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Abstract—The construction industry is central to the 

advancement of economic growth all over the world but it has 

various problems in risk management especially concerning 

sustainable construction projects. Standard risk management 

techniques like AHP and Monte Carlo simulation do not afford 

the flexibility and accuracy needed in construction sites. Based on 

the identified limitations, this study offers a new system of risk 

assessment that combines Artificial Neural Networks (ANN), 

Fuzzy Logic, and Internet of Things (IoT) technologies. Real-time 

IoT sensor data and historical project data are integrated into a 

real-time and adaptive system which can identify, suggest, and 

minimize potential risks for improved decision making. The ANN 

component is distinctive in pattern recognition and risk 

prediction while Fuzzy Logic brings ease of interpretation and 

reasoning in the uncertain environment. Raw IoT data are live 

data which may be processed and updated frequently relative to 

the devices and their environment. The effectiveness of this 

framework can be ascertained through experimental proof; the 

framework’s accuracy is 92.7%; project delay and cost have been 

minimized. The results reveal that the presented framework is 

highly resistant to noise, and its performance changes fairly 

slowly if the project requirements change. This integrative 

approach ensures the identification of the comprehensive 

solution for the sustainable construction risk management, which 

may help with the development of the safer, more efficient and 

non-harmful to the environment construction techniques. 
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I. INTRODUCTION 

The construction industry remains a significant industry of 
global economic growth and development since most of the 
world economy relies on employment, infrastructure, and GDP 
[1]. Sustainability has emerged as an essential consideration in 
construction projects, which means that they have to respond to 
the consequences of environment on them as well as on society 
and the challenges of integrating contemporary technologies 
[2]. Green construction projects that embody efficiency and 
utilization of resources, minimal energy wastage and 
environmental impacts offer projects that are hard to evaluate 
using conventional risk assessment models. 

The conventional risk assessment tools including the AHP 
and Monte Carlo Simulation are historical based and rely on 

the experts, crew and are manual in nature [3]. Even though 
such methods have been proven useful for decades they lack 
the ability to solve the flexible and intricate problems of the 
contemporary construction business. For instance, these 
approaches cannot easily respond to the dynamic environment 
characteristic of construction sites, for instance, material 
unavailability, unfavorable climate, or delays due to the supply 
chain [4]. In addition, decisions made from these models rely 
on human intuition hence are characterized by subjectivity; this 
causes inconsistency. 

AI has revolutionized one field or the other by offering 
more sophisticated means of data processing, forecasting, and 
control. In construction industry, risk assessment using AI 
approaches such as Artificial Neural Networks (ANN) has 
been shown to offer a high level of rate prediction [5]. These 
models perform best when the need is to analyze big data, 
recognizing patterns, and providing risk assessments. 
Nevertheless, despite their strengths, AI methods that are 
implemented independently of each other can encounter such 
issues as lack of interpretability, as well as inability to work 
with conditions characterized by uncertainty [6]. For instance, 
the application of ANN models can be compared to “black 
box”, which means that it is hard for stakeholders to trust the 
model completely [7]. Bridging IoT into construction projects 
enhances risk management in that crucial indexes including 
environment, equipment, and materials can be monitored and 
controlled in real-time. IoT devices create massive data and 
analytics with AI-driven models bring solutions for risk 
prevention [8]. But the use of these technologies can only be 
managed through an approach that sits somewhere in between 
conventional and fully automated methodologies, which have 
their own drawbacks [9]. 

This paper brings forward a new, integrative AI-based 
approach that combines the ability of ANN to make predictions 
with the capability of Fuzzy Logic to reason and the constant 
flow of data from IoT sensors. The proposed framework has 
been designed to address the limitations of the current risk 
assessment tools to provide an as dynamic, adaptive, and 
interpretable solution for risks governance in the construction 
of sustainable projects. These technologies are incorporated 
into the framework to enable precise predictions, constant 
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updates, and useful information thus improving project 
productivity, safety, and sustainability. 

The remainder of this paper is organized as follows: 
Section II provides a literature review of conventional and 
advanced AI-based risk assessment tools. Section III describes 
the proposed methodology. Section IV also gives an account of 
the performance of the proposed framework against 
conventional approaches. Results is given in Section V. Last, 
Section VI concludes and recommendations for future research 
in Section VII. 

II. RELATED WORK 

Risk assessment of course remains an important factor in 
project management especially when it comes to sustainable 
construction [10]. Risk management is the process of 
identifying potential dangers that can occur at different phases 
of construction projects and which are critical to guaranteeing 
safe delivering of the project at a moderate cost within the 
stipulated time. Risk management of construction projects 
increases in sophistication as the project gets more complicated 
and provides project managers with tools to consider potential 
problems and control them [11]. This section seeks to examine 
the current trends concerning risk assessment, particularly with 
regard to conventional approaches, the use of artificial 
intelligence, integration of IoT solutions, and the blended 
solutions, with the primary purpose of identifying the 
strengths, weaknesses, and applicability to the current 
construction industry those approaches display. 

A. Conventional Approaches of Risk Evaluation 

Conventional risk assessment has been in practice for many 
years, and there is evidence of its utility in the construction 
industry. These include the Analytical Hierarchy Process 
(AHP), and Monte Carlo Simulation are standard approaches 
for assessing risk, measuring the probability of occurrence and 
estimating the effect [12]. Although these approaches have 
been widely used in different fields, they have some drawbacks 
when being implemented in contemporary construction 
projects. 

1) Analytical Hierarchy Process (AHP): Decision making 

involves breaking of large problems into smaller easier to 

handle tasks and Analytical Hierarchy Process (AHP) is an 

example of structured decision making. It entails recognizing 

the parameters that are used in decision making and ranking 

them against each other and putting a score on each parameter 

[13]. In the construction risk assessment framework, AHP is 

useful in assessing the significance of various risks including 

the environmental risks, the financial risks and the scheduling 

risks. Among the strengths of the AHP, the first one is its 

simplicity and flexibility of application. Not only it provides 

qualitative information, but also quantifiable information that 

can be used to make quite reasonable decisions by the project 

managers [11]. The process is systematic meaning that there is 

a way of approaching it which enables one to have order of 

ideas in mind and order of importance. Nonetheless, compared 

with other methods, the weakness of AHP is that it depends on 

the assessment of the opinion of some experts and needs to 

estimate the relative weight of some factors, which may differ 

greatly or be biased due to the same reason [14]. However, 

AHP is not efficient in real-time operating contexts or where 

new risks come frequently and continuously as it is not 

developed to process a large amount of data or adjust to 

changes immediately. 

2) Monte carlo simulation: Another traditional technique 

used in risky construction projects is the Monte Carlo 

Simulation. The best use of it is that it is capable of using 

probabilistic modeling which enables it to predict various 

probable outcomes based on a set of input possibilities [15]. 

Monte Carlo offers a quantitative assessment of possible 

impacts, or threats, that project managers need to envision in 

order to avoid mismanagement of resources, time or financial 

constraints. 

Monte Carlo Simulation has one of the most significant 
advantages of dealing with uncertainty and variability in risk 
aspects. It enables a project manager to examine a number of 
possibilities, which helps that person to have a better 
understanding of what may happen and the chances of it 
occurring [16]. But as with practically all methods, Monte 
Carlo Simulation is not without its drawbacks. The method is 
quite dependent on past data and forecast on the future hoy and 
may not reflect the current circumstances. Also, the actual 
application of the simulation may be complicated because the 
process may be lengthy, especially when it is applied in 
dynamic environments where decisions have to be made 
frequently [17]. Although AHP and Monte Carlo Simulation 
are quite useful at their respective cases, they have limitations 
that make them ineffective for the current dynamic 
construction environment where new risks and opportunities 
are likely to happen at any one time. 

B. AI-Based Risk Assessment 

Advancements in the areas of Artificial Intelligence (AI) 
have been a major boost to the subject of risk assessment. AI 
methods and especially the ANN have shown potential for risk 
prediction and management in constructions [18]. Compared to 
the conventional approaches, risk assessment models powered 
by artificial intelligence are able to analyse vast amount of 
information and reveal patterns that might go unnoticed. ANN 
is a class of machine learning algorithms that mimic the 
performance of the Biological Neural Network that exists in 
the human brain. ANN consists of tiered nodes, and each node 
performs the function of both computing and transmitting data 
[19]. ANN models are trained in a process where the model is 
able to extract a set of features from the provided data and 
through such the ability of predicting outcomes on the basis of 
some risks is obtained. 

In construction risk assessment, ANN has been 
demonstrated to be useful in forecasting potential cost increase, 
schedule disruption and safety risks [20]. For instance, ANN 
models can be used to forecast risks since it takes into account 
past project information that include project performance data, 
environmental data and workforce productivity data amongst 
others. Research has established that ANN can yield good 
results if applied in construction risk assessment, therefore, is a 
good tool for risk management. 
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C. IoT Integration in Risk Management 

With the adoption of Internet of Things (IoT) in 
construction projects, there has been a shift of focusing on the 
concept of risk. As aforementioned IoT technology is capable 
of collecting data in real-time from the construction site 
including but not limited to environmental conditions and 
equipment and material usage and deliveries [21]. This real-
time data allows the project manager to easily see the risks that 
are associated with the project and be able to sort them out 
quickly. IoT devices constantly monitor several factors, which 
is useful in assessing the health of the construction project [11]. 
For instance, IoT sensors are capable of perceiving conditions 
that are lethal, including high levels of dust or toxic gases, and 
inform the workers and project managers about the best 
precautions to take. Furthermore, IoT sensors can also track the 
performance of the equipment and know when they are likely 
to fail and cause a lot of loss of time and accidents [22]. The 
ability to have real time data on the condition of construction 
sites is one of the main benefits that IoT integration offers. This 
information will make it easier to decide and act quickly in 
order to prevent possible hazards. For instance, if sensors of 
IoT notice a breakdown of certain equipment, the system is 
able to generate maintenance signals, thus avoiding damage 
and high costs [23]. However, incorporating IoT into 
construction projects has other challenges as discussed below. 
Safety of data is a big issue, as many IoT devices collect 
personal data that might be easily attacked by hackers. Further, 
the connectivity between separate IoT devices as well as 
systems is an issue; more so when it comes to the large-scale 
implementation of IoT which entails using different devices 
and systems from different vendors using different 
technologies. Finally, the large number of data points created 
by IoT devices, can be overwhelming for project managers and 
it is hard to see trends without the use of big data analytics 
tools [24]. 

There is one of the most effective hybrid method which is 
the integration of AI methods, for instance Artificial Neural 
Networks (ANN), with the conventional approaches as Fuzzy 
Logic or Analytical Hierarchy Process (AHP) [25]. When 
applied in combination with AI models, project managers can 
benefit from traditional techniques and conversely, AI models 
can also benefit from traditional techniques. For instance, 
Fuzzy Logic deals with uncertainty, [26] and imprecision in a 
more efficient way as compared to traditional methods, AI 
models, on the other hand, bring in a scientific aspect in terms 
of risk predictions. 

Another promising hybrid solution deals with the use of 
real-time IoT data with the help of AI and classical risk 
estimation models. Since the IoT devices enable real-time data 
acquisition, construction projects can integrate this data with 
the predictive outcomes of AI models along with the decision-
making structure of conventional techniques to increase the 
efficiency of risk assessment. For instance, an IoT risk 
management might involve constant tracking of the 
environment and the performance of the equipment and then 
use the data to train an AI model in order to detect risks on the 
go. They could then be ranked as per the usual decision making 

models including the Analytical hierarchy process to establish 
which risks deserved priority. This paper presents a blended 
system as a viable approach to risk management in 
construction projects, which will help to detect and address 
risks properly and at the right time. 

III. PROPOSED METHODOLOGY 

This section of the methodology is centered on the data 
collection process which is the foundation of the risk 
assessment framework in sustainable construction projects. 
Through the use of different data sources this research 
proposes to come up with a more holistic and complex view of 
the hazards of construction projects. The historical data in 
addition with real-time values collected by IoT sensors 
guarantee that the framework is not only data-based but also 
flexible to changing circumstances of the project. 

A. Data Collection 

The study integrates two primary data sources: data 
gathered from previous sustainable construction projects and 
data generated from smart sensors placed at construction sites. 
Both datasets are equally important in risk identification, 
analysis, and risk management function in a complex 
construction environment. The following are descriptions of 
the datasets which makes up the framework. 

1) Historical records dataset: The historical records 

dataset remains very informative when it comes to identifying 

reoccurring issues, risks, and solutions to avoid in future 

construction projects. This type of data is usually gathered 

from finished contracts and provide information on the types 

of risks experienced on construction projects, the measures 

that have been taken to address these risks and the results of 

such risks on the construction projects. In fact, based on the 

analysis of this historical data, the study will be in a position 

to note trends and relationships that it can use in risk 

assessment. The historical records used in this study include: 

 Project Timelines: Information on the time that 
construction projects began and when they were 
completed, important activities accomplished, and 
whether there were any setbacks. These timelines are 
useful in creating benchmarks against which general 
delays can easily be recognized and their root cause 
determined. 

 Cost Estimates and Overruns: Budget projections 
relative to historical costs of performing the same 
undertaking with an aim of identifying reasons why 
costs may have overrun the budget. This data is useful 
in evaluation of financial risks as well as areas that 
could require better cost control measures. 

 Performance Metrics: Information as to the 
consumption of the resources, efficiency of the people, 
and the quality of the work completed on the project. 
These metrics give distance that may be used to 
measure the performance, productivity, and quality 
control measures in organizations. 
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 Risk Factors and Mitigation Strategies: Some of the 
risks are a brief description of the risks that were faced 
during previous projects and the measures taken to avert 
or manage them. This dataset assists in assessing which 
approaches were used in risk minimization or risk 
management. 

2) IoT Sensor data: IoT sensor data obtained from active 

construction sites provide real-time monitoring data and 

enrich the framework with this feature. IoT sensors placed at 

construction sites monitor numerous parameters that are 

critical for risk evaluation all the time. These sensors give 

information on the prevailing environmental conditions, 

performance of the equipment and the state of stored and 

transported materials, thus keeping the risk assessment 

framework dynamic as the site evolves. 

The Table I demonstrates eight distinctive sensors used in 
construction sites that track fundamental parameters and 
positional data alongside equipment statuses and 
environmental data points. Real-time monitoring and predictive 
maintenance functions enabled by these sensors provide better 
safety protocols and operational efficiency through continuous 
data collection and analysis in construction projects. 

TABLE I.  IOT SENSORS DATA 

Sensor Type Parameter Monitored Data Output Description 

Temperature Sensors Ambient temperature Temperature readings (°C or °F) 
Monitors temperature variations that could 
affect construction materials and worker safety. 

Humidity Sensors Relative humidity Humidity readings (%) 
Tracks humidity levels to prevent material 

damage or worker discomfort. 

Air Quality Sensors CO2 levels, particulate matter Concentration levels (ppm or µg/m³) 
Monitors air quality, detecting pollutants that 
may pose health risks. 

Vibration Sensors Equipment condition Vibration frequency and amplitude 
Measures vibration levels in equipment to 

predict wear and tear. 

Wear and Tear Sensors Equipment condition Sensor data indicating wear level 
Tracks equipment condition, helping predict 
failures before they occur. 

Proximity Sensors Worker and material location Location data (GPS coordinates, distances) 
Tracks the position of workers and materials to 

avoid collisions or delays. 

GPS Sensors Equipment and material movement Movement data (coordinates, speed) 
Monitors the movement of equipment and 
materials for logistical optimization. 

Pressure Sensors Structural stress Pressure readings (Pa or bar) 
Measures pressure on construction materials to 

identify risk of failure. 
 

B. Data Consolidation and Mathematical Modeling 

To make the risk assessment framework data-complete and 
dynamic, historical data and IoT sensor data in the real 
environment are combined into one data set. These datasets 
help in creating the framework that encompass the past project 
experience and real-time data with high risk identification 
pertaining to the construction process. The integration process 
can be mathematically represented as: 

𝑫𝒕 = 𝑫𝒕−𝟏 +  ∆𝑫                            (1) 

Where: 

𝑫𝒕 is the current data. 

𝑫𝒕−1 is the previous data. 

ΔD is the incremental new data. 

This real-time feed significantly enhances the framework’s 
ability to respond to emerging risks, thereby reducing delays 
and improving project outcomes. 

C. Framework Development 

The advanced technologies of the hybrid AI-Driven 
framework augment the traditional risk management practices’ 
shortcomings. The framework is developed as a complete and 
dynamic system which integrates predictive analytics, 
uncertainty reasoning, and monitoring. 

1) Artificial Neural Networks (ANN): ANN are widely 

used for risk prediction purposes due to the fact that these 

technologies are capable of handling large volume of data 

with multiple attributes. The ANN is structured as a Multi-

Layer Perceptron (MLP) with three main components: 

 
Fig. 1. ANN Layers. 
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The Fig. 1 shows an architectural diagram which 
demonstrates the basic structure of a neural network with four 
input neurons (blue), three hidden layer neurons (red) and two 
output layer neurons (green) while showing complete 
connection between each successive layer. This network 
implements a feed-forward structure that allows information 
flow in one direction from input to output while maintaining 
weighted synaptic connections between every neuron of 
successive layers. 

 Input Layer: This layer receives the input vector 
X=[x1,x2,...,xn] The parameters of the input vector 
consist of project specification, historical risk factors 
and the environmental conditions. 

 Hidden Layers: These layers consist of neurons, which 
perform activation functions such as ReLU or Sigmoid 
in order to nonlinearly transform inputs. This 
morphology reflects the interactions between the 
features in a complex manner. 

𝑓(𝑥) = max (0, 𝑥) (ReLU)                       (2) 

𝑓(𝑥) =
1

1+𝑒−𝑥   (𝑆𝑒𝑔𝑚𝑜𝑖𝑑)                       (3) 

 Output Layers:The output layer yields risk levels ȳ 
predicted for facilitating enhanced management of 
projects. By combining predictive analytics, uncertainty 
reasoning, and dynamic monitoring, the framework 
provides a comprehensive and adaptive approach to risk 
assessment. 

ŷ = f(𝑊2. g(𝑊1. X + 𝑏1) + 𝑏2)                    (4) 

Where: 

𝑊1 , 𝑊2 are weight matrices that determine the strength of 
connections between layers. 

𝑏1, 𝑏2 are biases that shift the neuron activation threshold. 

f(.) and g(.) are activation functions introducing 
nonlinearity to model complex data relationships. 

The model’s training minimizes prediction errors using the 
Mean Squared Error (MSE): 

𝑴𝑺𝑬 =
𝟏

𝑵
∑ (𝒚𝒊 − ŷ𝒊)

𝟐𝑵
𝒊=𝟏                      (5) 

Where: 

N is the total number of samples. 

𝒚𝒊 is the actual risk level. 

ŷ𝒊 is the predicted risk level. 

Training process of this ANN guarantees that the model 
absorbs a lot of data history to generate good results in new 
situations. 

D. Fuzzy Logic 

Fuzzy Logic translates between quantitative form of ANN 
solutions and qualitative decisions. It ensures that meaning of 
outputs from ANN is expounded by considering the level of 
uncertainty and vagueness that tends to prevail with the 
construction project data. 

1) Fuzzification: Transforms numerical outputs of ANN 

which are recognized as the degree of risk into linguistic terms 

such as ‘low risk’, ‘medium risk’, ‘high risk’ using 

membership functions like triangular or trapezoidal curves. 

2) Inference rules: Uses domain specific heuristics, for 

instance: IF risk is high AND delay is likely, THEN prioritize 

mitigation. These rules make the results parsable – that is 

actionable and readily understandable by managers. 

3) Defuzzification: This paper shows how the centroid 

method is used to transform the fuzzy conclusions into crisp 

values. 

𝑍 =
∑ 𝜇𝑖.𝑧𝑖

𝑛
𝑖=1

∑ 𝜇𝑖
𝑛
𝑖=1

                                      (6) 

Where: 

𝜇𝑖 is the degree of membership. 

𝑧𝑖 is the corresponding crisp value. 

 
Fig. 2. Fuzzy logic framework. 

The Fig. 2 illustrates a typical fuzzy logic control system 
design which includes three fundamental elements: 
fuzzification converts inputs into fuzzy sets, followed by an 
inference engine which executes predefined rules for decision-
making finally ending with defuzzification that returns fuzzy 
outputs to crisp values. Through its operations the system 
showcases the basic processing sequence of fuzzy logic that 
enables numerical input-output transitions by utilising 
linguistic variables and rule-based inference together with 
fuzzy set theory processes. Fuzzy logic therefore sharpens the 
framework’s capacity in dealing with uncertainties and come 
up with recommendations depending on the context of the 
project in question. 

IV. EXPERIMENTAL SETUP 

The details about the selected experimental setup are 
reported below and were chosen specifically to test the hybrid 
AI-driven framework in conditions that are as close as possible 
to reality of sustainable construction projects. The data set used 
in the experiments included real project data and synthetic IoT 
sensor data. Paper and electronic documents of 500 sustainable 
construction projects were reviewed to gather records of 
timeline, cost, risk, and performance data. These records were 
cleaned and normalized in the same manner as in previous 
analyses: cleaning the data, scaling it to the [0,1] [0,1] [0,1] 
range, and selecting features that might be important in this 
case, such as material delay, environmental risks, and scope 
changes. Real time data was synthetically created to mimic IoT 
sensor data to monitor the physical conditions of the 
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environment including temperature and humidity, equipment 
status, and material flow. This real time data collected on a 
hourly basis over six months helped in ferreting out dynamic 
inputs for the framework. 

Algorithm 1: Proposed Model 

Input: 

    Historical data, Sensors Data 

Output 

    Risk pridiction 

historical_data = load_historical_data() 

iot_data = collect_iot_data() 

historical_data_clean = preprocess_data(historical_data) 

iot_data_clean = preprocess_data(iot_data) 

# Step 2: Data Integration 

 |   integrated_data = integrate_data(historical_data_clean,   

iot_data_clean) 

# Step 3: Risk Identification and Feature Engineering 

 |   risk_factors = identify_risk_factors(integrated_data) 

 |    engineered_features = feature_engineering(iot_data_clean) 

# Step 4: Predictive Risk Modeling 

|   rf_model = train_random_forest(integrated_data) 

|    ann_model = train_ann(integrated_data) 

|    svm_model = train_svm(integrated_data) 

# Step 5: Real-Time Risk Prediction 

|    real_time_risk_predictions = predict_risks(iot_data_clean,   

rf_model, ann_model, svm_model) 

# Step 6: Decision Support and Mitigation Strategy 

|    visualize_risk_predictions(real_time_risk_predictions) 

|   suggest_mitigation_strategies(real_time_risk_predictions) 
 

The software tools that are applied to this framework 
include Python, TensorFlow and Keras, scikit-learn, and 
MATLAB. TensorFlow/Keras was used in ARCHITECTING 
and training the Artificial Neural Network (ANN) and Scikit-
learn in preprocessing and performance measurement. 
MATLAB was used in creating and testing the fuzzy logic 
system. For real time data integration, Apache Kafka was used 
to stream IoT sensor data. All the experiments were performed 
on a high-end GPU server containing an NVIDIA RTX 3090 
Graphics Card, 64GB RAM, and an Xeon Processor. 

The experimental setup has divided the data into training 
(70%), validation (20%) and test set (10%). To take into 
account possible temporal dependencies, time-based cross-
validation was used. For the ANN component of the proposed 
framework, backpropagation with the Adam optimization 
algorithm was used. Here the hyperparameters used were; 
learning rate=0.0010.0010.001, batch size = 32 and number of 
epochs = 100 however to avoid overfitting early stopping was 
used. The fuzzy logic system was designed by fuzzifying the 
input variables through the fuzzification rules inferred from the 
historical thresholds, inferring the output from the inference 
rules obtained from the experts and defuzzification by using 
the centroid approach. Data integration in the IoT context 
allowed for model refreshing through Apache Kafka, where in 
batches of data, the five-minute intervals updated the risk 
estimates. 

 
Fig. 3. Proposed model. 

The Fig. 3 demonstrates an architectural framework which 
applies a three-phase risk prediction approach that merges 
historical and IoT sensor data by using a sequential process 
from data collection to artificial neural network 
implementation and fuzzy logic integration. The system unites 
standard machine learning methods with fuzzy inference logic 
to create an integrated risk assessment output which serves as 
proof of hybrid techniques for better predictive analytics. 

For the assessment of the framework, several indicators 
were used to assess the effectiveness of the presented 
framework, several measures were used. Accuracy determined 
how accurately ANN in the current study predicted risk levels, 
and Mean Absolute Error (MAE) calculated the overall 
difference between actual and predicted risks. The extent of 
interpretability of fuzzy rules was measured with the Fuzzy 
Interpretable Index (FII), and system performance under noisy 
IoT data conditions was tested. Moreover, to evaluate the 
dynamics of the framework, the time taken to re-update the 
predictions upon receiving fresh IoT data was considered. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                (8) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                 (9) 

𝐹1 = 2 ∗
𝑃.𝑅

𝑃+𝑅
                                (10) 

There are stages that were followed when implementing the 
strategy. First, historical and IoT data were cleaned to make 
data viable and suitable for analysis. The ANN model was used 
to identify patterns and relationships between the risk factors 
regarding the past data set. The fuzzy logic rules were derived 
in close cooperation with the domain specialists to offer the 
decision-making rules. Real-time data pipes for IoT were 
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developed so updates could be made in real-time in order for 
the framework to reflect current site conditions. Last, the 
system was tested end to end on a constructed construction 
project to show its real-time risk assessment capability of 
producing accurate, interpretable, and adaptive risk evaluation. 

V. RESULTS 

The use of the hybrid AI framework in an experimental 
setting gave a lot of information on how efficient, flexible and 
reliable the system is when dealing with risks for sustainable 
construction projects. Such insights underscore that the 
proposed framework is useful when dealing with change in 
project conditions, the environment and resource availability. 
Through the use of levels of sophistication in analytics, 
decision making and dynamic adjustment capabilities, the 
framework provides an all-inclusive approach toward 
construction risk evaluation in the contemporary world. 

TABLE II.  COMPREHENSIVE PERFORMANCE METRICS OF ANN MODEL 

Metric Value 

Accuracy (%) 92.7 

Mean Absolute Error (MAE) 0.084 

Precision (%) 91.4 

Recall (%) 93.1 

F1-Score (%) 92.2 

Training Epochs 100 

Batch Size 32 

The metrics of the evaluation for the Artificial Neural 
Network (ANN) show excellent results of predicting the risk 
levels as shown in Table II. The ANN utilized an MLP 
structure in order to detect the non-linear interdependencies 
between the input parameters like environmental conditions, 
risk profile history and the project characteristics and their 
related risk levels. The model delivered an accuracy of 92.7% 
and such high accuracy level is capable of serving the scenarios 
of the test model. Furthermore, the ability to accurately predict 
outcomes is expressed by the relatively low Mean Absolute 
Error (MAE) of 0.084. The relative closeness of the precision 
and recall scores demonstrate that the ANN minimizes both 
false positives and false negatives at a rate of 91.4% and 
93.1%, respectively. This balance is important in construction 
projects since incorrect classification of risks potentially leads 
to resource misapplication or project hold-up. 

The training of the ANN was performed with an early 
stopping technique which applied after achieving an accuracy 
of 100 epochs and learning rate of 0.001. This convergence 
assured that the model has no over-fitted and has high 
generalization capacity at the same time. The learning and 
validation losses shown in the Fig. 1 indicate a similar progress 
during the training phase. It does this in a way that keeps the 
model optimal for use when it is applied in real situations 
where data is complex and diverse. 

The Fig. 4 display shows the loss convergence pattern 
which shows that the model initially converges quickly before 
reaching a stable point where training and validation curves 
maintain similar levels indicating effective generalization 
capabilities. These metrics show similar declining patterns 
which start at about 0.6 before reaching near-zero levels 
indicating that the model achieved an optimal learning state 
without major overfitting or underfitting effects. 

 

Fig. 4. Loss convergence rate. 

A heatmap in Fig. 5 illustrates the rule importance levels 
for five fuzzy rules which span from 0.1 to 0.95 between High 
and Low and Medium risk categories. The heatmap chart 
reveals important patterns through its colour distribution 
because specific risk conditions show darker cells representing 
higher values which indicates non-uniform rule applicability 
across different risk levels. 

 

Fig. 5. Fuzzy rules across risk conditions. 

A complete rule-based risk assessment framework depicted 
in Table III comprises five distinct rules which link different 
conditions to risk outputs along with management actions. 

The rules analyse various parameters including risk levels 
together with operational aspects of cost overrun and material 
delay and environmental hazards and equipment efficiency to 
generate specific risk classifications and recommended 
mitigation strategies for project management enhancement. 
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TABLE III.  FUZZY INFERENCE RULES 

Rule ID Condition Output Actionable Insight 

1 
Risk = High AND Cost Overrun = 

Significant 
Critical Risk Immediate resource allocation to mitigate high-priority risks. 

2 
Risk = Medium AND Material Delay = 

Likely 
Moderate Risk Adjust procurement schedules to reduce project delays. 

3 
Risk = Low AND Delay Probability = 

Minimal 
Low Risk 

Proceed with routine workflows without additional 

interventions. 

4 
Risk = High AND Environmental Hazard = 

Severe 
Critical Risk 

Implement contingency plans to address safety and 

environmental compliance. 

5 
Risk = Medium AND Equipment Efficiency 

= Low 
Moderate Risk 

Schedule maintenance to improve equipment performance and 

avoid disruptions. 
 

Fuzzy logic was used to help translate the quantitative risk 
levels from the ANN into risk categories that are realistic and 
practicable. By incorporating a set of credibly designed and 
allocated membership functions and enforcing the use of 
certain set of inference rules the fuzzy logic system offered 
suggestive options optimizing for concrete project 
circumstances. For example, the rule “IF risk is high AND cost 
overrun is significant, THEN prioritize mitigation efforts” was 
useful for making project managers take corrective actions 
instantly. Project management specialists assessed the 
interpretability of these rules to be 93%, adding that the 
linguistic variables used reflected actual practice. This is due to 
the fact that the construction industry involves several players 
in decision making and the above models provide an easy to 
understand interpretation of the results obtained. 

 
Fig. 6. Sensors accuracy. 

The analysis depicted in Fig. 6 shows that increased IoT 
update frequencies result in reduced accuracy but attains its 
maximum accuracy value of 92.7% at a 10-minute interval. 
The results indicate that updates performed every 0.1 minutes 
might generate errors which reduce system effectiveness. 

Due to IoT sensors integration, the framework could alter 
during the course of construction site working time, responding 
to real time changes. Data obtained from the IoT devices was 

in the form of continuous streams, which contained 
information regarding the environment (like temperature, 
humidity) and information regarding the performance of 
equipments and the flow of materials. These updates enabled 
the system to make changes to risk predictions within the 
average time of 4.2 seconds per batch which are crucial for 
responding to emergent risks on time. Table III highlights that 
the proposed framework can be easily fine-tuned depending on 
the frequency of IoT updates, ranging from standard operation 
frequency of 10 minutes to near real-time updates of 10 
seconds. There was a slight loss of performance at higher 
update rates; however, the framework was still performing at 
an accuracy greater than 89% while being updated at high 
speeds. This capability is most useful in the construction 
environment where, for example, site conditions are constantly 
changing. 

Comparison with simple ANN models and conventional 
risk evaluation methodologies as shown in Table IV also 
supported the credibility of the hybrid framework. In the 
experimental results, the appropriateness of the incorporation 
of ANN’s forecasting capability with the interpretability of 
fuzzy logic and the flexibility of IoT data streams was 
manifested by the fact that the proposed hybrid framework 
outperformed the other frameworks in all experiments. For 
example, the standalone ANN models were produced with the 
accuracy of 85.3% but they did not contain the necessary 
flexibility for real time risk assessment. While traditional 
methods are less accurate static methods, compared with the 
proposed system and having accuracy of 78.6%. As presented 
in Table IV the hybrid framework performed well in other 
parameters like MAE (0.084) and adaptation speed 4.2secs 
hence the framework is most suitable for practical uses where 
timely and accurate decisions are called for. 

Results in Table V show that the framework maintains 
accurate results while noise levels increase except for the point. 
The incorporation of fuzzy logic into the system reduces the 
effect of substantial noise which maintains effective 
performance. 

TABLE IV.  DETAILED ANALYSIS OF IOT UPDATE FREQUENCIES 

IoT Update 

Frequency 

Accuracy 

(%) 
MAE 

Adaptation 

Speed (seconds) 

Data Latency 

(seconds) 

Response Time 

(seconds) 
Description 

Every 10 minutes 92.7 0.084 4.2 2 6.2 Standard operational conditions with minimal delays. 

Every 5 minutes 91.8 0.098 3.8 1.5 5.3 Moderate frequency, balancing accuracy and speed. 

Every 1 minute 90.2 0.112 3.5 1 4.5 High frequency, effective for rapid condition changes. 

Every 10 seconds 89.1 0.125 3.2 0.8 4.0 Near real-time updates, slight accuracy trade-offs. 
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TABLE V.  IMPACT OF NOISE ON FRAMEWORK PERFORMANCE 

Noise Level (%) Accuracy (%) MAE Remarks 

0 92.7 0.084 
Optimal performance 

under ideal conditions. 

5 91.3 0.092 
Slight decline due to 

minor perturbations. 

10 88.7 0.112 
Maintains high accuracy 

despite moderate noise. 

20 85.1 0.137 
Significant noise 

mitigated by fuzzy logic. 

 
Fig. 7. Noise impact on frame work. 

The data in Fig. 7 shows that framework performance 
declines as noise levels rise because accuracy drops and mean 
absolute error (MAE) increases. The performance of the 
system experiences substantial degradation at the intersection 
point of 10% noise level. 

 
Fig. 8. Comparison of proposed model with state-of-art models. 

The hybrid framework demonstrated superior performance 
than traditional and ANN-only models based on accuracy 
alongside robustness and adaptation speed according to Fig. 8. 
Hybrid models strike a superior equilibrium between 
performance metrics which makes them stand out as a 
dependable method for dynamic conditions. 

TABLE VI.  COMPREHENSIVE PERFORMANCE COMPARISON ACROSS MODELS 

Metric 
Hybrid 

Framework 
ANN Only Traditional Model Description 

Accuracy (%) 92.7 85.3 78.6 Hybrid model benefits from combined predictive and adaptive capabilities. 

MAE 0.084 0.146 0.198 Lower error indicates higher precision in hybrid predictions. 

Adaptation Speed (s) 4.2 10.6 Static Real-time updates ensure timely risk mitigation. 

Fuzzy Interpretability 93% N/A 60% Fuzzy logic enhances user-friendly decision-making. 

Noise Robustness (%) 88.5 78.2 70.3 Maintains performance under noisy conditions, ensuring reliability. 
 

Additionaly, the robustness testing confirmed the stability 
of the framework under the more difficult conditions as shown 
in Table VI. When noise levels of up to 20% were introduced 
into the IoT data streams, the framework retained a high level 
of accuracy of approximately 85.1% albeit with the modest 
inflation of the MAE by 0.137 points. These results are 
presented in Table V below and explain why the framework 
would still be effective despite data variation or transmission 
errors. That is why the fuzzy logic system was so important in 
reducing noise’s effect on the results, as it allowed the risk 
assessment to be meaningful and accurate. This robustness is 
desirable in construction projects as it can be often observed 
that the sensor readings can be imprecise and there are large 
data gaps due to the nature of construction site environments. 

VI. CONCLUSION 

The paper presented a hybrid risk assessment framework 
that was based on AI and the results have revealed higher 
accuracy, flexibility, and efficiency in sustainable construction 
projects. The Artificial Neural Network (ANN) model 
developed in the research reached an accuracy of 92.7% and 
Mean Absolute Error (MAE) of 0.084 to predict risks with 
equal precision in different conditions of the project. Further, 
incorporation of Fuzzy Logic provided interpretability to the 
decision making by analysing and converting quantitative risk 
outputs in to manageable data for project managers. For 
example, the rules like IF risk is high AND cost overrun is 
significant, THEN consider risk reduction measures found very 
helpful in prioritising important interventions and recorded 93 
percent interdependency index by domain expert. 
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The dynamic data updates made through the IoT interface 
improved the dynamism of the framework, with risk 
assessment intervals being updated in 4.2 seconds on average 
per each data batch. This capability would enable real-time 
adjustment to site situations including changes in 
environmental factor or equipment performance. Different 
update frequencies of the IoT proved that accuracy was 
sustained at more than 89% even with near real time updates of 
10 seconds. As expected, it was also confirmed that the 
proposed system could maintain a high level of accuracy even 
with the presence of noisy data; based on the findings, the 
hybrid framework guaranteed an 85.1% level of accuracy even 
when the noise level was set to 20%. 

Comparisons made with standalone ANN and other 
conventional risk management techniques also revealed the 
advantage of the suggested system. The proposed hybrid 
framework performed better in terms of accuracy, noise 
robustness, and real-time adaptation while achieving an MAE 
reduction more than the conventional models by 50%. The 
results presented in this paper confirm that the application of 
AI, IoT, and fuzzy reasoning provides an innovative solution to 
develop a more effective approach to predictive risk 
management in construction processes that lead to safer, more 
efficient, and eco-friendly construction practices. 

VII. FUTURE WORK 

Future studies must investigate how the proposed AI-based 
risk assessment framework applies to new construction fields 
and industries as well as implement blockchain technology for 
safe data protection and advance prediction abilities through 
sophisticated machine learning algorithms including deep 
learning and reinforcement learning methods. Future 
developments through artificial intelligence should target three 
main areas of self-learning capability development alongside 
explainable human-AI collaboration and sophisticated IoT 
sensing solutions that leverage edge computing for real-time 
operational control. The framework needs expansion to include 
sustainability measures like carbon footprint evaluation that 
will support environmentally friendly construction practices. 
The framework will become a better tool for managing project 
risks in complex dynamic environments when these identified 
areas receive further attention. 
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