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Abstract—With the ever-increasing rate of cyber threats, 

especially through malicious domain names, the need for their 

effective detection and prevention becomes very urgent. This 

study mainly investigates the classification of domain names into 

either benign or malicious classes based on DNS logs using 

machine learning. We evaluated five strong ML models: 

XGBoost, LightGBM, CatBoost, Stacking, and Voting Classifier, 

in an effort to obtain high accuracy, F1 score, AUC, recall, and 

precision. The challenge in that direction is to achieve a very 

good solution, without using deep learning techniques for low 

computational cost. Moreover, this project has an obligation to 

upgrade the cybersecurity landscape by embedding the best-

performing model into the DNS firewall to enable protection 

against harmful domains in real time. Our dataset was collected 

and curated to include 90,000 domain names, including an equal 

number of safe and harmful, respectively, extracting 34 features 

from DNS logs and further enriched using publicly available 

data. 
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I. INTRODUCTION 

With the advancement of the digital age, the use of the 
internet has become extremely common for communication, 
the exchange of important information, and even for 
commerce. This has led to an increased demand for 
cybersecurity and the search for precise security mechanisms 
that can be implemented and utilized. Among the many 
common threats, the Domain Name System (DNS) is one of 
the crucial elements in the internet's infrastructure, as it 
converts domain names into IP addresses. However, it lacks 
appropriate protection mechanisms, which allows 
cybercriminals to exploit these vulnerabilities, helping them 
spread malware, conduct phishing attacks, or gain unauthorized 
access to data on servers. Therefore, there is an urgent need for 
methods that achieve a balance between efficiency, accuracy, 
and the ability to perform in real-time [1]. 

The ever-evolving nature of cybersecurity demands 
continuous upgrading to match newer, sophisticated modes of 
attack. The Domain Name System (DNS) is an important target 
for attackers due to the significant losses it can cause. 
Therefore, any breach of the security of the DNS affects the 
reliability of the internet greatly, which underscores the 
importance of securing this system. In the event of any 
compromise to its foundational structure, institutions will 
suffer losses and customers will lose their privacy, leading to 
customer dissatisfaction as well as legal implications and other 
significant issues. The primary goal of the DNS when it was 
designed was to provide a scalable and available domain name 

resolution service, but at that time, security aspects were not 
adequately emphasized, resulting in many security 
vulnerabilities that could turn lives upside down globally if 
exploited by attackers. This issue also calls for an interesting 
junction of technological advancement, real-time Threat 
Intelligence, with pragmatic implementation of solutions [2]. 

This project investigates the capability of ML models in 
identifying and classifying domain names as either benign or 
malicious based on DNS log data. Advanced ML algorithms 
such as XGBoost, LightGBM, CatBoost, Stacking, and Voting 
Classifiers will be used to develop an efficient cybersecurity 
solution which is computationally effective. The current 
approach focuses on lightweight ML models rather than deep 
learning methods, which require a huge amount of 
computational resources. The best performance model will be 
integrated into a DNS firewall for better security of the 
network. This system not only addresses current limitations in 
DNS security but also provides a scalable and cost-effective 
approach for future cybersecurity challenges [3]. 

The main objective of the research is to propose a 
lightweight, accurate, and efficient system for malicious 
domain name detection based on DNS logs. This research also 
aims to develop ML models that classify domain names with 
high precision, recall, and F1 scores. It also focuses on 
designing a non-deep learning system to provide computational 
cost efficiency and enable real-time applications. In addition, a 
comparison was made between the performance of five deep 
learning-based machine learning models to find the best 
approach. This research also relies on model optimization, 
using a 34-dimensional feature space derived from enriched 
DNS features using DNS records to enhance the latest model 
outcomes by leveraging a high-dimensional dataset. One of the 
important goals is to deploy the best-performing model on a 
DNS firewall for implementation in real-world situations and 
also to ensure that the proposed solution has the capacity to 
scale to large volumes of DNS traffic in wide-scale 
environments. 

Below are the key contributions the research that makes to 
the field of cybersecurity and ML-based threat detection: 

 Model Performance - Extended Comparison: 
Performances of XGBoost, LightGBM, CatBoost, 
Stacking, and Voting Classifier will be presented in this 
work through extensive testing, providing the best 
methodology for DNS threat detection. 

 Rich Feature Utilization: The study uses a dataset of 34 
features extracted from DNS logs, ensuring that the ML 
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models are adequately informed to carry out the 
classification with a high degree of accuracy. Features 
like these will provide in-depth and subtle particulars 
about the behavior of the domain names. 

 Lightweight Solution: By not being dependent on deep 
learning approaches, the system is computationally light 
and reachable even by organizations lacking extensive 
computing resources. This entails a wider applicability 
across various sectors with different technical 
capabilities. 

 Practical Integration: The integration of the best-
selected model into a DNS firewall allows real-time 
defense against malicious domain names and closes the 
gap between theory and practice. Experimental insights 
become, at this stage, an actionable tool. 

 Balanced Dataset: The research is based on a dataset 
containing an equal number of benign and malicious 
domain names, thus allowing for impartial model 
evaluation. This will add to the credibility and 
reliability of the results found from this work. 

The rest of this paper is organized as follows: Section II 
reviews the related work. Section III details the methodology. 
Section IV presents the results and analysis. Section V 
provides the discussion, highlighting the key findings and their 
practical implications. Finally, Section VI concludes the paper. 

II. RELATED WORK 

Many researchers have proposed various methods for 
detecting malicious domain names in the literature. 

Wagan et al. [4] have developed a single, unifying method 
for discovering malicious domain names utilizing both 
numerical and textual information. Traditional DNS firewalls 
rely on lists of blacklisted maligned domains, but such lists 
cannot respond to new, emerging malignants. Traditional 
machine learning approaches have aided in enhancing 
detections but have not utilized both numerical and textual 
information of a domain name in its full capacity. To mitigate 
this, they have developed a deep model with a Hybrid Feed 
Forward Network (FFN) for numerical and a Long Short-Term 
Memory (LSTM) for textual information. Features extracted 
through both numerical and textual information are 
consolidated in a single, unifying format, and then utilized for 
classification. They trained a model over a 90,000-domain 
name corpus and demonstrated its performance to outperform 
six baseline approaches in terms of accuracy, precision, recall, 
and F1-score. 

Ren et al. [5] proposed a deep model for Domain 
Generation Algorithm (DGA) domain detection via an 
integration of an attention mechanism with a combination of 
Convolutional Neural Networks (CNNs) and Bidirectional 
Long Short-Term Memory (BiLSTM) networks. With both 
locality in character structures and long-term relations in 
domain names in consideration, and leveraging the use of an 
attention mechanism for prioritization of salient features, 
proposed model, namely, ATT-CNN-BiLSTM, can accurately 
discriminate between malignant and innocent domains, in 
contrast to traditional DGA detection approaches, which have a 

problem with wordlist-based DGA domains. Experimental 
evaluation confirms that ATT-CNN-BiLSTM achieves an F1-
score of 98.79% in DGA detection, outperforming traditional 
machine and deep learning approaches. In addition, the model 
has high generalizability, and thus, proves effective in 
processing previously unfamiliar DGA families. 

Luo et al. [6] proposed a deep learning system for 
malicious URL identification, utilizing a composite neural 
network (Comp-block) and an auto-encoder for feature 
extraction and classification, respectively. First, URLs go 
through irrelevant information deletion and tokenization of 
structure. An auto-encoder then transforms URLs into vector 
representations, and representations go through a deep model 
constructed with Convolutional Neural Networks (CNN) for 
anomalous behavior analysis. Manual feature selection is not 
utilized in the proposed scheme, and it is efficient in contrast 
with traditional rule-based approaches. Experimental 
evaluation with the HTTP CSIC 2010 and a custom dataset 
revealed that the system achieves high accuracy (98.20%) and 
detects anomalous URLs with low false alarm, outpacing 
traditional approaches for detection. 

Marques et al. [7] proposed a real-time ML-enforced DNS 
firewall for real-time malignant request domain filtering. 
Unlike traditional firewalls, utilizing a blocklist, potentially 
excluding recently generated new-malicious domains, their 
model employs supervised ML algorithms for distinguishing 
between malignant and innocent DNS queries. 

The system processes DNS logs with 34 key feature 
extraction and OSINT-enriched feature extraction. Various 
algorithms for machine learning, including Decision Trees 
(CART), SVM, Logistic Regression, and KNN, have been 
compared with a 90,000 record dataset. Experimental 
performance showed that CART performed best with an 
accuracy of 96% and a rapid classification time, and can, 
therefore, be used for real-time filtering of DNS. In this work, 
it is established that ML-powered DNS firewalls can 
effectively enhance cybersecurity through efficient detection 
and filtering out of malice domains over traditional approaches. 

Thain et al. [8] proposed a machine learning-based 
approach to detect malicious domains on the Internet by 
analyzing domain names and traffic passing through DNS. 
They used important people information .Then they used 
techniques such as Random Forest, XGBoost and AdaBoost to 
find out if the site is malicious or not. After several 
experiments, they found that the system can identify malicious 
sites with an accuracy of up to (92.7%) even if the data is 
small. Then they combined it with semantic analysis and the 
system became more effective than traditional methods on 
blacklist. 

Samad et al. [9] presented an intelligent system for 
detecting malicious websites on the internet. The system relies 
on natural language processing (NLP) in URLs and also the 
content of web pages. Techniques are employed to better 
understand words, such as n-grams (which means a set of 
words), which assist the system in making accurate decisions. 
The system uses seven mathematical methods, such as Random 
Forest and XGBoost, to determine whether a website is 
malicious. After several experiments, they discovered that the 
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system, by integrating the content of pages and URLs, is 
significantly better than older methods. 

D. Ma & Wu. [10] proposed a new method for detecting 
malicious domain names using a specific intelligent model 
called (VAE). The main objective is to improve the detection 
of (DGA) families, which are defined as random domains that 
are difficult to detect. 

The method begins by processing the domain names, where 
the data is cleaned of impurities and unimportant details. After 
that, a technique called (Word2Vec) is used to convert the 
words into vectors for better understanding by the system. 

Subsequently, the vectors are input into the (VAE) model, 
which adjusts itself using backpropagation. The damage 
probability is then calculated, and the domain is classified as 
harmful or benign based on a threshold classifier. 

Experiments have shown that this method outperforms 
traditional methods in detecting (DGA) families. 

Zhao et al. [11] have proposed an algorithm to detect 
harmful domain names based on the statistical features of 
URLs, using a decision tree classifier to enhance detection 
accuracy. Their method relies on extracting characteristics such 
as length, special characters, and character distribution to 
distinguish between legitimate and harmful domains. A 
decision tree was used to classify the domains based on these 
features, and the model achieved an accuracy of 90.31% in 
detecting harmful domains. The study shows that analyzing 
URL features significantly aids in accurately classifying 
domains and reduces the need for pre-labeled data. 

Compared to previous research, in our study, we made 
complementary contributions to some similar papers by 
comparing five machine learning algorithms: XGBoost, 
LightGBM, CatBoost, Stacking, and Voting Classifier. This 
makes them easier to interpret and clearer, and with a lighter 
weight than deep learning techniques. We relied on feature 
selection techniques such as ANOVA F-value and SelectKBest 
to identify the most influential features, which reduces the 
dimensionality of the data and improves the model's 
performance. We also conducted a comprehensive study of a 
set of features that includes characteristics related to email 
security, such as SPF, DKIM, and DMARC records, as they 
enhance the ability to detect domains that target phishing and 
email attacks. Additionally, we propose adding the best model 
for detecting harmful domains to be integrated into a prototype 
for a DNS firewall. 

III.  METHODOLOGY 

It depicts the suggested architecture for detecting malicious 
domain names. The framework consists of many steps, 
including dataset and preprocessing, feature engineering, 
model creation, and the use of ensemble learning like voting 
classifier and stacking classifier techniques. Each phase 
substantially improves the overall effectiveness of the 
malicious domain name detection system. Fig. 1 shows 
proposed framework. 

 
Fig. 1. Proposed framework. 

A. Dataset 

This study uses the Mendeley Dataset (Table I) that has 
been collected and processed by Marques et al. which includes 
both benign and malicious domains retrieved from DNS logs 
[12]. This dataset is especially designed for supervised 
machine learning research to differentiate between harmful and 
non-malicious domain names. It was rigorously curated by 
combining publicly accessible DNS logs from both sorts of 
domain names. Each domain name is used as an input in the 
dataset, resulting in 34 characteristics. Domain name properties 
such as entropy, the occurrence of unique characters, and 
domain name length are examples of features that are directly 
extracted. Furthermore, supplemental details such as domain 
creation date, related IP address, open ports, and geolocation 
were obtained by data enrichment methods that used Open-
Source Intelligence methodologies. This collection of 90,000 
domain names is rigorously balanced, providing an equal mix 
of 50% non-malicious and 50% malicious domains. 

TABLE I.  DATASET FEATURES WITH DESCRIPTION AND DATA TYPES 

Feature Name Description Type Count 

Domain 

Baseline DNS used to enrich 

data, e.g., derive features 
int64 90000 

DNSRecordType DNS record type queried object 90000 

MXDnsResponse 
The response from a DNS 

request for the record type MX 
bool 90000 

TXTDnsResponse 
The response from a DNS 

request for the record type TXT 
bool 90000 

HasSPFInfo 
If the DNS response has Sender 

Policy Framework attribute 
bool 90000 

HasDkimInfo 
If the DNS response has Domain 

Keys Identified Email attribute 
bool 90000 

HasDmarcInfo 

If the DNS response has 

Domain-Based Message 

Authentication 

bool 90000 

IP The IP address for the domain int64 90000 

DomainInAlexaDB 
If the domain is registered in the 

Alexa DB 
bool 90000 

CommonPorts 
If the domain is available on 

common ports 
bool 90000 

CountryCode 
The country code associated 

with the IP of the domain 
object 60948 

RegisteredCountry 
The country code from domain 

registration (WHOIS) 
object 12226 
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Feature Name Description Type Count 

CreationDate 
The creation date of the domain 

(WHOIS) 
int64 90000 

LastUpdateDate 
The last update date of the 

domain (WHOIS) 
int64 90000 

ASN 
The Autonomous System 

Number for the domain 
int64 90000 

HttpResponseCode 
The HTTP/HTTPS response 

status code for the domain 
int64 90000 

RegisteredOrg 
The organization name from 

domain registration (WHOIS) 
object 54609 

SubdomainNumber 
The number of subdomains for 

the domain 
int64 90000 

Entropy 
The Shannon entropy of the 

domain name 
int64 90000 

EntropyOfSubDom

ains 

The mean entropy of the 

subdomains 
int64 90000 

StrangeCharacters 
The number of non-alphabetic 

characters 
int64 90000 

TLD 
The Top-Level Domain for the 

domain 
object 89830 

IpReputation 
The result of the blocklisted 

search for the IP 
bool 90000 

DomainReputation 
The result of the blocklisted 

search for the domain 
bool 90000 

ConsoantRatio 
The ratio of consonant 

characters in the domain 
float64 90000 

NumericRatio 
The ratio of numeric characters 

in the domain 
float64 90000 

SpecialCharRatio 
The ratio of special characters in 

the domain 
float64 90000 

VowelRatio 
The ratio of vowel characters in 

the domain 
float64 90000 

ConsoantSequence 
Max number of consecutive 

consonants in the domain 
int64 90000 

VowelSequence 
Max number of consecutive 

vowels in the domain 
int64 90000 

NumericSequence 

Max number of consecutive 

numeric characters in the 

domain 
int64 90000 

SpecialCharSequen

ce 

Max number of consecutive 

special characters in the domain 
int64 90000 

DomainLength The length of the domain int64 90000 

Class 
The class of the domain (0 = 

malicious, 1 = non-malicious) 
int64 90000 

In this study, 34 features were carefully selected based on 
their significance in distinguishing between malicious and 
benign domains. 

Behavioral features such as Entropy, NumericRatio, and 
SpecialCharRatio measure the degree of randomness within a 
domain name. Higher values of these features typically indicate 
that the domain was automatically generated using algorithms 
like Domain Generation Algorithms (DGA), which are 
commonly utilized in malicious activities. 

Reputation and registration features, including 
IpReputation and DomainReputation, verify whether the 
domain or its associated IP address is listed in known 
blacklists. Similarly, CountryCode and ASN provide 
geographical and network-related context, as certain regions 
and service providers are statistically linked to hosting 
malicious domains. 

Structural features such as DomainLength, 
SubdomainNumber, and StrangeCharacters assess the 
composition of the domain name itself. Malicious domains 
often adopt long, complex names or incorporate unusual 
symbols to mimic legitimate websites while evading detection. 

Additionally, Email-related Security features like 
HasSPFInfo, HasDkimInfo, and HasDmarcInfo examine the 
existence of standard email protection protocols. Malicious 
domains used in phishing or spam messages typically lack 
these protective protocols. 

Finally, accessibility and response behavior features such 
as CommonPorts and HttpResponseCode evaluate how the 
domain responds to connection attempts which analyze the 
domain's response when attempting to connect. Malicious 
domains may use unusual ports or return response codes (e.g., 
404 or 503), signaling potentially harmful intent or unreliable 
behavior. 

These combined features provide a comprehensive view 
that enhances the model’s ability to accurately classify 
domains based on both static attributes and dynamic behavior. 

Fig. 2, shows the distribution of the target variable Class, 
which indicates whether a domain is malicious or benign. The 
x-axis represents the two classes, and the y-axis represents the 
count of domains in each class. 

 
Fig. 2. Class distribution (malicious vs. benign). 

The data is evenly distributed between the two classes, 
meaning there is no significant class imbalance. This is 
beneficial for training a machine learning model, as it ensures 
that the model does not become biased toward one class. 

Fig. 3, show set of histograms visualizes the distributions of 
numerical features such as Entropy, DomainLength, 
SpecialCharSequence, and others. Each histogram shows the 
frequency of values for a specific feature. 

Fig. 4, show these count plots display the distribution of 
categorical features such as HasSPFInfo, HasDkimInfo, 
DNSRecordType, and others. Each plot is further divided by 
the Class (malicious vs. benign) to show how the feature values 
differ between the two classes. 
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Fig. 3. Distributions of numerical features. 

 

Fig. 4. Distributions of categorical features by class. 

The feature DNSRecordType shows that malicious 
domains predominantly have values of "A" or "CNAME," 
while benign domains have another value. This suggests that 
DNSRecordType could be a strong predictor of maliciousness 
but may also introduce bias so we will drop it. The skewed 
distribution of DNSRecordType indicates that it may 
negatively impact the model's performance and should be 
removed. 

B. Dataset Preprocessing 

Data preparation involves several steps like data cleaning 
and data transformation. We removed 170 rows containing null 
values while performing the data cleaning process. We 
removed the columns Domain, DNSRecordType, 
CountryCode, RegisteredOrg, and RegisteredCountry in the 
data transformation process since they were not helpful for 
further processing in machine learning algorithms. 

For boolean-type and text columns, we employed the Label 
Encoder of the scikit-learn library. Boolean values were 
converted to integers (0 and 1). All integer values were also 
normalized using the Standard Scaler normalization technique, 
which is common in scientific research. This method scales the 
data to have a mean of 0 and a standard deviation of 1, thus 
features are centered and scaled on variance. 

Though other normalization techniques exist, Standard 
Scaler was utilized since it scales the features well without 
being greatly affected by extreme outliers, making it suitable 
for this dataset. 

Standardization equation: 

z =
x−μ

σ
 

with mean equation: 

𝜇 =
1

𝑁
∑  𝑁

𝑖=1 (𝑥𝑖) 

and standard deviation equation: 

𝜎 = √
1

𝑁
∑  𝑁

𝑖=1   (𝑥𝑖 − 𝜇)2

The correlation heatmap that shows in Fig. 5. visualizes the 
pairwise correlation coefficients between all numerical features 
in the dataset. Each cell in the heatmap represents the 
correlation between two features, with values ranging from -1 
to 1. A value of 1 indicates a perfect positive correlation, -1 
indicates a perfect negative correlation, and 0 indicates no 
correlation. The heatmap reveals that certain features, such as 
NumericRatio, StrangeCharacters, and ConsoantRatio, are 
strongly correlated with the target variable Class. These 
features are likely to be important for predicting whether a 
domain is malicious or benign. 

 

Fig. 5. Correlation heatmap. 

C. Features Engineering 

Feature selection strategies are used to determine the most 
discriminating characteristics. To determine the relevance of 
features to the classification job, as it involves selecting and 
transforming the most relevant features to improve model 
performance. In this study, we employed the SelectKBest 
method with the f_classif scoring function to identify the top 
20 features that contribute the most to the predictive power of 
the model. The f_classif function computes the ANOVA F-
value between each feature and the target variable, which helps 
in selecting features with the strongest statistical relationship to 
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the target. The selected features include a mix of categorical 
and numerical variables, such as MXDnsResponse, 
TXTDnsResponse,HasSPFInfo, DomainInAlexaDB, 
CommonPorts, CreationDate, LastUpdateDate, ASN, 
HttpResponseCode, Entropy, StrangeCharacters, TLD, 
IpReputation, ConsoantRatio, NumericRatio, 
SpecialCharRatio, VowelRatio, VowelSequence, 
NumericSequence, and DomainLength. These features were 
chosen based on their ability to distinguish between malicious 
and benign domains effectively. By reducing the feature space 
to the most informative variables, we not only improve model 
efficiency but also mitigate the risk of overfitting, ensuring that 
the model generalizes well to unseen data. 

D. Machine Learning Models 

1) XGBoost: XGBoost is an advanced framework based 

on gradient tree boosting for solving large-scale machine 

learning problems efficiently. It is highly reputed for its 

predictive performance and training speed and has been 

consistently topping Kaggle competitions. The basic concept 

of the algorithm is to add decision trees iteratively, constantly 

splitting features to expand and enhance the model. You 

actually learn a new function to fit the last predicted residual 

when each time you add a tree [13]. Letting xi be the input, yi 

be true label and zi be the 'raw prediction' before the sigmoid 

function, according to study [14], the objective function of the 

XGB model is: 

Standardization equation: 

𝐿(𝑡) = ∑  𝑛
𝑖=1 𝑙 (𝑦𝑖 , 𝑍𝑖

(𝑡−1)
+ 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡) + 𝑐

Where 𝑙(.,.)𝑑𝑒𝑛𝑜𝑡𝑒𝑠𝑡ℎ𝑒𝑙𝑜𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑡 stands for the 𝑡 th 
tree, Ω penalizes the complexity of the model, Ω(𝑓𝑡) represents 
the penalty term of regularization, and 𝑐 is constant. 

The second-order Taylor expansion is: 

𝑓(𝑥 + Δ𝑥) ≈ 𝑓(𝑥) + 𝑓′(𝑥)Δ𝑥 + 1/2𝑓′′(𝑥)Δ𝑥2

Taking “(2)” into “(1)”, we can get 

𝐿(𝑡) ≈  ∑  𝑛
𝑖=1   [𝑙(𝑦𝑖 + 𝑍𝑖

(𝑡−1)
) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +

1

2
ℎ𝑖(𝑓𝑡(𝑥𝑖))

2
]

 +Ω(𝑓𝑡) + 𝑐
  

where 𝑔𝑖 = ∂𝐿/ ∂𝑧𝑖 , and ℎ𝑖 = ∂2𝐿/ ∂𝑧𝑖
2 . Removing the 

constant terms, we can obtain the following simplified 
objective at step 𝑡. 

𝐿(𝑡) ≈ ∑  𝑛
𝑖=1 [𝑔𝑖𝑓𝑡(𝑥𝑖) +

1

2
ℎ𝑖(𝑓𝑖(𝑥𝑖))

2
] + Ω(𝑓𝑡)

In this objective function, 𝑔𝑖 and ℎ𝑖 are required for fitting 
the XGB model. 

For binary classification problems, the default loss function 
of XGB is the cross entropy (CE) loss: 

𝐿 = − ∑  𝑛
𝑖=1 [𝑦𝑖log (𝑦̂𝑖) − (1 − 𝑦𝑖)log (1 − 𝑦̂𝑖)]

In Eq. (5) , 𝑦̂𝑖 = 1/[1 + exp (−𝑧𝑖)] , that is sigmoid is 
selected as activation. Therefore, we can get: 

∂𝑦̂𝑖

∂𝑧𝑖
= 𝑦̂𝑖(1 − 𝑦̂𝑖) 

2) LightGBM: LightGBM is a machine learning algorithm 

that relies on Gradient Boosting Decision Tree (GBDT). It 

operates by iteratively training several weak classifiers and 

combining them into a strong classifier capable of performing 

classification and regression tasks. Compared to traditional 

GBDT algorithms, LightGBM offers significant advantages 

such as high training speed, low memory consumption, and 

effective prediction capability. Additionally, LightGBM has 

outperformed other algorithms in terms of efficiency [15]. 

The primary objective function in LightGBM includes two 
significant components: the loss function and the regularization 
term, which controls model complexity: 

ℒ = ∑  𝑁
𝑖=1 𝑙(𝑦𝑖 , 𝑦̂𝑖) + ∑  𝑇

𝑡=1 Ω(𝑓𝑡)

Where 𝑙(𝑦𝑖 , 𝑦̂𝑖) is the loss function (for example, log loss 
for classification), and Ω(𝑓𝑡)  is the regularization term for 
preventing overfitting. LightGBM minimizes this function 
using a second-order Taylor expansion, which approximates 
the loss function using the first-order and second-order 
derivatives: 

ℒ (𝑡) ≈ ∑  𝑁
𝑖=1 [𝑔𝑖𝑓𝑡(𝑥𝑖) +

1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + Ω(𝑓𝑡)

where 𝑔𝑖  and ℎ𝑖  are the gradient and Hessian of the loss 
function, respectively. Under this formulation, it is possible to 
perform more accurate and efficient optimization than with 
traditional gradient boosting methods. 

One of the primary advantages of LightGBM is the leaf-
wise growth strategy, which grows the tree by selecting the leaf 
with the maximum loss reduction instead of growing the tree 
level-wise. The split gain is computed as: 

 =
1

2
(

𝐺𝐿
2

𝐻𝐿
+

𝐺𝑅
2

𝐻𝑅
−

(𝐺𝐿+𝐺𝑅)2

𝐻𝐿+𝐻𝑅
) − 𝛾

where, 𝐺𝐿 , 𝐺𝑅  and 𝐻𝐿 , 𝐻𝑅  are the sums of gradients and 
Hessians for the left and right child nodes, respectively, and γ 
is a regularization parameter. 

In order to further boost training efficiency, LightGBM 
uses histogram-based feature binning, which discretizes 
continuous features into a given number of bins: 

bin(𝑥) = ⌊(𝑥 − 𝑥𝑚𝑖𝑛) ×


𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
⌋

This reduces computation time while making the best splits 
more easily discovered without any loss in accuracy. Overall, 
LightGBM’s new techniques make it one of the fastest and 
most scalable boosting algorithms available, with uses in 
everything from fraud detection to recommendation systems. 

3) CatBoost: CatBoost (Categorical Boosting) is a 

gradient boosting algorithm developed specifically to handle 

categorical features with high quality and efficiency. The 

CatBoost algorithm uses Ordered Target Statistics instead of 

One-Hot Encoding, as its method computes category values 
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based only on previous data points, rather than on the entire 

dataset at once. This reduces the chances of overfitting and 

improves computational performance. The CatBoost algorithm 

operates like existing boosting algorithms but excels when 

there is a mix of categorical and continuous data [16]. 

CatBoost's objective function is in the gradient boosting 
general form, with a loss function and a regularization term: 

ℒ = ∑  N
i=1 l(yi, ŷi) + ∑  T

t=1 Ω(ft)

where 𝑙(𝑦𝑖 , 𝑦̂𝑖)  is the loss function (e.g., log loss for 
classification, squared error for regression), and Ω(𝑓𝑡)  is a 
regularization term for controlling model complexity. CatBoost 
minimizes this function using ordered boosting, which avoids 
overfitting caused by target leakage during training. 

For efficiency, CatBoost utilizes a symmetric tree structure, 
i.e., all splits at a specific depth are created simultaneously in 
all the branches. This ensures balanced trees and prevents bias 
toward certain features, which leads to better generalization. 
The optimal split is computed based on the gain formula: 

 =
1

2
(

GL
2

HL
+

GR
2

HR
−

(GL+GR)2

HL+HR
) − λ

where 𝐺𝐿 , 𝐺𝑅  and 𝐻𝐿 , 𝐻𝑅  are the sums of gradients and 
Hessians for the left and right child nodes, respectively, and λ 
is a regularization parameter. 

CatBoost possesses a significant edge in handling 
categorical data, removing overfitting, and accelerating training 
without a loss in accuracy. Ordered boosting, symmetric trees, 
and novel categorical encoding make CatBoost highly effective 
in practical machine learning applications. 

4) Stacking classifier: The Stacking Classifier is an 

ensemble technique in machine learning that uses a stacking 

method aimed at combining several different base models to 

create a more accurate and powerful model. The Stacking 

Classifier trains a set of base models on the same dataset to 

obtain different predictions specific to each model. It then 

trains a meta-classifier on the results of the base models to 

merge them in the best way. Each base model can be given a 

different weight based on its performance or accuracy, 

ultimately testing the stacking classifier to produce the final 

prediction that is most accurate. We use stacking because it 

combines different models, resulting in a final model that is 

more accurate, better at generalizing, and less susceptible to 

error or bias towards a single model [17]. 

The objective function of a stacking classifier contains two 
layers. In the first layer, we have MMM base models, each of 
which is trained on the original data set: 

𝑦̂𝑚 = 𝑓𝑚(𝑋), 𝑚 = 1,2, … , 𝑀

where 𝑓𝑚 represents each base model, and 𝑋 represents the 
input feature set. The models predict, and these predictions are 
new features for the second layer, where a meta-classifier 
𝑓𝑚𝑒𝑡𝑎 is trained: 

𝑦̂ = 𝑓𝑚𝑒𝑡𝑎(𝑦̂1, 𝑦̂2, … , 𝑦̂𝑀) 

The final prediction 𝑦̂ is found by combining all the outputs 
of the base models in the best possible manner. The meta-
classifier is usually a simple model (e.g., logistic regression or 
decision tree) that learns to weight and combine the predictions 
of the base models to get optimal performance. 

To prevent overfitting and improve generalization, stacking 
typically employs K-fold cross-validation, where base models 
are trained on different folds of the data, and their predictions 
on unseen data are used to train the meta-classifier: 

𝑦̂𝑚
(𝑖)

= 𝑓𝑚(𝑋(𝑖)), ∀𝑖 ∈ {1,2, … , 𝐾}

where 𝑋(𝑖)   is the training fold in the K-fold cross-
validation process. In this way, the meta-classifier is trained on 
out-of-fold predictions, and the models are not allowed to 
memorize the training data and be biased. 

Overall, stacking is a powerful technique that improves 
accuracy by ensembling multiple models. It is computationally 
demanding and requires careful tuning of base models and the 
meta-classifier to prevent overfitting. Despite these drawbacks, 
stacking is a widely used technique for high-performance 
predictive modeling in a variety of domains, including finance, 
healthcare, and recommendation systems. 

5) Voting classifier: Voting is a popular ensemble learning 

method that combines predictions of several base classifiers to 

improve general prediction accuracy and strength. It is based 

on the premise that the collective decision of numerous 

classifiers can result in improved performance than that of any 

single classifier. Majority Voting is especially useful when the 

basis classifiers are heterogeneous and commit uncorrelated 

errors. Majority voting is a straightforward ensemble approach 

in which the final prediction is determined by the majority of 

the individual classifier votes [18] [19]. 

The Voting Classifier is an ensemble learning technique 
that combines a number of machine learning models to 
improve the accuracy and stability of predictions. Unlike 
stacking, which learns a meta-classifier over the base model 
predictions, voting combines predictions from a number of 
classifiers directly through hard voting or soft voting. The 
method is particularly useful when the base models are 
heterogeneous, capturing different nuances of the data. 

For hard voting, the final prediction is decided by a 
majority vote of the base classifiers: 

ŷ = mode(ŷ1, ŷ2, … , ŷM)

where 𝑦̂𝑚 is the m-th model's prediction, and the majority 
class is selected as the final output. 

For soft voting, the ultimate prediction is taken from the 
average of the predicted probabilities of all the base models: 

ŷ = arg max ∑  M
m=1 wmPm(y ∣ X)

where: 

𝑃𝑚(𝑦 ∣ 𝑋) is the predicted probability of class 𝑦 by model 
𝑚. 
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𝑤𝑚 is an optional weight assigned to each model based on 
its importance. 

Soft voting is generally better than hard voting, especially 
if the base models are well-calibrated, as it allows the classifier 
to take into account the confidence levels of the different 
models. 

The Voting Classifier is particularly useful when you need 
to ensemble models with complementary strengths. For 
example, decision trees can learn complicated interactions in 
data, logistic regression can ensure stability, and gradient 
boosting models can provide good generalization. 

In this study, we used a soft voting ensemble with scikit-
learn's Voting Classifier. Soft voting takes the predicted 
probabilities from each classifier and selects the class with the 
highest average probability, which performs better than hard 
voting. To build the ensemble, we initialized six LightGBM 
classifiers with different learning rates (0.1, 0.09, 0.2, 0.08, 0.3, 
and 0.07). The learning rates were changed to introduce 
diversity in the base models because altering hyperparameters 
can reduce correlation between the classifiers' errors. The 
classifiers were then passed to a Voting Classifier with the 
estimators parameter, which takes a list of tuples containing the 
model names and instances. We set the voting parameter to 
'soft' for voting based on probabilities. This approach takes the 
best of each model and removes their worst parts, resulting in a 
stronger and more accurate ensemble model. 

IV. RESULT AND ANALYSIS 

In this section, we present the results obtained from 
classifying DNS logs into malicious and benign categories 
using various machine learning algorithms. The evaluation of 
each model is based on accuracy, precision, recall, F1-score, 
and AUC. Additionally, confusion matrices and ROC curves 
provide further insights into model performance. 

1) Evaluation metrics: In this research, we used standard 

classification metrics such as Accuracy, Precision, Recall, F1-

Score, and Area Under the ROC Curve (AUC). We selected 

these metrics because they provide a comprehensive 

evaluation of the performance of the chosen models to 

facilitate the assessment of which performs better than others. 

Despite the common reporting of accuracy, it can be 
misleading in cases where unbalanced datasets are included, 
where the number of benign domains is greater than that of 
malicious ones. This is because models can achieve high 
accuracy simply by predicting the majority class in the group. 
Therefore, we integrated Precision and Recall. 

Precision measures the proportion of domains predicted to 
be malicious that are indeed malicious, which is very important 
for reducing false positive results and avoiding the blocking of 
legitimate domains. Recall reflects the model's effectiveness in 
accurately identifying harmful domains, contributing to the 
reduction of false negative results. 

Also, we used F1-Score because it gives us a consistent 
average between precision and recall, making the positive and 
negative false results balanced. Finally, we added AUC-ROC 
because it is considered an independent measure of the model's 

ability to discriminate between the two classes. AUC is very 
important for understanding overall performance across 
different classification thresholds, especially when there is a 
dataset containing varied class distributions. 

2) Performance evaluation: Our model's predictions can 

result in four possible outcomes: 

 True Positive (TP): A malicious domain name is 
correctly identified as malicious. 

 True Negative (TN): A non-malicious domain name is 
correctly identified as non-malicious. 

 False Negative (FN): A malicious domain name is 
incorrectly classified as non-malicious. 

 False Positive (FP): A non-malicious domain name is 
incorrectly classified as malicious. 

Using these outcomes, we can calculate key performance 
evaluation metrics such as accuracy, recall, precision, and F1-
score, as outlined below. 

Accuracy is one of the most straightforward metrics for 
evaluating the performance of a binary classification model. It 
represents the percentage of correctly classified samples out of 
the total samples. Using the previously introduced notation, 
accuracy is defined in the equation as follows: 

 Accuracy =
TP+TN

TP+TN+FP+FN


As another measure of classifier performance, precision 
assesses the accuracy of positive predictions. It is the 
proportion of correctly predicted positive instances to all 
predicted positive instances. Precision is defined by the 
formula: 

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃


Precision is always combined with a measure called recall 
because precision measurement would be very high for models 
which predict few positives. Recall specifies the proportion of 
positive examples that are correctly identified by the classifier, 
given by the formula: 

 Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

The F1-Score is the harmonic mean of precision and recall, 
as defined by Equation (number x). A large F1-Score can only 
be obtained if both recall and precision are high. 

F1 −  Score =
2× Precision × Recall 

 Precision + Recall 


The XGBoost classifier demonstrated exceptional 
performance, achieving an accuracy of 98.58% with an AUC 
of 0.9991. The confusion matrix reveals that the model 
correctly classified 8889 malicious and 8821 benign instances 
while misclassifying 160 benign samples as malicious (false 
positives) and 96 malicious samples as benign (false 
negatives). The low false negative rate suggests that the model 
is highly effective in detecting malicious domains, minimizing 
the risk of overlooking threats, as illustrated in Fig. 6 and Fig. 
7. 
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Fig. 6. Confusion matrices illustrating the classification performance of 

XGBoost on DNS log data. 

 
Fig. 7. ROC curves depicting the AUC scores for XGBoost. 

Similarly, the LightGBM classifier produced comparable 
results, attaining an accuracy of 98.51% and an AUC of 
0.9990. Although LightGBM performed slightly below 
XGBoost, the marginal difference in AUC suggests that both 
models are highly effective. The confusion matrix shows 8889 
correctly classified malicious instances and 8821 correctly 
classified benign instances. However, it misclassified 160 
benign samples as malicious and 96 malicious samples as 
benign. These results indicate that LightGBM performs slightly 
below XGBoost in distinguishing between the two classes but 
remains a strong candidate for DNS log classification, as 
shown in Fig. 8 and Fig. 9. 

 
Fig. 8. Confusion matrices illustrating the classification performance of 

LightGBM on DNS log data. 

 
Fig. 9. ROC Curves depicting the AUC scores for LightGBM. 

The CatBoost classifier emerged as the best-performing 
model, achieving the highest accuracy of 98.71% and an AUC 
of 0.9992. The confusion matrix highlights its superior 
classification capability, with 8901 correctly identified 
malicious domains and 8833 correctly identified benign 
domains. Additionally, it recorded 148 false positives and 84 
false negatives, the lowest among all models. The reduced 
number of false negatives implies that CatBoost is the most 
effective in correctly identifying malicious domains, making it 
a highly reliable option, as shown in Fig. 10 and Fig. 11. 

 
Fig. 10. Confusion matrices illustrating the classification performance of 

CatBoost on DNS log data. 

 
Fig. 11. ROC curves depicting the AUC scores for CatBoost. 
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The Voting Classifier, which combines multiple models, 
achieved an accuracy of 98.59% with an AUC of 0.9991. Its 
confusion matrix indicates that 8901 malicious and 8812 
benign domains were correctly classified, while 169 benign 
samples were incorrectly flagged as malicious, and 84 
malicious samples were misclassified as benign. Although it 
performed well, the slightly higher false positive rate compared 
to CatBoost suggests that it may generate more false alerts, as 
illustrated in Fig. 12 and Fig. 13. 

 
Fig. 12. Confusion matrices illustrating the classification performance of 

Voting Classifier on DNS log data. 

 
Fig. 13. ROC Curves depicting the AUC scores for voting classifier. 

The Stacking Classifier attained an accuracy of 98.53% and 
an AUC of 0.9979. The confusion matrix analysis shows 8880 
correctly classified malicious domains and 8822 correctly 
classified benign domains. It produced 159 false positives and 
105 false negatives, indicating a higher false negative rate 
compared to the other models. This suggests that the Stacking 
Classifier, while still effective, may not be the optimal choice 
for minimizing undetected threats, as shown in Fig. 14 and Fig. 
15. 

A comparative analysis of the models highlights that all 
classifiers performed exceptionally well, with accuracy 
surpassing 98%. CatBoost emerged as the best-performing 
model, delivering the highest accuracy and AUC, making it the 
most suitable choice for DNS log classification. These findings 
suggest that ensemble methods such as CatBoost and XGBoost 
are highly effective in detecting malicious domains, reinforcing 
their potential for real-world cybersecurity applications. Table 
II shows comparison table of models. 

 
Fig. 14. Confusion matrices illustrating the classification performance of 

Stacking Classifier on DNS log data. 

 

Fig. 15. ROC Curves depicting the AUC scores for stacking classifier. 

TABLE II.  COMPARISON TABLE OF MODELS 

Model Accuracy Precision Recall 
F1-

Score 
AUC 

XGBoost 0.9858 0.9858 0.9857 0.9857 0.9991 

LightGBM 0.9851 0.9851 0.9850 0.9850 0.9991 

CatBoost 0.9871 0.9871 0.9870 0.9871 0.9992 

Voting Classifier 0.9859 0.9859 0.9859 0.9859 0.9991 

Stacking 

Classifier 
0.9853 0.9853 0.9853 0.9853 0.9979 

V. DISCUSSION AND SUMMARY 

The malicious domain detection systems rely on the quality 
of feature selection, the performance of machine learning 
models, and their applicability in a real-world environment. In 
this research, five machine learning models (XGBoost, 
LightGBM, CatBoost, Stacking, and Voting Classifier) were 
evaluated using a balanced dataset containing 90,000 domain 
names, with 34 features extracted from DNS records. 

The results showed that the CatBoost model outperformed 
all other models, achieving the highest accuracy of 98.71% and 
the best performance in other metrics such as F1-score and 
AUC-ROC. This demonstrates CatBoost's high capability in 
handling data and dealing with categorical data effectively 
while reducing bias during training. In comparison, the 
performance of both XGBoost and LightGBM was similar, as 
they achieved accuracy exceeding 98.5%, indicating that 
boosting techniques are effective in detecting malicious 
domains. 
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On the other hand, both the Voting Classifier and Stacking 
Classifier showed strong performance, but without significant 
improvement compared to the other models. This indicates that 
combining models did not result in a clear and noticeable 
enhancement, which may be one reason for the similarity of the 
basic models' errors in classification. 

A. Error Analysis 

Despite the high performance of the models, there are 
challenges that should be taken into consideration. 

1) High false positive rate: Some safe domains have been 

classified as malicious domains, especially those that contain 

unfamiliar but legitimate names. 

2) Errors in detecting malicious domains (false 

negatives): Despite the small percentage, some harmful 

domains have not been discovered, especially those that use 

obfuscation techniques or domain names that are similar to 

legitimate sites. 

3) Impact of data features: The correlation analysis 

showed that some of the features used, such as 

DNSRecordType, might be biased, making their removal 

important to enhance the overall model performance. 

B. Practical Implementation 

This research may serve as an impetus for practical steps 
towards enhancing network security through malicious domain 
detection systems. However, there are still some challenges 
that are important to address when applying the model in real-
world environments. 

1) Adapting to emerging threats: The model can be 

improved through continuous data updates and the addition of 

new and important features based on the developments in 

cyberattack technologies. 

2) Real-time performance analysis: Although this research 

focuses on integration with the DNS firewall, studying the 

impact of the model on network performance and response 

time may be necessary. 

3) Scalability: When applying the model in large-scale 

systems, improving resource consumption without affecting 

network performance to ensure quick responsiveness may be 

essential. 

C. Summary 

The results of this study show that boosting models such as 
CatBoost and XGBoost can achieve high performance in 
detecting malicious domains without the need for deep learning 
techniques. However, integrating these models into real-world 
security systems requires important additional improvements to 
enhance performance and ensure security, such as reducing 
false positives, adapting to new or emerging threats, and 
analyzing real-time performance. 

This research can be further developed in the future by 
using hybrid models that combine machine learning and deep 
learning, along with improving data processing techniques and 
feature analysis to increase classification accuracy and reduce 
biases. 

VI. CONCLUSION AND FUTURE WORK 

In this project, we explored the use of machine learning in 
classifying domain names into benign or malicious based on 
DNS log data. By comparing several machine learning 
algorithms—XGBoost, LightGBM, CatBoost, Stacking, and 
Voting Classifiers—we identified CatBoost as the best-
performing model with the highest accuracy, precision, recall, 
and AUC score. The results indicate that ML-based DNS 
security solutions can be effective at preventing and detecting 
cyber threats in real time. 

Our solution provides a lightweight and computationally 
less intensive alternative to deep learning-based models, 
making it a feasible solution for real-world deployment in 
resource-constrained environments. By integrating the best-
performing model in a DNS firewall, we enhance cybersecurity 
defenses by reducing the risk of malicious domains, which 
lowers the risk of phishing, malware spread, and data breaches. 

Future work can be oriented in the direction of optimizing 
feature engineering methods, incorporating real-time threat 
intelligence, and using diversified datasets for the better 
generalization of the model. Additionally, the fusion of deep 
learning models and traditional ML models can be 
incorporated to obtain a hybrid solution that can provide a 
balance between efficiency and accuracy. 

This project contributes to the developing field of AI-
driven cybersecurity, offering an affordable and scalable 
solution to the evolving nature of cyber threats. As 
cybersecurity and machine learning advance, the 
implementation of intelligent DNS security solutions will be 
critical in safeguarding digital infrastructure. 
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