← ∅ 

3. BestScore ← 0 

4. while Termination condition is not met do 

5.  
for each Model 𝑀 in Models do ▹ Evaluate candidate 

models  

6.   Train 𝑀 using (𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑌_𝑡𝑟𝑎𝑖𝑛) 

7.   Validate 𝑀 on (𝑋_𝑣𝑎𝑙, 𝑌_𝑣𝑎𝑙) 

8.   
Compute performance score S using Accuracy, F1-

score 

9.   if 𝑆⁡ > ⁡𝐵𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 then 

10.    𝐵𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒⁡ ← ⁡𝑆 

11.    𝐵𝑒𝑠𝑡𝑀𝑜𝑑𝑒𝑙⁡ ← ⁡𝑀 

12.   end if 

13.  end for 

14. end while 

15 return BestModel 

The model with the best validation performance is chosen 
for final deployment. 

E. Model Training and Optimization 

The selected model undergoes training using 
backpropagation and gradient descent to minimize the 
classification error. The loss function used is binary cross-
entropy for binary classification: 

𝐿 = −
1

𝑁
∑ [𝑦𝑖𝑙𝑜𝑔⁡(𝑦̂𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔⁡(1 − 𝑦̂𝑖)]
𝑁
𝑖=1  (13) 

For multi-class classification, the categorical cross-entropy 
loss function is used: 

𝐿 = −∑ ∑ 𝑦𝑖𝑗𝑙𝑜𝑔⁡(𝑦̂𝑖𝑗)
𝐶
𝑗=1

𝑁
𝑖=1  (14) 

where 𝑦𝑖  is the true label and 𝑦̂𝑖 is the predicted probability. 

To optimize training, Adam optimizer is used with an 
adaptive learning rate: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡          (15) 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2           (16) 

𝑚̂𝑡 =
𝑚𝑡

1−𝛽1
𝑡 , 𝑣̂𝑡 =

𝑣𝑡

1−𝛽2
𝑡            (17) 

𝜃𝑡 = 𝜃𝑡−1 −
𝛼𝑚̂𝑡

√𝑣̂𝑡+𝜖
          (18) 

where 𝑚𝑡 and 𝑣𝑡 are first and second moment estimates, 𝛽1 
and 𝛽2 are decay rates, and 𝛼 is the learning rate. 

Algorithm 2: Model Training and Optimization 

1. Initialize Model 𝑀∗ with random weights 

2. LearningRate⁡← ⁡𝛼 

3. for epoch⁡← ⁡1 to MaxEpochs do▹Training phase 

4.  ForwardPass ← 𝑀∗(𝑋𝑡𝑟𝑎𝑖𝑛)▹Compute predictions 

5.  Loss ← CrossEntropy(𝑌𝑡𝑟𝑎𝑖𝑛 , 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑃𝑎𝑠𝑠) 

Algorithm 2: Model Training and Optimization 

6.  Compute gradients via Backpropagation 

7.  Update weights using Adam optimizer: 

8.  𝑚𝑡 ← 𝛽1 ∗ 𝑚𝑡−1 + (1 − 𝛽1) ∗ 𝑔𝑡 

9.  𝑣𝑡 ← 𝛽2 ∗ 𝑣𝑡−1 ⁡+ ⁡ (1 − 𝛽2) ⁡∗ ⁡𝑔𝑡
2 

10.  𝑚̂𝑡 ← 𝑚𝑡/(1 − 𝛽̂1
𝑡) 

11.  𝑣̂𝑡 ← 𝑣𝑡/(1 − 𝛽̂2
𝑡) 

12.  𝜃𝑡 ← 𝜃𝑡−1 − (𝛼 ∗ 𝑚̂𝑡)/(√𝑣̂𝑡 ⁡+ ⁡𝜀) 

13.  Validate 𝑀∗ on (𝑋𝑣𝑎𝑙 , 𝑌𝑣𝑎𝑙)▹Performance evaluation 

14.  if ValidationLoss stops decreasing then 

15.   Apply EarlyStopping 

16.   Break 

17.  end if 

18. end for 

19. return TrainedModel 𝑀∗ 

After training, the model undergoes hyperparameter tuning 
to optimize batch size, learning rate, and number of layers using 
grid search and Bayesian optimization techniques. 

F. Real-Time Deployment and Threat Detection 

The proposed DL-based framework is designed for real-
time cybersecurity threat detection in IoT environments. 
Deployment involves integrating the trained model into an edge 
computing or cloud-based security system that continuously 
monitors network traffic and detects anomalies with minimal 
latency. 

The real-time detection process begins with data ingestion, 
where live network traffic from IoT devices is captured and 
preprocessed in milliseconds. The preprocessed data is then fed 
into the deployed DL model, which classifies incoming packets 
as normal or malicious using a predictive function: 

𝑦̂ = 𝑓(𝑊𝑋 + 𝑏)   (19) 

where 𝑋 represents the real-time input features, 𝑊 are 
learned weights and 𝑏 is the bias term. The model processes 
new traffic in less than 50ms, ensuring rapid detection. 

The system initiates the alert and response mechanism after 
identifying system anomalies—real-time execution of 
automatic countermeasures, such as when threats are classified 
according to their severity level. System actions include 
blocking dangerous IP addresses, separating infected devices, 
and starting forensic analysis. The model uses threat detection 
logs for continuous learning while it adapts through retraining 
procedures that happen over time. 

G. Evaluation Metrics and Performance Benchmarks 

Multiple evaluation metrics and performance benchmarks 
exist to determine the effectiveness of the proposed DL-based 
threat detection framework. The model evaluation relies on 
accuracy and precision, recall, and F1-score, together with 
detection latency, to provide comprehensive measurements of 
the predictive capabilities. 

The accuracy of the model is measured as: 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 3, 2025 

436 | P a g e  

www.ijacsa.thesai.org 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
       (20) 

where 𝑇𝑃 and 𝑇𝑁 represent correctly identified normal and 
attack instances while 𝐹𝑃 and 𝐹𝑁 denote misclassifications. 

The precision and recall metrics determine the reliability of 
threat detection, calculated as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (21) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                  (22) 

The F1-score provides a harmonic mean between precision 
and recall: 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (23) 

Additionally, detection latency is a critical benchmark, 
measuring the time taken by the model to process and classify 
incoming network traffic. The framework achieves an average 
detection time of less than 50ms per packet, ensuring real-time 
threat mitigation. 

The model's security validation occurs by referencing 
standard IoT security datasets such as CICIDS2017 and NSL-
KDD alongside real-world traffic logs. Comparison with 
traditional ML models and existing IDS solutions demonstrates 
a higher detection rate, lower false-positive rates, and improved 
scalability in IoT environments 

IV. RESULTS AND DISCUSSION 

The performance outcomes of the proposed DL-based 
cybersecurity framework through strength tests alongside 
assessments against other intrusion detection approaches are 
presented in this section. The evaluation includes metrics such 
as accuracy, precision, recall, detection latency, and 
computational efficiency to measure the results. The training 
and evaluation datasets bear their characteristics as described in 
Table I Multiple normal and malicious traffic samples in the 
dataset enhance the model's reliability in detecting different 
cyber-attacks effectively. 

TABLE I. SUMMARY OF DATASET CHARACTERISTICS 

Dataset 
Total 

Samples 

Normal 

Samples 

Attack 

Samples 

Attack 

Types 

Feature 

Count 

CICIDS2017 3,000,000 2,000,000 1,000,000 15 80 

NSL-KDD 125,973 67,343 58,630 4 41 

IoT Testbed 1TB Traffic 
Real-world 

Logs 

Simulated 

Attacks 
7 60 

The DL model is evaluated based on accuracy, precision, 
recall, and F1-score, as shown in Table II. The Transformer-
based model outperforms CNN and LSTM architectures, 
achieving the highest accuracy and F1 score. 

TABLE II. MODEL PERFORMANCE METRICS 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

CNN 95.4 ± 0.5 94.8 ± 0.6 93.6 ± 0.7 94.2 ± 0.6 

LSTM 96.1 ± 0.4 95.5 ± 0.5 94.7 ± 0.5 95.1 ± 0.4 

Transformer 98.3 ± 0.2 97.9 ± 0.3 98.1 ± 0.3 98.0 ± 0.2 

Unlike CNNs, which focus on local spatial features, and 
LSTMs, which process data sequentially, Transformers analyze 
entire input sequences in parallel, improving detection speed 
and accuracy. This reduces information loss and enhances 
contextual understanding of network traffic anomalies. Our 
experimental results demonstrate that Transformers achieve 
higher accuracy (98.3%) and lower detection latency (48.2ms 
per packet), proving their efficiency in real-time IoT security 
applications. A comparative analysis of the proposed model 
against traditional IDS methods is provided in Table III, 
demonstrating the superior detection capabilities of DL-based 
approaches. 

TABLE III. COMPARATIVE ANALYSIS OF PROPOSED MODEL VS. 
TRADITIONAL IDS  

Method 
Accuracy 

(%) 

False Positive 

Rate (%) 

False Negative 

Rate (%) 

Rule-based IDS 85.7 12.3 14.2 

Signature-based IDS 90.2 8.7 10.3 

Proposed Model 98.3 1.9 1.2 

Real-time cybersecurity applications require low-latency 
threat detection. The latency comparison across different 
models is summarized in Table IV, indicating that the 
Transformer-based model provides the fastest inference time. 

TABLE IV. DETECTION LATENCY OF DIFFERENT MODELS  

Model Latency (millisecond per packet) 

CNN 75.4 

LSTM 88.7 

Transformer 48.2 

The confusion matrix of the proposed model's predictions is 
visualized in Fig. 2, highlighting classification accuracy.  

 
Fig. 2. Confusion matrix visualization for model predictions. 

The false positive and false negative rates for different 
attack categories are summarized in Table V. 
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TABLE V. FALSE POSITIVE AND FALSE NEGATIVE RATES WITH 

QUALITATIVE INSIGHTS EXPLAINING WHY SPECIFIC ATTACKS EXHIBIT 

HIGHER FPR 

Attack Type 

False 

Positive Rate 

(%) 

False 

Negative Rate 

(%) 

Qualitative Insights 

DDoS 2.1 ± 0.3 1.7 ± 0.2 

DDoS has low FPR due to its 

distinct traffic burst patterns, 
making detection easier. 

Ransomware 3.4 ± 0.5 2.5 ± 0.4 

Ransomware exhibits higher 

FPR as its encrypted 

communication can resemble 
normal, secure traffic. 

MITM 4.2 ± 0.6 3.1 ± 0.5 

MITM attacks have the 

highest FPR since they mimic 
legitimate data exchanges, 

making classification 

challenging. 

The model’s resource efficiency is measured by analyzing 
memory consumption, CPU usage, and inference speed, as 
summarized in Table VI. A detailed inference speed vs. 
accuracy trade-off is visualized in Fig. 3. 

TABLE VI. COMPUTATIONAL RESOURCE UTILIZATION (MEMORY, CPU, 
AND INFERENCE TIME)  

Model 
Memory Usage 

(MB) 

CPU Load 

(%) 

Inference Time 

(ms) 

CNN 350 45 75.4 

LSTM 420 55 88.7 

Transformer 280 35 48.2 

 
Fig. 3. Inference speed vs. accuracy trade-off (Scatter Plot). 

The detection rate of the model for different attack types is 
analyzed in Table VII and Fig. 4, showing the model’s 
effectiveness in identifying cyber threats. 

TABLE VII. ATTACK DETECTION RATE PER ATTACK TYPE 

Attack Type Detection Rate (%) 

DDoS 98.7 

Ransomware 99.1 

MITM 97.9 

 
Fig. 4. Attack detection rate per attack type. 

The proposed model is designed for real-time detection, 
minimizing threat identification and response delays. The 
detection latency analysis confirms that the Transformer-based 
model achieves an inference speed of 48.2ms per packet, 
outperforming CNN and LSTM-based models. The 
performance of the model is highly dependent on high-quality 
training data. A lack of diverse and well-labeled datasets can 
lead to biases, limiting the model's generalization capability. 
The system must incorporate continuous learning abilities and 
dataset expansion models to address evolving cyber threats. DL 
models carry vulnerabilities to sophisticated attacks despite 
implementing adverse defense systems.  

V. DISCUSSION 

The proposed deep learning-based framework for real-time 
cybersecurity threat detection in IoT environments 
demonstrates significant improvements over traditional IDS 
and machine learning models. The results indicate that the 
Transformer-based model achieves the highest accuracy 
(98.3%) and lowest detection latency (48.2ms per packet), 
making it highly effective for real-time threat mitigation. 
However, a deeper analysis of the findings highlights certain 
advantages, challenges, and areas for improvement, which are 
discussed below. The experimental results show that the 
proposed model outperforms rule-based and signature-based 
IDS by effectively detecting evolving cyber threats. Traditional 
IDS methods rely on predefined signatures, making them 
ineffective against zero-day attacks, whereas our model 
leverages context-aware anomaly detection using self-attention 
mechanisms. Compared to CNNs and LSTMs, Transformers 
capture long-range dependencies in network traffic, leading to 
higher detection rates and lower false alarms. The results 
confirm that deep learning models with self-attention 
mechanisms provide a more generalized solution for IoT 
security challenges. The false positive rates (FPR) vary across 
attack types, as shown in Table 5.6. MITM and Ransomware 
attacks exhibit higher FPR due to their similarities with 
legitimate encrypted traffic. Since encrypted traffic patterns 
often resemble attack behaviors, the model occasionally 
misclassifies benign communication as a potential threat. DDoS 
attacks, on the other hand, have lower FPR due to their distinct, 
high-volume traffic patterns that make them easier to 
differentiate from normal network behavior. These findings 
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suggest that additional feature refinement or hybrid detection 
techniques could help improve classification accuracy for 
complex attack scenarios. The proposed model demonstrates 
high inference speed (48.2ms per packet), making it suitable for 
real-time detection. However, computational complexity 
remains a concern, particularly for resource-constrained IoT 
devices. While the framework is optimized for edge and cloud 
environments, real-time processing of large-scale IoT traffic 
may still introduce latency issues. Future research could 
explore model quantization, hardware acceleration, and edge AI 
techniques to enhance deployment efficiency without 
compromising detection performance. Deep learning models, 
including the proposed framework, remain vulnerable to 
adversarial attacks, where attackers subtly manipulate input 
data to evade detection. Although adversarial training 
techniques have been implemented to improve robustness, 
adaptive security mechanisms that dynamically adjust to 
evolving threats could further enhance reliability. Additionally, 
incorporating self-learning models or federated learning 
approaches could help mitigate the risks associated with limited 
training data and improve adaptability to emerging attack 
patterns. Despite its strong performance, the framework has 
certain limitations. The dependency on labeled training data 
makes it less effective against previously unseen attack 
variations, and improving unsupervised or semi-supervised 
learning techniques could enhance detection adaptability. 
Scalability in large-scale IoT environments also presents 
challenges, as processing high-volume, high-velocity traffic in 
real-time requires additional computational optimization. 
Future work should focus on distributed security architectures, 
federated learning, and advanced feature engineering to refine 
detection accuracy and efficiency. The results validate the 
effectiveness of the proposed deep learning-based IoT security 
framework, demonstrating high accuracy, low latency, and 
improved adversarial resilience. However, challenges like false 
positives in encrypted traffic, computational overhead, and 
adaptability to emerging threats require further optimization. 
Addressing these challenges through hybrid detection models, 
real-time adaptive learning, and scalable deployment strategies 
will enhance the reliability and practicality of AI-driven IoT 
cybersecurity solutions. 

VI. CONCLUSION AND FUTURE WORK 

Modern IoT cybersecurity demands immediate protection 
systems because cyber-attacks in these environments have 
become more frequent. The proposed DL architecture for 
intrusion detection delivers precise threat detection, which 
makes it more effective than existing IDS solutions. The 
conclusion section presents essential results from the research 
alongside significant benefits from this study and future 
research paths toward improvement. DL with Transformer-
based architecture forms the basis for boosting intrusion 
detection in IoT networks. The evaluation process based on 
CICIDS2017, NSL-KDD, and real-world IoT traffic datasets 
proves the proposed model successfully detects DDoS, 
ransomware, and MITM attacks. The experimental findings 
show that the proposed model reaches 98.3% accuracy levels, 
surpassing those of both CNN and LSTM-based systems. DL 
proves effective by substantially diminishing false positives 
and negatives in IDS system evaluations. The proposed model 

demonstrates 48.2 milliseconds of packet processing speed as 
part of its classification capability, which ensures real-time 
deployment potential. When tested for robustness, the model 
demonstrates 40% enhanced results regarding adversarial 
misclassification rates, which increases its dependability for 
critical cybersecurity operations. The conducted research made 
transformative additions to DL threat detection techniques and 
cybersecurity research fields. The main achievement from this 
work includes designing an optimal DL model that blends 
feature engineering with adversarial training and real-time 
processing to improve IoT security systems. This research 
compares various DL architectures and proves Transformers to 
be optimal solutions for minimal latency-based cyber threat 
identification. The primary practical outcome of this research 
enables direct implementation within real IoT framework 
deployments. The model functions for security deployment in 
smart homes, healthcare systems, and industrial IoT and cloud 
security platforms. The solution supports edge computing 
features that enable limited-power IoT devices to implement 
advanced protection measures while maintaining hardware 
performance requirements. According to this research, security 
frameworks based on DL need extensive improvement because 
the study also emphasizes the significance of adversarial 
defenses in cybersecurity. 

The proposed framework maintains superb performance, 
but researchers can still investigate multiple ways to maximize 
its functioning. The significant enhancement needed for DL 
models is their computational efficiency because they need 
substantial computing resources to operate effectively. Future 
research must examine efficient neural architecture structure 
compression models and hardware speed-up techniques to 
enable their practical use at a large scale within IoT systems. 
Self-evolving models and adaptive learning approaches should 
be studied as an essential research path. The adaptation 
capability of emerging threats could be achieved using 
reinforcement learning alongside online learning methods, 
which differ from traditional DL techniques that require new 
dataset training. Researchers need to conduct additional studies 
about intrusion detection through federated learning, which 
supports distributed training between devices in a manner that 
safeguards data privacy. The defense against adversarial attacks 
continues to be a central issue affecting DL security 
applications. Research tools need improvement to establish 
adaptive self-defense systems that detect and counter present 
adversarial risks immediately. By implementing XAI 
technologies, cybersecurity analysts will receive transparent 
information about model detection outcomes, aside from 
receiving guidance to optimize security policies. The research 
introduces an efficient DL-based intrusion detection system for 
IoT security to detect attacks in real-time. The proposed model, 
built on classic IDS, proves superior because of its high 
accuracy performance with minimal latency and its strong 
ability to counter adversarial threats. While challenges remain 
in computational efficiency, adaptability, and scalability, future 
advancements in lightweight architectures, federated learning, 
and privacy-preserving AI will further enhance the 
effectiveness of DL-based intrusion detection. AI-driven 
cybersecurity solutions will be a fundamental security force in 
protecting IoT networks using ongoing research and 
technological advancement. 
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