
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

483 | P a g e

www.ijacsa.thesai.org

Malicious Domain Name Detection Using ML

Algorithms

Lamis Alshehri, Samah Alajmani

Dept. of Cybersecurity, Taif University, Taif, Saudi Arabia

Abstract—With the ever-increasing rate of cyber threats,

especially through malicious domain names, the need for their

effective detection and prevention becomes very urgent. This

study mainly investigates the classification of domain names into

either benign or malicious classes based on DNS logs using

machine learning. We evaluated five strong ML models:

XGBoost, LightGBM, CatBoost, Stacking, and Voting Classifier,

in an effort to obtain high accuracy, F1 score, AUC, recall, and

precision. The challenge in that direction is to achieve a very

good solution, without using deep learning techniques for low

computational cost. Moreover, this project has an obligation to

upgrade the cybersecurity landscape by embedding the best-

performing model into the DNS firewall to enable protection

against harmful domains in real time. Our dataset was collected

and curated to include 90,000 domain names, including an equal

number of safe and harmful, respectively, extracting 34 features

from DNS logs and further enriched using publicly available

data.

Keywords—DNS Security; machine learning; malicious

domain detection; XGBoost; LightGBM; CatBoost

I. INTRODUCTION

With the advancement of the digital age, the use of the
internet has become extremely common for communication,
the exchange of important information, and even for
commerce. This has led to an increased demand for
cybersecurity and the search for precise security mechanisms
that can be implemented and utilized. Among the many
common threats, the Domain Name System (DNS) is one of
the crucial elements in the internet's infrastructure, as it
converts domain names into IP addresses. However, it lacks
appropriate protection mechanisms, which allows
cybercriminals to exploit these vulnerabilities, helping them
spread malware, conduct phishing attacks, or gain unauthorized
access to data on servers. Therefore, there is an urgent need for
methods that achieve a balance between efficiency, accuracy,
and the ability to perform in real-time [1].

The ever-evolving nature of cybersecurity demands
continuous upgrading to match newer, sophisticated modes of
attack. The Domain Name System (DNS) is an important target
for attackers due to the significant losses it can cause.
Therefore, any breach of the security of the DNS affects the
reliability of the internet greatly, which underscores the
importance of securing this system. In the event of any
compromise to its foundational structure, institutions will
suffer losses and customers will lose their privacy, leading to
customer dissatisfaction as well as legal implications and other
significant issues. The primary goal of the DNS when it was
designed was to provide a scalable and available domain name

resolution service, but at that time, security aspects were not
adequately emphasized, resulting in many security
vulnerabilities that could turn lives upside down globally if
exploited by attackers. This issue also calls for an interesting
junction of technological advancement, real-time Threat
Intelligence, with pragmatic implementation of solutions [2].

This project investigates the capability of ML models in
identifying and classifying domain names as either benign or
malicious based on DNS log data. Advanced ML algorithms
such as XGBoost, LightGBM, CatBoost, Stacking, and Voting
Classifiers will be used to develop an efficient cybersecurity
solution which is computationally effective. The current
approach focuses on lightweight ML models rather than deep
learning methods, which require a huge amount of
computational resources. The best performance model will be
integrated into a DNS firewall for better security of the
network. This system not only addresses current limitations in
DNS security but also provides a scalable and cost-effective
approach for future cybersecurity challenges [3].

The main objective of the research is to propose a
lightweight, accurate, and efficient system for malicious
domain name detection based on DNS logs. This research also
aims to develop ML models that classify domain names with
high precision, recall, and F1 scores. It also focuses on
designing a non-deep learning system to provide computational
cost efficiency and enable real-time applications. In addition, a
comparison was made between the performance of five deep
learning-based machine learning models to find the best
approach. This research also relies on model optimization,
using a 34-dimensional feature space derived from enriched
DNS features using DNS records to enhance the latest model
outcomes by leveraging a high-dimensional dataset. One of the
important goals is to deploy the best-performing model on a
DNS firewall for implementation in real-world situations and
also to ensure that the proposed solution has the capacity to
scale to large volumes of DNS traffic in wide-scale
environments.

Below are the key contributions the research that makes to
the field of cybersecurity and ML-based threat detection:

 Model Performance - Extended Comparison:
Performances of XGBoost, LightGBM, CatBoost,
Stacking, and Voting Classifier will be presented in this
work through extensive testing, providing the best
methodology for DNS threat detection.

 Rich Feature Utilization: The study uses a dataset of 34
features extracted from DNS logs, ensuring that the ML

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

484 | P a g e

www.ijacsa.thesai.org

models are adequately informed to carry out the
classification with a high degree of accuracy. Features
like these will provide in-depth and subtle particulars
about the behavior of the domain names.

 Lightweight Solution: By not being dependent on deep
learning approaches, the system is computationally light
and reachable even by organizations lacking extensive
computing resources. This entails a wider applicability
across various sectors with different technical
capabilities.

 Practical Integration: The integration of the best-
selected model into a DNS firewall allows real-time
defense against malicious domain names and closes the
gap between theory and practice. Experimental insights
become, at this stage, an actionable tool.

 Balanced Dataset: The research is based on a dataset
containing an equal number of benign and malicious
domain names, thus allowing for impartial model
evaluation. This will add to the credibility and
reliability of the results found from this work.

The rest of this paper is organized as follows: Section II
reviews the related work. Section III details the methodology.
Section IV presents the results and analysis. Section V
provides the discussion, highlighting the key findings and their
practical implications. Finally, Section VI concludes the paper.

II. RELATED WORK

Many researchers have proposed various methods for
detecting malicious domain names in the literature.

Wagan et al. [4] have developed a single, unifying method
for discovering malicious domain names utilizing both
numerical and textual information. Traditional DNS firewalls
rely on lists of blacklisted maligned domains, but such lists
cannot respond to new, emerging malignants. Traditional
machine learning approaches have aided in enhancing
detections but have not utilized both numerical and textual
information of a domain name in its full capacity. To mitigate
this, they have developed a deep model with a Hybrid Feed
Forward Network (FFN) for numerical and a Long Short-Term
Memory (LSTM) for textual information. Features extracted
through both numerical and textual information are
consolidated in a single, unifying format, and then utilized for
classification. They trained a model over a 90,000-domain
name corpus and demonstrated its performance to outperform
six baseline approaches in terms of accuracy, precision, recall,
and F1-score.

Ren et al. [5] proposed a deep model for Domain
Generation Algorithm (DGA) domain detection via an
integration of an attention mechanism with a combination of
Convolutional Neural Networks (CNNs) and Bidirectional
Long Short-Term Memory (BiLSTM) networks. With both
locality in character structures and long-term relations in
domain names in consideration, and leveraging the use of an
attention mechanism for prioritization of salient features,
proposed model, namely, ATT-CNN-BiLSTM, can accurately
discriminate between malignant and innocent domains, in
contrast to traditional DGA detection approaches, which have a

problem with wordlist-based DGA domains. Experimental
evaluation confirms that ATT-CNN-BiLSTM achieves an F1-
score of 98.79% in DGA detection, outperforming traditional
machine and deep learning approaches. In addition, the model
has high generalizability, and thus, proves effective in
processing previously unfamiliar DGA families.

Luo et al. [6] proposed a deep learning system for
malicious URL identification, utilizing a composite neural
network (Comp-block) and an auto-encoder for feature
extraction and classification, respectively. First, URLs go
through irrelevant information deletion and tokenization of
structure. An auto-encoder then transforms URLs into vector
representations, and representations go through a deep model
constructed with Convolutional Neural Networks (CNN) for
anomalous behavior analysis. Manual feature selection is not
utilized in the proposed scheme, and it is efficient in contrast
with traditional rule-based approaches. Experimental
evaluation with the HTTP CSIC 2010 and a custom dataset
revealed that the system achieves high accuracy (98.20%) and
detects anomalous URLs with low false alarm, outpacing
traditional approaches for detection.

Marques et al. [7] proposed a real-time ML-enforced DNS
firewall for real-time malignant request domain filtering.
Unlike traditional firewalls, utilizing a blocklist, potentially
excluding recently generated new-malicious domains, their
model employs supervised ML algorithms for distinguishing
between malignant and innocent DNS queries.

The system processes DNS logs with 34 key feature
extraction and OSINT-enriched feature extraction. Various
algorithms for machine learning, including Decision Trees
(CART), SVM, Logistic Regression, and KNN, have been
compared with a 90,000 record dataset. Experimental
performance showed that CART performed best with an
accuracy of 96% and a rapid classification time, and can,
therefore, be used for real-time filtering of DNS. In this work,
it is established that ML-powered DNS firewalls can
effectively enhance cybersecurity through efficient detection
and filtering out of malice domains over traditional approaches.

Thain et al. [8] proposed a machine learning-based
approach to detect malicious domains on the Internet by
analyzing domain names and traffic passing through DNS.
They used important people information .Then they used
techniques such as Random Forest, XGBoost and AdaBoost to
find out if the site is malicious or not. After several
experiments, they found that the system can identify malicious
sites with an accuracy of up to (92.7%) even if the data is
small. Then they combined it with semantic analysis and the
system became more effective than traditional methods on
blacklist.

Samad et al. [9] presented an intelligent system for
detecting malicious websites on the internet. The system relies
on natural language processing (NLP) in URLs and also the
content of web pages. Techniques are employed to better
understand words, such as n-grams (which means a set of
words), which assist the system in making accurate decisions.
The system uses seven mathematical methods, such as Random
Forest and XGBoost, to determine whether a website is
malicious. After several experiments, they discovered that the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

485 | P a g e

www.ijacsa.thesai.org

system, by integrating the content of pages and URLs, is
significantly better than older methods.

D. Ma & Wu. [10] proposed a new method for detecting
malicious domain names using a specific intelligent model
called (VAE). The main objective is to improve the detection
of (DGA) families, which are defined as random domains that
are difficult to detect.

The method begins by processing the domain names, where
the data is cleaned of impurities and unimportant details. After
that, a technique called (Word2Vec) is used to convert the
words into vectors for better understanding by the system.

Subsequently, the vectors are input into the (VAE) model,
which adjusts itself using backpropagation. The damage
probability is then calculated, and the domain is classified as
harmful or benign based on a threshold classifier.

Experiments have shown that this method outperforms
traditional methods in detecting (DGA) families.

Zhao et al. [11] have proposed an algorithm to detect
harmful domain names based on the statistical features of
URLs, using a decision tree classifier to enhance detection
accuracy. Their method relies on extracting characteristics such
as length, special characters, and character distribution to
distinguish between legitimate and harmful domains. A
decision tree was used to classify the domains based on these
features, and the model achieved an accuracy of 90.31% in
detecting harmful domains. The study shows that analyzing
URL features significantly aids in accurately classifying
domains and reduces the need for pre-labeled data.

Compared to previous research, in our study, we made
complementary contributions to some similar papers by
comparing five machine learning algorithms: XGBoost,
LightGBM, CatBoost, Stacking, and Voting Classifier. This
makes them easier to interpret and clearer, and with a lighter
weight than deep learning techniques. We relied on feature
selection techniques such as ANOVA F-value and SelectKBest
to identify the most influential features, which reduces the
dimensionality of the data and improves the model's
performance. We also conducted a comprehensive study of a
set of features that includes characteristics related to email
security, such as SPF, DKIM, and DMARC records, as they
enhance the ability to detect domains that target phishing and
email attacks. Additionally, we propose adding the best model
for detecting harmful domains to be integrated into a prototype
for a DNS firewall.

III. METHODOLOGY

It depicts the suggested architecture for detecting malicious
domain names. The framework consists of many steps,
including dataset and preprocessing, feature engineering,
model creation, and the use of ensemble learning like voting
classifier and stacking classifier techniques. Each phase
substantially improves the overall effectiveness of the
malicious domain name detection system. Fig. 1 shows
proposed framework.

Fig. 1. Proposed framework.

A. Dataset

This study uses the Mendeley Dataset (Table I) that has
been collected and processed by Marques et al. which includes
both benign and malicious domains retrieved from DNS logs
[12]. This dataset is especially designed for supervised
machine learning research to differentiate between harmful and
non-malicious domain names. It was rigorously curated by
combining publicly accessible DNS logs from both sorts of
domain names. Each domain name is used as an input in the
dataset, resulting in 34 characteristics. Domain name properties
such as entropy, the occurrence of unique characters, and
domain name length are examples of features that are directly
extracted. Furthermore, supplemental details such as domain
creation date, related IP address, open ports, and geolocation
were obtained by data enrichment methods that used Open-
Source Intelligence methodologies. This collection of 90,000
domain names is rigorously balanced, providing an equal mix
of 50% non-malicious and 50% malicious domains.

TABLE I. DATASET FEATURES WITH DESCRIPTION AND DATA TYPES

Feature Name Description Type Count

Domain

Baseline DNS used to enrich

data, e.g., derive features
int64 90000

DNSRecordType DNS record type queried object 90000

MXDnsResponse
The response from a DNS

request for the record type MX
bool 90000

TXTDnsResponse
The response from a DNS

request for the record type TXT
bool 90000

HasSPFInfo
If the DNS response has Sender

Policy Framework attribute
bool 90000

HasDkimInfo
If the DNS response has Domain

Keys Identified Email attribute
bool 90000

HasDmarcInfo

If the DNS response has

Domain-Based Message

Authentication

bool 90000

IP The IP address for the domain int64 90000

DomainInAlexaDB
If the domain is registered in the

Alexa DB
bool 90000

CommonPorts
If the domain is available on

common ports
bool 90000

CountryCode
The country code associated

with the IP of the domain
object 60948

RegisteredCountry
The country code from domain

registration (WHOIS)
object 12226

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

486 | P a g e

www.ijacsa.thesai.org

Feature Name Description Type Count

CreationDate
The creation date of the domain

(WHOIS)
int64 90000

LastUpdateDate
The last update date of the

domain (WHOIS)
int64 90000

ASN
The Autonomous System

Number for the domain
int64 90000

HttpResponseCode
The HTTP/HTTPS response

status code for the domain
int64 90000

RegisteredOrg
The organization name from

domain registration (WHOIS)
object 54609

SubdomainNumber
The number of subdomains for

the domain
int64 90000

Entropy
The Shannon entropy of the

domain name
int64 90000

EntropyOfSubDom

ains

The mean entropy of the

subdomains
int64 90000

StrangeCharacters
The number of non-alphabetic

characters
int64 90000

TLD
The Top-Level Domain for the

domain
object 89830

IpReputation
The result of the blocklisted

search for the IP
bool 90000

DomainReputation
The result of the blocklisted

search for the domain
bool 90000

ConsoantRatio
The ratio of consonant

characters in the domain
float64 90000

NumericRatio
The ratio of numeric characters

in the domain
float64 90000

SpecialCharRatio
The ratio of special characters in

the domain
float64 90000

VowelRatio
The ratio of vowel characters in

the domain
float64 90000

ConsoantSequence
Max number of consecutive

consonants in the domain
int64 90000

VowelSequence
Max number of consecutive

vowels in the domain
int64 90000

NumericSequence

Max number of consecutive

numeric characters in the

domain
int64 90000

SpecialCharSequen

ce

Max number of consecutive

special characters in the domain
int64 90000

DomainLength The length of the domain int64 90000

Class
The class of the domain (0 =

malicious, 1 = non-malicious)
int64 90000

In this study, 34 features were carefully selected based on
their significance in distinguishing between malicious and
benign domains.

Behavioral features such as Entropy, NumericRatio, and
SpecialCharRatio measure the degree of randomness within a
domain name. Higher values of these features typically indicate
that the domain was automatically generated using algorithms
like Domain Generation Algorithms (DGA), which are
commonly utilized in malicious activities.

Reputation and registration features, including
IpReputation and DomainReputation, verify whether the
domain or its associated IP address is listed in known
blacklists. Similarly, CountryCode and ASN provide
geographical and network-related context, as certain regions
and service providers are statistically linked to hosting
malicious domains.

Structural features such as DomainLength,
SubdomainNumber, and StrangeCharacters assess the
composition of the domain name itself. Malicious domains
often adopt long, complex names or incorporate unusual
symbols to mimic legitimate websites while evading detection.

Additionally, Email-related Security features like
HasSPFInfo, HasDkimInfo, and HasDmarcInfo examine the
existence of standard email protection protocols. Malicious
domains used in phishing or spam messages typically lack
these protective protocols.

Finally, accessibility and response behavior features such
as CommonPorts and HttpResponseCode evaluate how the
domain responds to connection attempts which analyze the
domain's response when attempting to connect. Malicious
domains may use unusual ports or return response codes (e.g.,
404 or 503), signaling potentially harmful intent or unreliable
behavior.

These combined features provide a comprehensive view
that enhances the model’s ability to accurately classify
domains based on both static attributes and dynamic behavior.

Fig. 2, shows the distribution of the target variable Class,
which indicates whether a domain is malicious or benign. The
x-axis represents the two classes, and the y-axis represents the
count of domains in each class.

Fig. 2. Class distribution (malicious vs. benign).

The data is evenly distributed between the two classes,
meaning there is no significant class imbalance. This is
beneficial for training a machine learning model, as it ensures
that the model does not become biased toward one class.

Fig. 3, show set of histograms visualizes the distributions of
numerical features such as Entropy, DomainLength,
SpecialCharSequence, and others. Each histogram shows the
frequency of values for a specific feature.

Fig. 4, show these count plots display the distribution of
categorical features such as HasSPFInfo, HasDkimInfo,
DNSRecordType, and others. Each plot is further divided by
the Class (malicious vs. benign) to show how the feature values
differ between the two classes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

487 | P a g e

www.ijacsa.thesai.org

Fig. 3. Distributions of numerical features.

Fig. 4. Distributions of categorical features by class.

The feature DNSRecordType shows that malicious
domains predominantly have values of "A" or "CNAME,"
while benign domains have another value. This suggests that
DNSRecordType could be a strong predictor of maliciousness
but may also introduce bias so we will drop it. The skewed
distribution of DNSRecordType indicates that it may
negatively impact the model's performance and should be
removed.

B. Dataset Preprocessing

Data preparation involves several steps like data cleaning
and data transformation. We removed 170 rows containing null
values while performing the data cleaning process. We
removed the columns Domain, DNSRecordType,
CountryCode, RegisteredOrg, and RegisteredCountry in the
data transformation process since they were not helpful for
further processing in machine learning algorithms.

For boolean-type and text columns, we employed the Label
Encoder of the scikit-learn library. Boolean values were
converted to integers (0 and 1). All integer values were also
normalized using the Standard Scaler normalization technique,
which is common in scientific research. This method scales the
data to have a mean of 0 and a standard deviation of 1, thus
features are centered and scaled on variance.

Though other normalization techniques exist, Standard
Scaler was utilized since it scales the features well without
being greatly affected by extreme outliers, making it suitable
for this dataset.

Standardization equation:

z =
x−μ

σ
 

with mean equation:

𝜇 =
1

𝑁
∑  𝑁

𝑖=1 (𝑥𝑖) 

and standard deviation equation:

𝜎 = √
1

𝑁
∑  𝑁

𝑖=1   (𝑥𝑖 − 𝜇)2

The correlation heatmap that shows in Fig. 5. visualizes the
pairwise correlation coefficients between all numerical features
in the dataset. Each cell in the heatmap represents the
correlation between two features, with values ranging from -1
to 1. A value of 1 indicates a perfect positive correlation, -1
indicates a perfect negative correlation, and 0 indicates no
correlation. The heatmap reveals that certain features, such as
NumericRatio, StrangeCharacters, and ConsoantRatio, are
strongly correlated with the target variable Class. These
features are likely to be important for predicting whether a
domain is malicious or benign.

Fig. 5. Correlation heatmap.

C. Features Engineering

Feature selection strategies are used to determine the most
discriminating characteristics. To determine the relevance of
features to the classification job, as it involves selecting and
transforming the most relevant features to improve model
performance. In this study, we employed the SelectKBest
method with the f_classif scoring function to identify the top
20 features that contribute the most to the predictive power of
the model. The f_classif function computes the ANOVA F-
value between each feature and the target variable, which helps
in selecting features with the strongest statistical relationship to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

488 | P a g e

www.ijacsa.thesai.org

the target. The selected features include a mix of categorical
and numerical variables, such as MXDnsResponse,
TXTDnsResponse,HasSPFInfo, DomainInAlexaDB,
CommonPorts, CreationDate, LastUpdateDate, ASN,
HttpResponseCode, Entropy, StrangeCharacters, TLD,
IpReputation, ConsoantRatio, NumericRatio,
SpecialCharRatio, VowelRatio, VowelSequence,
NumericSequence, and DomainLength. These features were
chosen based on their ability to distinguish between malicious
and benign domains effectively. By reducing the feature space
to the most informative variables, we not only improve model
efficiency but also mitigate the risk of overfitting, ensuring that
the model generalizes well to unseen data.

D. Machine Learning Models

1) XGBoost: XGBoost is an advanced framework based

on gradient tree boosting for solving large-scale machine

learning problems efficiently. It is highly reputed for its

predictive performance and training speed and has been

consistently topping Kaggle competitions. The basic concept

of the algorithm is to add decision trees iteratively, constantly

splitting features to expand and enhance the model. You

actually learn a new function to fit the last predicted residual

when each time you add a tree [13]. Letting xi be the input, yi

be true label and zi be the 'raw prediction' before the sigmoid

function, according to study [14], the objective function of the

XGB model is:

Standardization equation:

𝐿(𝑡) = ∑  𝑛
𝑖=1 𝑙 (𝑦𝑖 , 𝑍𝑖

(𝑡−1)
+ 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡) + 𝑐

Where 𝑙(.,.)𝑑𝑒𝑛𝑜𝑡𝑒𝑠𝑡ℎ𝑒𝑙𝑜𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑡 stands for the 𝑡 th
tree, Ω penalizes the complexity of the model, Ω(𝑓𝑡) represents
the penalty term of regularization, and 𝑐 is constant.

The second-order Taylor expansion is:

𝑓(𝑥 + Δ𝑥) ≈ 𝑓(𝑥) + 𝑓′(𝑥)Δ𝑥 + 1/2𝑓′′(𝑥)Δ𝑥2

Taking “(2)” into “(1)”, we can get

𝐿(𝑡) ≈ ∑  𝑛
𝑖=1   [𝑙(𝑦𝑖 + 𝑍𝑖

(𝑡−1)
) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +

1

2
ℎ𝑖(𝑓𝑡(𝑥𝑖))

2
]

 +Ω(𝑓𝑡) + 𝑐
  

where 𝑔𝑖 = ∂𝐿/ ∂𝑧𝑖 , and ℎ𝑖 = ∂2𝐿/ ∂𝑧𝑖
2 . Removing the

constant terms, we can obtain the following simplified
objective at step 𝑡.

𝐿(𝑡) ≈ ∑  𝑛
𝑖=1 [𝑔𝑖𝑓𝑡(𝑥𝑖) +

1

2
ℎ𝑖(𝑓𝑖(𝑥𝑖))

2
] + Ω(𝑓𝑡)

In this objective function, 𝑔𝑖 and ℎ𝑖 are required for fitting
the XGB model.

For binary classification problems, the default loss function
of XGB is the cross entropy (CE) loss:

𝐿 = − ∑  𝑛
𝑖=1 [𝑦𝑖log (𝑦̂𝑖) − (1 − 𝑦𝑖)log (1 − 𝑦̂𝑖)]

In Eq. (5) , 𝑦̂𝑖 = 1/[1 + exp (−𝑧𝑖)] , that is sigmoid is
selected as activation. Therefore, we can get:

∂𝑦̂𝑖

∂𝑧𝑖
= 𝑦̂𝑖(1 − 𝑦̂𝑖) 

2) LightGBM: LightGBM is a machine learning algorithm

that relies on Gradient Boosting Decision Tree (GBDT). It

operates by iteratively training several weak classifiers and

combining them into a strong classifier capable of performing

classification and regression tasks. Compared to traditional

GBDT algorithms, LightGBM offers significant advantages

such as high training speed, low memory consumption, and

effective prediction capability. Additionally, LightGBM has

outperformed other algorithms in terms of efficiency [15].

The primary objective function in LightGBM includes two
significant components: the loss function and the regularization
term, which controls model complexity:

ℒ = ∑  𝑁
𝑖=1 𝑙(𝑦𝑖 , 𝑦̂𝑖) + ∑  𝑇

𝑡=1 Ω(𝑓𝑡)

Where 𝑙(𝑦𝑖 , 𝑦̂𝑖) is the loss function (for example, log loss
for classification), and Ω(𝑓𝑡) is the regularization term for
preventing overfitting. LightGBM minimizes this function
using a second-order Taylor expansion, which approximates
the loss function using the first-order and second-order
derivatives:

ℒ (𝑡) ≈ ∑  𝑁
𝑖=1 [𝑔𝑖𝑓𝑡(𝑥𝑖) +

1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + Ω(𝑓𝑡)

where 𝑔𝑖 and ℎ𝑖 are the gradient and Hessian of the loss
function, respectively. Under this formulation, it is possible to
perform more accurate and efficient optimization than with
traditional gradient boosting methods.

One of the primary advantages of LightGBM is the leaf-
wise growth strategy, which grows the tree by selecting the leaf
with the maximum loss reduction instead of growing the tree
level-wise. The split gain is computed as:

 =
1

2
(

𝐺𝐿
2

𝐻𝐿
+

𝐺𝑅
2

𝐻𝑅
−

(𝐺𝐿+𝐺𝑅)2

𝐻𝐿+𝐻𝑅
) − 𝛾

where, 𝐺𝐿 , 𝐺𝑅 and 𝐻𝐿 , 𝐻𝑅 are the sums of gradients and
Hessians for the left and right child nodes, respectively, and γ
is a regularization parameter.

In order to further boost training efficiency, LightGBM
uses histogram-based feature binning, which discretizes
continuous features into a given number of bins:

bin(𝑥) = ⌊(𝑥 − 𝑥𝑚𝑖𝑛) ×


𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
⌋

This reduces computation time while making the best splits
more easily discovered without any loss in accuracy. Overall,
LightGBM’s new techniques make it one of the fastest and
most scalable boosting algorithms available, with uses in
everything from fraud detection to recommendation systems.

3) CatBoost: CatBoost (Categorical Boosting) is a

gradient boosting algorithm developed specifically to handle

categorical features with high quality and efficiency. The

CatBoost algorithm uses Ordered Target Statistics instead of

One-Hot Encoding, as its method computes category values

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

489 | P a g e

www.ijacsa.thesai.org

based only on previous data points, rather than on the entire

dataset at once. This reduces the chances of overfitting and

improves computational performance. The CatBoost algorithm

operates like existing boosting algorithms but excels when

there is a mix of categorical and continuous data [16].

CatBoost's objective function is in the gradient boosting
general form, with a loss function and a regularization term:

ℒ = ∑  N
i=1 l(yi, ŷi) + ∑  T

t=1 Ω(ft)

where 𝑙(𝑦𝑖 , 𝑦̂𝑖) is the loss function (e.g., log loss for
classification, squared error for regression), and Ω(𝑓𝑡) is a
regularization term for controlling model complexity. CatBoost
minimizes this function using ordered boosting, which avoids
overfitting caused by target leakage during training.

For efficiency, CatBoost utilizes a symmetric tree structure,
i.e., all splits at a specific depth are created simultaneously in
all the branches. This ensures balanced trees and prevents bias
toward certain features, which leads to better generalization.
The optimal split is computed based on the gain formula:

 =
1

2
(

GL
2

HL
+

GR
2

HR
−

(GL+GR)2

HL+HR
) − λ

where 𝐺𝐿 , 𝐺𝑅 and 𝐻𝐿 , 𝐻𝑅 are the sums of gradients and
Hessians for the left and right child nodes, respectively, and λ
is a regularization parameter.

CatBoost possesses a significant edge in handling
categorical data, removing overfitting, and accelerating training
without a loss in accuracy. Ordered boosting, symmetric trees,
and novel categorical encoding make CatBoost highly effective
in practical machine learning applications.

4) Stacking classifier: The Stacking Classifier is an

ensemble technique in machine learning that uses a stacking

method aimed at combining several different base models to

create a more accurate and powerful model. The Stacking

Classifier trains a set of base models on the same dataset to

obtain different predictions specific to each model. It then

trains a meta-classifier on the results of the base models to

merge them in the best way. Each base model can be given a

different weight based on its performance or accuracy,

ultimately testing the stacking classifier to produce the final

prediction that is most accurate. We use stacking because it

combines different models, resulting in a final model that is

more accurate, better at generalizing, and less susceptible to

error or bias towards a single model [17].

The objective function of a stacking classifier contains two
layers. In the first layer, we have MMM base models, each of
which is trained on the original data set:

𝑦̂𝑚 = 𝑓𝑚(𝑋), 𝑚 = 1,2, … , 𝑀

where 𝑓𝑚 represents each base model, and 𝑋 represents the
input feature set. The models predict, and these predictions are
new features for the second layer, where a meta-classifier
𝑓𝑚𝑒𝑡𝑎 is trained:

𝑦̂ = 𝑓𝑚𝑒𝑡𝑎(𝑦̂1, 𝑦̂2, … , 𝑦̂𝑀) 

The final prediction 𝑦̂ is found by combining all the outputs
of the base models in the best possible manner. The meta-
classifier is usually a simple model (e.g., logistic regression or
decision tree) that learns to weight and combine the predictions
of the base models to get optimal performance.

To prevent overfitting and improve generalization, stacking
typically employs K-fold cross-validation, where base models
are trained on different folds of the data, and their predictions
on unseen data are used to train the meta-classifier:

𝑦̂𝑚
(𝑖)

= 𝑓𝑚(𝑋(𝑖)), ∀𝑖 ∈ {1,2, … , 𝐾}

where 𝑋(𝑖) is the training fold in the K-fold cross-
validation process. In this way, the meta-classifier is trained on
out-of-fold predictions, and the models are not allowed to
memorize the training data and be biased.

Overall, stacking is a powerful technique that improves
accuracy by ensembling multiple models. It is computationally
demanding and requires careful tuning of base models and the
meta-classifier to prevent overfitting. Despite these drawbacks,
stacking is a widely used technique for high-performance
predictive modeling in a variety of domains, including finance,
healthcare, and recommendation systems.

5) Voting classifier: Voting is a popular ensemble learning

method that combines predictions of several base classifiers to

improve general prediction accuracy and strength. It is based

on the premise that the collective decision of numerous

classifiers can result in improved performance than that of any

single classifier. Majority Voting is especially useful when the

basis classifiers are heterogeneous and commit uncorrelated

errors. Majority voting is a straightforward ensemble approach

in which the final prediction is determined by the majority of

the individual classifier votes [18] [19].

The Voting Classifier is an ensemble learning technique
that combines a number of machine learning models to
improve the accuracy and stability of predictions. Unlike
stacking, which learns a meta-classifier over the base model
predictions, voting combines predictions from a number of
classifiers directly through hard voting or soft voting. The
method is particularly useful when the base models are
heterogeneous, capturing different nuances of the data.

For hard voting, the final prediction is decided by a
majority vote of the base classifiers:

ŷ = mode(ŷ1, ŷ2, … , ŷM)

where 𝑦̂𝑚 is the m-th model's prediction, and the majority
class is selected as the final output.

For soft voting, the ultimate prediction is taken from the
average of the predicted probabilities of all the base models:

ŷ = arg max ∑  M
m=1 wmPm(y ∣ X)

where:

𝑃𝑚(𝑦 ∣ 𝑋) is the predicted probability of class 𝑦 by model
𝑚.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

490 | P a g e

www.ijacsa.thesai.org

𝑤𝑚 is an optional weight assigned to each model based on
its importance.

Soft voting is generally better than hard voting, especially
if the base models are well-calibrated, as it allows the classifier
to take into account the confidence levels of the different
models.

The Voting Classifier is particularly useful when you need
to ensemble models with complementary strengths. For
example, decision trees can learn complicated interactions in
data, logistic regression can ensure stability, and gradient
boosting models can provide good generalization.

In this study, we used a soft voting ensemble with scikit-
learn's Voting Classifier. Soft voting takes the predicted
probabilities from each classifier and selects the class with the
highest average probability, which performs better than hard
voting. To build the ensemble, we initialized six LightGBM
classifiers with different learning rates (0.1, 0.09, 0.2, 0.08, 0.3,
and 0.07). The learning rates were changed to introduce
diversity in the base models because altering hyperparameters
can reduce correlation between the classifiers' errors. The
classifiers were then passed to a Voting Classifier with the
estimators parameter, which takes a list of tuples containing the
model names and instances. We set the voting parameter to
'soft' for voting based on probabilities. This approach takes the
best of each model and removes their worst parts, resulting in a
stronger and more accurate ensemble model.

IV. RESULT AND ANALYSIS

In this section, we present the results obtained from
classifying DNS logs into malicious and benign categories
using various machine learning algorithms. The evaluation of
each model is based on accuracy, precision, recall, F1-score,
and AUC. Additionally, confusion matrices and ROC curves
provide further insights into model performance.

1) Evaluation metrics: In this research, we used standard

classification metrics such as Accuracy, Precision, Recall, F1-

Score, and Area Under the ROC Curve (AUC). We selected

these metrics because they provide a comprehensive

evaluation of the performance of the chosen models to

facilitate the assessment of which performs better than others.

Despite the common reporting of accuracy, it can be
misleading in cases where unbalanced datasets are included,
where the number of benign domains is greater than that of
malicious ones. This is because models can achieve high
accuracy simply by predicting the majority class in the group.
Therefore, we integrated Precision and Recall.

Precision measures the proportion of domains predicted to
be malicious that are indeed malicious, which is very important
for reducing false positive results and avoiding the blocking of
legitimate domains. Recall reflects the model's effectiveness in
accurately identifying harmful domains, contributing to the
reduction of false negative results.

Also, we used F1-Score because it gives us a consistent
average between precision and recall, making the positive and
negative false results balanced. Finally, we added AUC-ROC
because it is considered an independent measure of the model's

ability to discriminate between the two classes. AUC is very
important for understanding overall performance across
different classification thresholds, especially when there is a
dataset containing varied class distributions.

2) Performance evaluation: Our model's predictions can

result in four possible outcomes:

 True Positive (TP): A malicious domain name is
correctly identified as malicious.

 True Negative (TN): A non-malicious domain name is
correctly identified as non-malicious.

 False Negative (FN): A malicious domain name is
incorrectly classified as non-malicious.

 False Positive (FP): A non-malicious domain name is
incorrectly classified as malicious.

Using these outcomes, we can calculate key performance
evaluation metrics such as accuracy, recall, precision, and F1-
score, as outlined below.

Accuracy is one of the most straightforward metrics for
evaluating the performance of a binary classification model. It
represents the percentage of correctly classified samples out of
the total samples. Using the previously introduced notation,
accuracy is defined in the equation as follows:

 Accuracy =
TP+TN

TP+TN+FP+FN


As another measure of classifier performance, precision
assesses the accuracy of positive predictions. It is the
proportion of correctly predicted positive instances to all
predicted positive instances. Precision is defined by the
formula:

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃


Precision is always combined with a measure called recall
because precision measurement would be very high for models
which predict few positives. Recall specifies the proportion of
positive examples that are correctly identified by the classifier,
given by the formula:

 Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

The F1-Score is the harmonic mean of precision and recall,
as defined by Equation (number x). A large F1-Score can only
be obtained if both recall and precision are high.

F1 − Score =
2× Precision × Recall

 Precision + Recall


The XGBoost classifier demonstrated exceptional
performance, achieving an accuracy of 98.58% with an AUC
of 0.9991. The confusion matrix reveals that the model
correctly classified 8889 malicious and 8821 benign instances
while misclassifying 160 benign samples as malicious (false
positives) and 96 malicious samples as benign (false
negatives). The low false negative rate suggests that the model
is highly effective in detecting malicious domains, minimizing
the risk of overlooking threats, as illustrated in Fig. 6 and Fig.
7.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

491 | P a g e

www.ijacsa.thesai.org

Fig. 6. Confusion matrices illustrating the classification performance of

XGBoost on DNS log data.

Fig. 7. ROC curves depicting the AUC scores for XGBoost.

Similarly, the LightGBM classifier produced comparable
results, attaining an accuracy of 98.51% and an AUC of
0.9990. Although LightGBM performed slightly below
XGBoost, the marginal difference in AUC suggests that both
models are highly effective. The confusion matrix shows 8889
correctly classified malicious instances and 8821 correctly
classified benign instances. However, it misclassified 160
benign samples as malicious and 96 malicious samples as
benign. These results indicate that LightGBM performs slightly
below XGBoost in distinguishing between the two classes but
remains a strong candidate for DNS log classification, as
shown in Fig. 8 and Fig. 9.

Fig. 8. Confusion matrices illustrating the classification performance of

LightGBM on DNS log data.

Fig. 9. ROC Curves depicting the AUC scores for LightGBM.

The CatBoost classifier emerged as the best-performing
model, achieving the highest accuracy of 98.71% and an AUC
of 0.9992. The confusion matrix highlights its superior
classification capability, with 8901 correctly identified
malicious domains and 8833 correctly identified benign
domains. Additionally, it recorded 148 false positives and 84
false negatives, the lowest among all models. The reduced
number of false negatives implies that CatBoost is the most
effective in correctly identifying malicious domains, making it
a highly reliable option, as shown in Fig. 10 and Fig. 11.

Fig. 10. Confusion matrices illustrating the classification performance of

CatBoost on DNS log data.

Fig. 11. ROC curves depicting the AUC scores for CatBoost.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

492 | P a g e

www.ijacsa.thesai.org

The Voting Classifier, which combines multiple models,
achieved an accuracy of 98.59% with an AUC of 0.9991. Its
confusion matrix indicates that 8901 malicious and 8812
benign domains were correctly classified, while 169 benign
samples were incorrectly flagged as malicious, and 84
malicious samples were misclassified as benign. Although it
performed well, the slightly higher false positive rate compared
to CatBoost suggests that it may generate more false alerts, as
illustrated in Fig. 12 and Fig. 13.

Fig. 12. Confusion matrices illustrating the classification performance of

Voting Classifier on DNS log data.

Fig. 13. ROC Curves depicting the AUC scores for voting classifier.

The Stacking Classifier attained an accuracy of 98.53% and
an AUC of 0.9979. The confusion matrix analysis shows 8880
correctly classified malicious domains and 8822 correctly
classified benign domains. It produced 159 false positives and
105 false negatives, indicating a higher false negative rate
compared to the other models. This suggests that the Stacking
Classifier, while still effective, may not be the optimal choice
for minimizing undetected threats, as shown in Fig. 14 and Fig.
15.

A comparative analysis of the models highlights that all
classifiers performed exceptionally well, with accuracy
surpassing 98%. CatBoost emerged as the best-performing
model, delivering the highest accuracy and AUC, making it the
most suitable choice for DNS log classification. These findings
suggest that ensemble methods such as CatBoost and XGBoost
are highly effective in detecting malicious domains, reinforcing
their potential for real-world cybersecurity applications. Table
II shows comparison table of models.

Fig. 14. Confusion matrices illustrating the classification performance of

Stacking Classifier on DNS log data.

Fig. 15. ROC Curves depicting the AUC scores for stacking classifier.

TABLE II. COMPARISON TABLE OF MODELS

Model Accuracy Precision Recall
F1-

Score
AUC

XGBoost 0.9858 0.9858 0.9857 0.9857 0.9991

LightGBM 0.9851 0.9851 0.9850 0.9850 0.9991

CatBoost 0.9871 0.9871 0.9870 0.9871 0.9992

Voting Classifier 0.9859 0.9859 0.9859 0.9859 0.9991

Stacking

Classifier
0.9853 0.9853 0.9853 0.9853 0.9979

V. DISCUSSION AND SUMMARY

The malicious domain detection systems rely on the quality
of feature selection, the performance of machine learning
models, and their applicability in a real-world environment. In
this research, five machine learning models (XGBoost,
LightGBM, CatBoost, Stacking, and Voting Classifier) were
evaluated using a balanced dataset containing 90,000 domain
names, with 34 features extracted from DNS records.

The results showed that the CatBoost model outperformed
all other models, achieving the highest accuracy of 98.71% and
the best performance in other metrics such as F1-score and
AUC-ROC. This demonstrates CatBoost's high capability in
handling data and dealing with categorical data effectively
while reducing bias during training. In comparison, the
performance of both XGBoost and LightGBM was similar, as
they achieved accuracy exceeding 98.5%, indicating that
boosting techniques are effective in detecting malicious
domains.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

493 | P a g e

www.ijacsa.thesai.org

On the other hand, both the Voting Classifier and Stacking
Classifier showed strong performance, but without significant
improvement compared to the other models. This indicates that
combining models did not result in a clear and noticeable
enhancement, which may be one reason for the similarity of the
basic models' errors in classification.

A. Error Analysis

Despite the high performance of the models, there are
challenges that should be taken into consideration.

1) High false positive rate: Some safe domains have been

classified as malicious domains, especially those that contain

unfamiliar but legitimate names.

2) Errors in detecting malicious domains (false

negatives): Despite the small percentage, some harmful

domains have not been discovered, especially those that use

obfuscation techniques or domain names that are similar to

legitimate sites.

3) Impact of data features: The correlation analysis

showed that some of the features used, such as

DNSRecordType, might be biased, making their removal

important to enhance the overall model performance.

B. Practical Implementation

This research may serve as an impetus for practical steps
towards enhancing network security through malicious domain
detection systems. However, there are still some challenges
that are important to address when applying the model in real-
world environments.

1) Adapting to emerging threats: The model can be

improved through continuous data updates and the addition of

new and important features based on the developments in

cyberattack technologies.

2) Real-time performance analysis: Although this research

focuses on integration with the DNS firewall, studying the

impact of the model on network performance and response

time may be necessary.

3) Scalability: When applying the model in large-scale

systems, improving resource consumption without affecting

network performance to ensure quick responsiveness may be

essential.

C. Summary

The results of this study show that boosting models such as
CatBoost and XGBoost can achieve high performance in
detecting malicious domains without the need for deep learning
techniques. However, integrating these models into real-world
security systems requires important additional improvements to
enhance performance and ensure security, such as reducing
false positives, adapting to new or emerging threats, and
analyzing real-time performance.

This research can be further developed in the future by
using hybrid models that combine machine learning and deep
learning, along with improving data processing techniques and
feature analysis to increase classification accuracy and reduce
biases.

VI. CONCLUSION AND FUTURE WORK

In this project, we explored the use of machine learning in
classifying domain names into benign or malicious based on
DNS log data. By comparing several machine learning
algorithms—XGBoost, LightGBM, CatBoost, Stacking, and
Voting Classifiers—we identified CatBoost as the best-
performing model with the highest accuracy, precision, recall,
and AUC score. The results indicate that ML-based DNS
security solutions can be effective at preventing and detecting
cyber threats in real time.

Our solution provides a lightweight and computationally
less intensive alternative to deep learning-based models,
making it a feasible solution for real-world deployment in
resource-constrained environments. By integrating the best-
performing model in a DNS firewall, we enhance cybersecurity
defenses by reducing the risk of malicious domains, which
lowers the risk of phishing, malware spread, and data breaches.

Future work can be oriented in the direction of optimizing
feature engineering methods, incorporating real-time threat
intelligence, and using diversified datasets for the better
generalization of the model. Additionally, the fusion of deep
learning models and traditional ML models can be
incorporated to obtain a hybrid solution that can provide a
balance between efficiency and accuracy.

This project contributes to the developing field of AI-
driven cybersecurity, offering an affordable and scalable
solution to the evolving nature of cyber threats. As
cybersecurity and machine learning advance, the
implementation of intelligent DNS security solutions will be
critical in safeguarding digital infrastructure.

REFERENCES

[1] Toorn, O. V., Müller, M. C., Dickinson, S., Hesselman, C., Sperotto, A.,
& Rijswijk-Deij, R. V. (2022). Addressing the challenges of modern
DNS: A comprehensive tutorial. Computer Science Review, 45, 100469.
https://doi.org/10.1016/j.cosrev.2022.100469.

[2] Jalalzai, M. H., Shahid, W. B., & Iqbal, M. M. W. (2015). DNS security
challenges and best practices to deploy secure DNS with digital
signatures. 2015 12th International Bhurban Conference on Applied
Sciences and Technology (IBCAST), 280–285.
https://doi.org/10.1109/IBCAST.2015.7058517.

[3] Marques, C., Malta, S., & Magalhães, J. (2021). DNS firewall based on
machine learning. Future Internet, 13(12), Article 309.
https://doi.org/10.3390/fi13120309

[4] Wagan, A. A., Li, Q., Zaland, Z., Marjan, S., Bozdar, D. K., Hussain, A.,
Mirza, A. M., & Baryalai, M. (2023). A Unified Learning Approach for
Malicious Domain Name Detection. Axioms, 12(5), Article 5.
https://doi.org/10.3390/axioms12050458

[5] Ren, F., Jiang, Z., Wang, X., & Liu, J. (2020). A DGA domain names
detection modeling method based on integrating an attention mechanism
and deep neural network. Cybersecurity, 3(1), Article 4.
https://doi.org/10.1186/s42400-020-00046-6

[6] Luo, C., Su, S., Sun, Y., Tan, Q., Han, M., & Tian, Z. (2020). A
Convolution-Based System for Malicious URLs Detection. Computers,
Materials & Continua, 62(1), 399–411.
https://doi.org/10.32604/cmc.2020.06507

[7] Marques, C., Malta, S., & Magalhães, J. (2021). DNS Firewall Based on
Machine Learning. Future Internet, 13(12), Article 12.
https://doi.org/10.3390/fi13120309

[8] Thein, T. T., Shiraishi, Y., & Morii, M. (2023). Malicious Domain
Detection Based on Decision Tree. IEICE Transactions on Information

https://doi.org/10.3390/fi13120309
https://doi.org/10.1186/s42400-020-00046-6

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

494 | P a g e

www.ijacsa.thesai.org

and Systems, E106.D(9), 1490–1494.
https://doi.org/10.1587/transinf.2022OFL0002

[9] Samad, S. R. A., Ganesan, P., Al-Kaabi, A. S., Rajasekaran, J., M, S., &
Basha, P. S. (2024). Automated Detection of Malevolent Domains in
Cyberspace Using Natural Language Processing and Machine Learning.
International Journal of Advanced Computer Science and Applications,
15(10). https://doi.org/10.14569/IJACSA.2024.0151036

[10] Ma, D., & Wu, X. (2024). A malicious domain name detection method
based on variational autoencoder. 2024 IEEE 2nd International
Conference on Control, Electronics and Computer Technology, 1206–
1210. https://doi.org/10.1109/ICCECT60629.2024.10545732

[11] Zhao, H., Chen, Z., & Yan, R. (2022). Malicious domain names
detection algorithm based on statistical features of URLs. 2022 IEEE
25th International Conference on Computer Supported Cooperative
Work in Design, 11–16.
https://doi.org/10.1109/CSCWD54268.2022.9776264

[12] Marques, C. (2021). Benign and malicious domains based on DNS logs
(Version 5) [Data set]. Mendeley Data.
https://doi.org/10.17632/623sshkdrz.5

[13] He, S., Li, B., Peng, H., Xin, J., & Zhang, E. (2021). An effective cost-
sensitive XGBoost method for malicious URLs detection in imbalanced
dataset. IEEE Access, 9, 93089–93096.
https://doi.org/10.1109/ACCESS.2021.3093094

[14] Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting
system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (pp. 785–794).
https://doi.org/10.1145/2939672.2939785

[15] Cai, Z., Huang, H., Sun, G., Li, Z., & Ouyang, C. (2023). Advancing
predictive models: Unveiling LightGBM machine learning for data
analysis. 2023 4th International Conference on Computer, Big Data and
Artificial Intelligence (ICCBD+AI), 109–112.
https://doi.org/10.1109/ICCBD-AI62252.2023.00027.

[16] Malashin, I., Tynchenko, V., Gantimurov, A., Nelyub, V., & Borodulin,
A. (2025). Boosting-Based Machine Learning Applications in Polymer
Science: A Review. Polymers, 17(4), 499.
https://doi.org/10.3390/polym17040499.

[17] Reddy, S. N., Krishna, D. V., Asritha, I., & Charitha, L. (2024).
Ensemble stacking classifier for cardiovascular risk prediction. 2024
International Conference on Inventive Computation Technologies
(ICICT), 534–540. https://doi.org/10.1109/ICICT60155.2024.10544597.

[18] Ruta, D., & Gabrys, B. (2005). Classifier selection for majority voting.
Information Fusion, 6(1), 63–81.
https://doi.org/10.1016/j.inffus.2004.04.008.

[19] Patil, D. R., Pattewar, T. M., Punjabi, V. D., & Pardeshi, S. M. (n.d.).
Detecting fake social media profiles using the majority voting approach.
EAI Endorsed Transactions on Scalable Information Systems.
https://doi.org/10.4108/eetsis.4264.

https://doi.org/10.1109/ICCECT60629.2024.10545732
https://doi.org/10.1109/CSCWD54268.2022.9776264
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.4108/eetsis.4264

