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Abstract—This study explores the impact of the CLIP 

(Contrastive Language-Image Pretraining) model on visual 

communication design, particularly focusing on its application in 

design innovation, personalized element creation, and cross-modal 

understanding. The research addresses how CLIP can meet the 

increasing demand for personalized and diverse design solutions 

in the context of digital information overload. Through a 

comprehensive analysis of the CLIP model’s capabilities in image-

text pairing and large-scale learning, this study examines its ability 

to enhance design efficiency, customization, and creative 

expression. Quantitative data is presented, showcasing 

improvements in design processes and outcomes. The use of the 

CLIP model has resulted in a 30% increase in design efficiency, 

with a 20% improvement in originality and a 15% boost in market 

relevance of creative solutions. Personalized design solutions have 

seen a 40% increase in accuracy and user satisfaction. 

Additionally, the model’s cross-modal understanding has 

enhanced the coherence and immersion of visual experiences, 

improving user satisfaction by 25%. This research highlights the 

transformative potential of AI-driven models like CLIP in 

revolutionizing visual communication design, offering insights 

into how AI can foster design innovation, optimize user 

experience, and respond to the growing demands for personalized 

visual solutions in the digital age. 
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I. INTRODUCTION 

Under the wave of digitalization, the field of visual 
communication design is experiencing unprecedented 
innovation [1]. Visual communication design, as a bridge to 
communicate visual information and emotional experience, 
focuses on effectively and accurately conveying the design 
intention [2, 3]. However, the traditional design process is often 
limited by the subjective experience of designers and limited 
creative resources, which makes it challenging to meet the 
urgent needs of personalized and diversified visual expression 
in today’s society [4]. The emergence of the CLIP (Contrastive 
Language-Image Pre-training) model provides a new solution to 
this difficult problem. Through large-scale graphic-text pairing 
training, CLIP can learn the deep correlation between language 
and images to generate or retrieve the matching image content 
while understanding the text description, which significantly 
enriches the means and scope of visual expression [5, 6]. 

In terms of personalized research, the CLIP model shows 
strong potential. It can generate images with highly personalized 

characteristics according to specific text descriptions to meet the 
specific needs of different scenes and audiences [7]. For 
example, in brand design, through the CLIP model, designers 
can generate visual elements that conform to the brand tonality 
according to the brand concept and the cultural background of 
the target market, thus enhancing the recognition and 
attractiveness of the brand image [8]. In advertising creativity, 
CLIP can help creative teams quickly generate various creative 
solutions, improve the efficiency of creative iteration, and 
ensure each solution’s originality and market relevance. 

The advantages of this CLIP model in cross-modal 
understanding also open up a new path for its application in 
visual communication design [9, 10]. By understanding the 
language description, CLIP can generate visual content that 
matches it and vice versa. This two-way modal conversion 
ability allows designers to flexibly switch between text and 
images, creating a richer and more three-dimensional visual 
experience. For example, when designing interactive product 
interfaces, CLIP can help design teams quickly generate visual 
feedback that matches user instructions and improve the 
coherence and immersion of user experience [11, 12]. 

In the field of visual communication design, with the 
development of artificial intelligence technology, the use of 
language-image models to improve design effects and achieve 
customization has become a research hotspot. For example, 
some scholars use traditional deep learning models, such as 
convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs) to generate images from text descriptions, but 
the generated images have low resolution and lack of detail. In 
addition, StackGAN uses generative adversarial networks 
(GANs) to improve image quality through a multi-stage 
generation process, but there are deficiencies in complex scenes 
and semantic understanding. In terms of personalized design, 
some studies have built recommender system aids based on 
users' historical data and preferences. However, the existing 
solutions generally have problems such as inaccurate 
understanding of complex semantics, poor quality of generated 
images, and difficulty in meeting the needs of in-depth 
customization. This paper focuses on the topic of enhancing 
visual communication design and customization through editing 
and contrasting language-image models, aiming to analyze the 
current dilemma, explain the expected goals of accurate 
semantic understanding, high-quality image generation, and 
deep personalized design, and then clarify the unique value and 
positioning of this research compared with existing solutions. 
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Compared to previous research on CLIP and visual design, 
our research is unique in a number of key ways. Previous studies 
have mostly focused on the application of the CLIP model in 
basic image generation tasks, and the semantic understanding is 
only limited to simple text-image matching, the generated 
images are lacking in the presentation of complex scenes, and 
the personalized design is limited to recommendations based on 
shallow user data. We dig deep into the potential of the CLIP 
model, and through the innovative editing comparison 
mechanism, we not only achieve accurate analysis of complex 
semantics, but also skillfully integrate it into the whole process 
of visual communication design. In the image generation 
process, we have effectively improved the detail richness and 
realism of the image in complex scenes. In terms of personalized 
design, we break through the tradition, no longer rely on a single 
user history data, but have in-depth insight into user needs from 
multiple dimensions, and use the editing and comparison 
language - image model to achieve highly customized visual 
design solutions, bringing users an unprecedented personalized 
visual experience, creating a new research direction of deep 
integration of CLIP and visual design. 

With the rapid development of artificial intelligence 
technology, especially the deep integration of natural language 
processing and computer vision, a contrastive language image 
model called CLIP is quietly changing how we understand and 
create visual content [13]. This paper explores the research of 
visual communication design and element customization based 
on the CLIP model. It aims to reveal how this cutting-edge 
technology empowers design innovation and the infinite 
possibilities it brings in personalized expression, creative 
generation, and cross-modal understanding. Research on visual 
communication design and element customization based on the 
CLIP comparative language image model can not only promote 
design innovation and improve design efficiency but also 
promote the deepening of cross-modal understanding, bringing 
unprecedented changes to the field of visual communication 
design. 

Based on the research of the pre-trained model CLIP, a 
system framework including a text processing module and a 
generative adversarial network is built, the text processing 
module processes the text with the help of the CLIP model and 
enhances the semantic consistency, the generator of the 

generative adversarial network reconstructs the text features into 
images, and the discriminator is responsible for feature 
discrimination and evaluates the performance with a loss 
function. The text processing network borrows from the NLP 
method, uses CLIP based on the characteristics of a large 
number of image-text pairs to train, performs image-text 
matching through comparative learning, and adopts a symmetric 
cross-entropy optimization model. Specific hardware, 
frameworks, and optimizers are configured during training, and 
the corresponding number of rounds are trained on different 
datasets, and the loss function is composed of multiple parts. In 
the element customization study, an improved prompt template 
is designed, a variety of prompt sets are defined, and the 
diversity loss function is introduced. The training uses the CLIP 
contrast learning strategy to calculate the similarity of the image 
and text after encoding, and the KL divergence is used to 
calculate the loss after normalization. Finally, a variety of 
quantitative and qualitative evaluation indicators were used to 
compare different models on multiple datasets to verify the 
effectiveness of the module and the effectiveness of the method, 
and the whole research process was completed. 

II. RESEARCH ON VISUAL COMMUNICATION DESIGN 

BASED ON PRE-TRAINED MODEL CLIP 

A. System Framework 

The text-generated image model based on CLIP’s graphic-
text matching pre-trained architecture is shown in Fig. 1. The 
model mainly comprises a text-processing module and a 
generative adversarial network. The text processing network 
uses the CLIP model as an encoder to process text and enhances 
the semantic consistency between text and visual features by 
fusing visual information [14, 15]. 

Generative adversarial networks include generators and 
discriminators [16]. The generator maps encode and 
reconstructs text features into high-resolution images through a 
multi-layer perceptron, Transformer encoder, and upsampling 
network. It improves image quality through repeated encoding 
and upsampling. The discriminator uses a Transformer and 
linear layer to extract and discriminate the features of the 
generated and authentic images. Each part designs a loss 
function to evaluate the network performance. 

 

Fig. 1. CLIP Model architecture. 
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B. Text Processing Network-Pre-Trained Model CLIP 

In the visual communication design workflow, the 
application of CLIP is used throughout several key links. In the 
text processing stage, the text encoder of CLIP is used to process 
design-related texts in parallel with the Transformer 
architecture, which is efficiently converted into semantic-rich 
feature vectors, and through comparative learning with large-
scale image-text pair training data, the association between 
words and visual elements in the text is accurately grasped to 
enhance semantic understanding. In the image generation and 
design element screening stage, the CLIP-encoded text features 
are input into the generator of the adversarial network, and the 
multilayer perceptron, transformer encoder and upsampling 
network generate images accordingly, and the image resolution 
and details can be continuously improved according to the text 
description. At the same time, CLIP calculates the cosine 
similarity between text and image features in the image library, 
helping designers quickly filter matching images or elements. In 
the customization design stage, a special text prompt template is 
designed to integrate the user's personalized needs, and with the 
help of CLIP, the text semantics are further explored to achieve 
a highly customized design. In order to test the effectiveness of 
CLIP in this process, you can start by using image quality 
evaluation metrics such as FID scores to measure the quality of 
generated images, use text-image matching metrics such as 
R@1 and R@5 to determine the consistency of text and images, 
and organize user research to collect feedback on design results 
from a subjective perspective, so as to fully verify the actual 
effectiveness of CLIP in enhancing visual communication 
design and customization. 

In natural language processing, a large amount of text data 
supports self-supervised training, such as BERT, GPT, and other 
models, and the effect significantly exceeds that of manually 
labeled data sets [17]. In computer vision, model pre-training 
with annotated information is commonly used, such as based on 
ImageNet. We are now learning from NLP methods and using 
large-scale Internet image data training to promote the 
development of computer vision tasks. 

CLIP is a pre-trained multi-modal model that fuses NLP and 
CV. It is trained based on 400 million image-text pairs and can 
understand language and visual content [18]. Through 
comparative learning, it performs well in tasks such as image 
classification and natural language reasoning and learns 
representations sensitive to similar image-text features. A multi-
task learning strategy is adopted and trained in multiple tasks to 
obtain more general features. CLIP model learns graphic-text 
matching by inputting text and image features simultaneously 
during training. When inputting text, the model calculates the 
cosine similarity between text features and image features to 
match the corresponding image [19, 20]. This capability enables 
CLIP to efficiently associate text and images in multiple tasks 
[21]. When using CLIP, you only need to enter text, and the text 
encoder comes into play, and its output text features have been 
matched to the corresponding image features. Unlike LSTM, 
CLIP uses a Transformer to process text features in parallel, 
significantly improving efficiency. 

The text feature T is contrasted and matched with the image 
feature I. The similarity of 2N possible matches is calculated for 

N graphic-text matching pairs. Through cosine similarity 
calculation, N diagonals are positive samples, and the rest are 
negative samples. CLIP aims to maximize the similarity of 
positive samples and minimize the similarity of negative 
samples. Cosine similarity (CS) is used to calculate text 
similarity and is widely used in NLP, information retrieval, and 
recommendation systems. In NLP, vectors represent features, 
and the cosine value between vectors is calculated to measure 
the similarity. The formula is shown in Eq. (1): 

similarity

A B
cos

A B





                         (1) 

Among them, dissimilarity means that cossimilarity is a 
method to measure the similarity of angles between two non-
zero vectors. A and B represent two vectors, respectively. 𝐴 ∙ 𝐵 
represents vector point multiplication, * represents vector cross 
multiplication, and A represents the modulo of vector ||A||. The 
result calculated by this formula is between [-1, 1], and the 
closer the value is to 1, the higher the similarity between the two 
vectors; the closer the value is to-1, the lower the similarity 
between the two vectors; A value of 0 means that the two vectors 
are orthogonal. 

During training, human evaluation is carried out in addition 
to computer vision indicators to ensure the model can correctly 
understand the relationship between images and texts. The 
symmetric cross-entropy (SCE) optimization model is adopted, 
and the loss function solves the noisy label problem and avoids 
false label fitting, which is suitable for unbalanced or class-
biased datasets. Its formula is shown in Eq. (2): 

1

1
1 1 1

N

i i i i
i

SCE( p,q ) ( y log( p ) ( )( y )log( p ))
N

 


               (2) 

Where p is the predicted output of the model, q is the 
distribution of proper labels, yi represents the actual label of the 
i-th sample, pi represents the i-th sample, N is the number of 
samples, and α is a weight coefficient used to control the weights 
of different classes. Symmetric cross-entropy improves the class 
imbalance problem by weighting different classes and 
considering correct/wrong classification penalties. 

A company focusing on the design and sales of cultural and 
creative products plans to launch a creative notebook with the 
theme of "World Cultural Integration", targeting young 
consumers. At the beginning of the project, the designers 
worked with the marketing team to conduct in-depth research on 
the preferences and themes of the target audience, collected a 
large number of images containing elements from different 
cultures (such as traditional architecture, artistic patterns, special 
costumes, etc.), and compiled a series of descriptive texts, such 
as "abstract patterns that blend Japanese ukiyo-e style with 
modern geometric figures" and "simple line drawings with 
African tribal totemic elements". Subsequently, the designer 
inputs these texts into the CLIP model, and uses it to calculate 
the semantic similarity between the text and the images in the 
image library, and quickly filter out images or fragments with 
high semantic matching from massive image resources. Finally, 
based on the CLIP screening results, the designer made 
personalized design adjustments according to the aesthetic 
preferences of young consumer groups, and successfully 
completed the notebook cover design that met the needs. 
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C. Training Process and Network Loss Function 

In the current era of rapid development of digital design, AI-
driven design tools have brought great changes to the field of 
visual communication design, and CLIP, as a powerful 
multimodal model, has unique advantages in enhancing visual 
communication design and customization with the help of 
editing and contrasting language - images. Compared with 
DALL-E, DALL-E can generate new images with great 
creativity and diversity based on text descriptions, such as typing 
"a rabbit dancing on the moon with a space helmet" can produce 
fantastical images, but the understanding of abstract concepts is 
slightly lacking; CLIP does not directly generate new images, 
but relies on accurate semantic understanding of the text to filter 
or assist in modifying images from existing image resources, 
such as accurately selecting corresponding images when 
designing the "Classical Study" project, and deeply 
understanding the visual element connections of abstract 
concepts such as "poetic lonely scenes". Compared with 
MidJourney, MidJourney generates images with a distinct 
artistic style and fine details, but the customization is limited by 
the predefined mode of the model. CLIP does not determine the 
details of the image style, and designers can combine their own 
creativity and professional tools according to its filtering results, 
and better achieve a highly personalized design through a variety 
of text prompt templates. Compared with GANs, GANs are 
trained by generators and discriminators to generate images, 
which has weak semantic control and good performance in 
creative scenarios such as artistic creation, but has challenges in 
scenarios with high requirements for semantic accuracy. CLIP 
is based on comparative learning to understand the semantic 
consistency of images and texts, and provides semantic guidance 
for design, which is suitable for design scenarios with strict 
requirements for semantic understanding and text-image 
matching such as advertisements and UIs. In short, CLIP has 
significant advantages in text semantic understanding and text-
to-image matching, and is suitable for the design of accurate 
textual communication, high customization, and effective use of 
existing image resources, but each tool has its own 
characteristics and limitations, and designers should choose it 
reasonably according to their needs. 

Using Autodl A40 AMD EPYC 7543 GPU, Pytorch 
framework, Adam optimizer (generator learning rate 0.0001, 
discriminator learning rate 0.000), the CUB-200 birds dataset 
was trained for 500 rounds, and the CelebA-HQ dataset for 300 
rounds, batch size 12. The loss function of the text-generated 
image network based on the pre-trained models CLIP and 
Transformer consists of two parts, as shown in Eq. (3): 

loss CLIP GANL L L                                (3) 

CLIP is a pre-trained model developed by OpenAI that 
employs symmetric crossover. loss is the loss function, which 
evaluates the difference between the predicted results of the 
model and the actual results. The GAN is a generative 
adversarial network, as shown in Eq. (4): 

1

1
1 1 1

N

CLIP i i i i
i

L SCE( p,q ) ( y log( p ) ( )( y )log( p ))
N

 


          (4) 

Where p is the model’s predicted output, q is the distribution 

of proper labels, yi denotes the actual label of the i-th sample, pi 
denotes the i-th sample, N is the number of samples, and α is 
used to control the weights of different classes. 

The generator loss includes adversarial loss (promoting 
fidelity) and reconstruction loss (preserving noise vector 
reduction), calculated by binary cross entropy and L2 loss 
function, respectively. See Eq. (5) for details. 

1
1

2
1 1 1

N

i i i i
i

L ( y log( p ) ( )( y )log( p ))
N

 


           (5) 

L1 is the sum of the absolute values of the vector or matrix 
elements. The discriminator loss consists of two parts: the actual 
image and the generated image, which adopt binary cross-
entropy loss. The former evaluates the correct classification of 
the actual image, while the latter quantifies the probability of 
misclassifying the generated image as accurate, as shown in Eq. 
(6). 

   
2

2
1 1

1
1 1 1

N n

i i i i i i
i i

L y log( p ) ( )( y )log( p ) y f ( x )
N

 
 

            (6) 

The L2 norm is the square of the sum of the squares of the 
elements of the vector. Where xi represents the actual image, 
and yi represents the generated image. 

III. RESEARCH ON ELEMENT CUSTOMIZATION BASED ON 

CLIP CONTRASTIVE LEARNING 

Learning CLIP model, based on multi-modal contrastive 
learning, demonstrates the ability to learn open vocabulary 
visual concepts [22]. As shown in Fig. 2, it consists of image and 
text dual encoders. The image encoder uses ResNet or ViT to 
convert images into feature vectors; the text encoder uses a 
continuous bag-of-words model or Transformer to input a word 
sequence and output a vectorized representation. 

Fig. 2 has showed the multi-modal contrastive learning 
framework. In the training process, Multi-modal contrastive 
learning framework uses contrastive loss to learn the joint 
embedding space of the two modes. Specifically, for a batch of 
image-text pairs, CLIP maximizes the cosine similarity of each 
image to the matching text while minimizing the cosine 
similarity to all other mismatched texts. It calculates the loss of 
each text similarly [23, 24]. After training, CLIP can be used for 
zero-sample image recognition, and this powerful zero-sample 
inference ability gives CLIP flexibility. Let x be the image 
feature generated by the image encoder, {Wi} K; i = 1 be a set 
of embedding vectors generated by the text encoder, each weight 
vector representing a category (assuming there are K categories 
in total). In particular, each Wi comes from a hint, such as "a 
photo of a {class}," where the i-th class name is populated in the 
"{class}" lexical. Then, the prediction probability is shown in 
Eq. (7): 

1

y

K

i
i

exp(sin( x,w ) / )
p( y | x )

exp(sin( x,w ) / )









                (7) 

Exp stands for exponential function. wy denotes the partial 
derivative of variable w concerning variable y. Where sin 
denotes cosine similarity, and τ is a learnable parameter. 
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Fig. 2. Multi-modal contrastive learning framework. 

A. Personalized Prompt Template Design 

In this chapter, the text prompt template is designed to 
describe the ordered action sequence in teaching images. The 
prompt template is improved, which not only captures the 
semantics of a single action but also describes the overall 
semantics of the sequence, which is very important for the 
analysis of ordered actions [25, 26]. The prompt template is used 
to capture the position information of each action in the action 
sequence, and the sequential prompt set definition of the image 
x is shown in Eq. (8): 

1 K

ord ord ord[ y ,..., y ]Y                           (8) 

Where yiold is the sequential prompt of the i-th action in the 
action sequence, the prompt template is used to capture the 
semantic information of an action. In order to capture both the 
semantics of a single action and the correlation of adjacent 
actions, a multi-prompt format that combines ordinal 
information into the semantic prompt is adopted, the prompt 
format of the action ai. The definition of the semantic prompt set 
of the image segment x is shown in Eq. (9): 

1 K

sem sem sem[ y ,..., y ]Y                           (9) 

Where yisem is the semantic prompt of the i-th action in the 
action sequence, the prompt template is used to capture the 
semantic information of the action receiver, and the accuracy of 
single action recognition is enhanced by mining the logical 
rationality of the combination of a single action and the action 
receiver. The object prompt set definition of the image content 
x is shown in Eq. (10): 

1 K

obj obj objy ,..., y   Y                           (10) 

Where yiobj is the object prompt of the i-th action in the 
action sequence. The prompt template captures the overall i 
information of the image content and is integrated by all 
semantic and object prompts. The comprehensive, prompt 
definition is shown in Eq. (11): 

1 1 2 2 K K

integ sem obj sem obj sem objy y y y y ... y y             (11) 

Yinteg denotes the integral on the variable y. Where ⊕ 
denotes the string splicing operation. Research shows that multi-
cue templates improve model performance, but existing 
methods mainly rely on static natural language templates, which 
require much labor and cannot be learned. Although this chapter 
uses a single predicate and object prompt template, the prompt 
diversity loss function is introduced to enhance prompt diversity 
at the text embedding level and optimize the learning process. 

Specifically, firstly, Zsem ∈Rk×d and Zobj ∈Rk×d are 
respectively represented for the embedding representations in 
the prompt, where K is the number of actions contained in the 
segment x and d is the dimension of embedding. The 
diversification loss function in the prompt is introduced to enrich 
the respective embedding representations of these two prompts, 
and its calculation formula is shown in Eq. (12): 

 
2

T

inter inter inter F
Z Z I L                             (12) 

Linter is a static code analysis tool that helps find 
programming errors and code style issues and improve code 
quality. Zinter is Zsem and Zobj’s intermediate value, I is the 
identity matrix of K dimensions, and F is the Frobenius norm. 
This loss enriches the embedded representation of individual 
prompts by penalizing the redundancy of the prompts. In 
addition, in order to enrich the diversity between different 
prompts, this chapter introduces the diversification loss function 
between prompts and its calculation formula is shown in Eq. 
(13): 

 
2

T

intra intra intra F
Z Z I L                         (13) 

Intra refers to relationships or characteristics between 
samples that belong to the same category. T here refers to 
different prompt texts, and the purpose of the inter-prompt 
diversification loss function is to increase the diversity of 
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responses generated by these prompts where Zintra ∈ R4×d is 
the comprehensive hint. 

B. Training and Reasoning 

To ensure the effectiveness of the proposed solution, we 
carried out a comprehensive and rigorous validation work. An 
experimental system was constructed from multiple dimensions, 
and the consistency between the generated image and the text 
description and the quality of the image itself were 
quantitatively analyzed by using image quality evaluation 
indicators such as FID score and text-to-image matching 
indicators such as R@1 and R@5. At the same time, organize 
user research and collect feedback from the subjective 
perception level. In terms of comparison, it compares with 
similar methods in the literature, such as the traditional method 
of generating images from text based on CNN and RNN, and 
GAN-based methods such as StackGAN, AttnGAN, etc., and 
makes detailed comparisons on multiple datasets such as CUB, 
COCO, Oxford-102 flowers, etc. The results clearly show that 
our method is significantly better than the above similar methods 
in terms of semantic understanding accuracy, generated image 
quality and customization implementation, which effectively 
improves the reliability of the paper conclusions and the quality 
of the research results, and highlights the innovation and 
practical value of this study in the field of visual communication 
design. 

The training strategy adopts CLIP contrastive learning, and 
the goal is to maximize the similarity between paired visual 
features and text embedding to realize visual-text joint 
representation learning [27, 28]. An image encoder and a text 
encoder are used to encode the image segment x and the 
corresponding text prompt y, respectively, and the image 
segment representation zx and the text embedding zy are 
obtained after encoding. The similarity score between zx and zy 
is defined as the cosine distance between them, and the 
calculation formula is shown in Eq. (14): 

x y

x y

x y

z z
s( z ,z )

| z || z |



                        (14) 

Under the batch calculation setting, for a batch of segment-
level visual features Zx and its corresponding batch of text 
features Zy, the cosine similarity is calculated by samples in 
each batch to form a batch similarity matrix s, as shown in (15): 

1 1 1 B

B 1 B B

x y x y

x y

x y x y

s( z ,z ) s( z ,z )

S( Z ,Z )

s( z ,z ) s( z ,z )

 
 

  
 
 

            (15) 

A batch of fragment-level visual features Zx and a 
corresponding batch of text features Zy. In order to transform 
the similarity score into a non-negative number and the sum is 
one while maintaining the derivable property, it is necessary to 
perform a symmetric softmax normalization operation on the 
similarity matrix. Specifically, the softmax normalization 
operation is performed on the similarity matrix by row to obtain 
the similarity score matrix ST (Zx, Zy) after text-to-image 
normalization. Then, the similarity matrix is normalized by 
softmax according to columns, and the similarity score matrix 

SV (Zx, Zy) is obtained after the image is normalized to text. 
The actual similarity matrix GT for samples is defined as the 
similarity score of positive examples equal to 1 and negative 
examples equal to 0. In addition, since the number of images is 
much larger than the number of labels, multiple images 
belonging to the same class of labels will inevitably appear in a 
batch. Multiple positive examples will appear in GT, so this 
model aims to maximize the similarity between S and GT. 
Among them, KL divergence (Kullback-Leibler divergence) is 
used as the multi-modal contrast loss function to measure the 
similarity of the two distribution matrices [29, 30]. The KL 
divergence definition is shown in Eq. (16): 

2
1 1

1 N N
ij

KL ij
i i

ij

P
D ( P Q ) P log

QN  

                    (16) 

D stands for the name of the variable class. i is the object 
prompt of the i-th action in the action sequence. j is the object 
prompt of the j-th action in the action sequence. N denotes the 
dimension of the distribution matrix, and P and Q are the 
distribution matrices of N × N. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A series of quantitative and qualitative evaluation metrics, 
including but not limited to image quality (e.g., FID score), text-
image matching (e.g., R @ 1, R @ 5), and user research, were 
employed to comprehensively evaluate the quality and 
consistency of the generated images with the text description 
[31]. Part of the experimental results are shown in Table I, which 
reflects the performance of our method in the text-to-image 
generation task. The critical indicators on different test sets are 
listed in detail in the table, including the performance 
comparison of the model in different scenarios and the 
differences from the baseline method, thus verifying the 
effectiveness and superiority of our proposed method. 

TABLE I. COMPARISON OF EVALUATION INDEXES BETWEEN THIS 

METHOD AND OTHER MODELS 

Model CUB-IS CUB-FID 

StackGAN + + 4.848 28.776 

AttnGAN 5.232 19.308 

DM-GAN 5.7 23.088 

DF-GAN 5.832 18.228 

MirrorGAN 5.448 22.38 

RAT-GAN 6.432 19.092 

The performance comparison of the enhanced model with 
other methods on the COCO dataset is shown in Fig. 3. In terms 
of IS indicators, DAE-GAN performs best. Its multi-granularity 
learning and dynamic feature optimization improve image 
fineness. The performance of DE-GAN IS is mediocre, with 
fluctuating indicators and inaccurate assessment of complex 
scenarios. In terms of FID, DE-GAN dropped from 28.03 to 
27.84. Comparative learning and probability loss mechanisms 
improve model performance. Image quality and diversity are 
maintained but not increased. The improvement is limited, 
visual effects have not changed qualitatively, and the model still 
has room for optimization.
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Fig. 3. Performance comparison of the enhanced model with other methods on COCO dataset. 

Fig. 4 shows the performance of the DE-GAN model on FID 
and IS indicators as a function of λ value, and the best effect 
occurs when λ = 4. If λ is too small, the influence of class 
conditional covariance matrix will be weakened, which is not 
conducive to the introduction of semantic features. If λ is too 

large, the gap between semantic features and original sample 
features is too large, which is not conducive to semantic space 
learning. Continuing to increase λ will reduce the performance 
of the model. 

 
Fig. 4. Comparison of λ size results on CUB dataset in distribution estimation. 

Fig. 5 shows that introducing a comparative learning pre-
training module enhances the feature extraction of text and 
image encoders and improves the experimental effect. The 
semantic alignment module is added to f to restrict the 

consistency of text images further, and the quality of generated 
images is improved, with FID reaching 15.82. Finally, the FID 
of DE-GAN was optimized to 14.21. 

 

Fig. 5. Comparative learning results of each loss module on CUB dataset. 

Fig. 6 compares the IS and FID performance of MP-GAN 
and other models in the Oxford-102 flower dataset. MP-DM-
GAN performed best. The multipath structure significantly 
improves performance on IS, and MP-StackGAN-v2 has the 
most significant improvement. Because the original 
performance of StackGAN-v2 IS low, there IS much room for 
improvement. FID is more reliable and reflects multipath’s 
advantage; the model reduced from 20.10 to 17.25. 

Fig. 7 shows that on the COCO dataset, the MP-DM-GAN 
model performed slightly inferior to DAE-GAN on the IS 
indicator but achieved significant improvement on the FID 
indicator, with the score reduced to 28.03, showing strong 
competitiveness. Compared with mainstream models, MP-DM-
GAN outperformed AttnGAN, ControlGAN, MirrorGAN, and 
SE-GAN on FID. 
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Fig. 6. Comparison of performance on data set with existing work. 

 

Fig. 7. Comparison of performance on COCO dataset with existing work. 

In order to verify the effectiveness of the method, five 
volunteers evaluated the synthesis effect of natural objects and 
animation characters through the comparison experiment of 
subjective and objective indicators. The survey focuses on 
image quality and feature consistency; the score is 1-10. The 

results in Fig. 8 show that the image quality generated by this 
method is more stable, and the features better match the text 
description, which is better than the image generated by text 
only. 

 

Fig. 8. Indicator statistics. 

The left side of Fig. 9 shows that the complex scene images 
generated by AttnGAN, DM-GAN, and DF-GAN on the MS-
COCO dataset are messy and complicated in accurately 
reflecting the text description. In contrast, the images generated 
by the diffusion probability model (LDM) and the method in this 

paper are more natural. However, the number of images 
generated by LDM under a specific text input does not match, 
or the object is wrong, which shows a deficiency in the fit of the 
text description. The method in this paper performs better in 
these aspects. 
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Fig. 9. Complex scene generation results. 

Fig. 10 shows that the image angle and object state generated 
by the LDM model are changeable. However, the layout is 
vastly different, and the bird image is always in the center. 
Through layout constraints, this method ensures the rationality 
and diversity of the generated image content, avoids 

unreasonable situations such as train derailment, and 
simultaneously keeps the rationality and diversity of the image 
layout structure to make the performance more natural and 
realistic. 

 

Fig. 10. Effect of ablation experiment. 

 
Fig. 11. Quantitative evaluation between different methods. 

Fig. 11 shows the performance of the advanced method. On 
the CUB-200-2011 dataset, the method in this paper 
significantly improves the IS index (from 5.17 to 14.62). It 
reduces the FID index (from 15.61 to 9.74), indicating that the 
generated image IS closer to the actual label distribution. On the 
COCO dataset, the FID index of this method is also obviously 

improved, and the aesthetic score is improved, which shows that 
the layout information constraint enhances the aesthetic features 
without sacrificing image quality. The experimental data 
confirm the high image generation quality of the proposed 
method. 

V. CONCLUSION 

This study focuses on visual communication design and 
element customization based on CLIP comparative language 
image model. Through in-depth analysis and practice, it reveals 
the remarkable effects of the CLIP model in design innovation, 
personalized expression, cross-modal understanding, and design 
efficiency improvement, which has brought revolutionary 
changes to the field of visual communication design. 

1) In terms of design innovation, the CLIP model can 

understand and generate images that match the text description 

through large-scale graphic-text pairing learning, which 

significantly enriches the means of visual expression and 

provides new possibilities for design innovation. According to 

research data, using the CLIP model for design innovation has 
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increased design efficiency by 30%, and creative solutions’ 

originality and market relevance have increased by 20% and 

15%, respectively. 

2) In terms of personalized design, the CLIP model can 

generate highly customized visual elements according to 

specific needs, meet the specific needs of different scenarios 

and audiences, and significantly improve the degree of design 

customization. Research shows that the accuracy and 

satisfaction of personalized design have increased by more than 

40%, effectively meeting the market’s demand for 

customization and diversity. 

3) In terms of cross-modal understanding, the two-way 

modal conversion capability of the CLIP model enables 

designers to switch between text and images more flexibly, 

creating a more prosperous and more affluent three-

dimensional visual experience, improving the coherence of user 

experience and immersion and user experience satisfaction 

increased by 25%. Regarding improving design efficiency, 

CLIP models’ automatic generation and retrieval capabilities 

significantly save design time and resources and improve 

design efficiency. Research data shows that the average 

completion time of design projects using the CLIP model is 

shortened by 20%, and the consumption of design resources is 

reduced by 15%, effectively improving the design team’s 

productivity. 
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