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Abstract—With the wide application of LED luminaires in 

various fields, it has become particularly important to accurately 

predict their lifetime. The lifetimes of LED luminaires are 

affected by a variety of factors, including temperature, current, 

voltage, light intensity, and operating time, and there are 

complex interactions among these factors. Traditional prediction 

methods are often difficult to capture these nonlinear 

relationships, so a more powerful prediction model is needed. In 

this study, we aim to develop an efficient life prediction model for 

LED luminaires, and propose a hybrid neural network structure 

that incorporates a convolutional neural network (CNN), a long 

short-term memory network (LSTM), and an attention 

mechanism by combining feature engineering and deep learning 

techniques. In the research process, we first collected the 

operation record data provided by a well-known LED lighting 

manufacturer and performed detailed data preprocessing, 

including missing value processing, outlier detection, 

normalization/standardization, data smoothing, and time series 

segmentation. Then, we designed and implemented several 

benchmark models (e.g., linear regression, support vector 

machine regression, random forest regression, and deep learning 

model using only LSTM) as well as the proposed hybrid neural 

network model. Through a detailed experimental design 

including parameter setting, training and testing, we evaluate the 

performance of these models and analyze the results. The 

experimental results show that the proposed hybrid neural 

network model significantly outperforms the conventional model 

in key performance metrics such as root mean square error 

(RMSE), mean absolute error (MAE) and coefficient of 

determination (R²). In particular, the hybrid model outperforms 

in terms of Mean Absolute Percentage Error (MAPE) and 

Maximum Absolute Error (Max AE). In addition, through cross-

validation and testing on different datasets, the model shows 

stable performance under various environments and conditions, 

verifying its good generalization ability and robustness. 

Keywords—Feature engineering; deep learning; LED lamps; 

life prediction; algorithm optimization 

I. INTRODUCTION 

With the global awareness of energy saving and 
environmental protection as well as the continuous 
advancement of technology, LED (light emitting diode) lamps 
have become one of the most promising products in the 
lighting field [1]. Since the 1990s, LED lighting has gradually 
replaced traditional lighting methods such as incandescent and 
fluorescent lamps due to its high efficiency, long life and low 
maintenance costs. According to market research 
organizations, the global LED market will reach tens of 

billions of dollars by 2025, showing a strong growth trend. 
Against this background, how to effectively extend the service 
life of LED lamps and improve their reliability and stability has 
become a key concern for both academia and industry [2, 3]. 

However, in the process of practical application, although 
LED lamps and lanterns have a theoretically long working life, 
their actual service life is often difficult to reach the expected 
value due to a variety of factors, such as the working 
environment conditions (temperature, humidity), power supply 
quality, and the aging speed of materials [4]. In addition, for 
manufacturers, accurate prediction of the life of LED lamps 
and lanterns not only helps to optimize product design and 
reduce production costs, but also enhances customer trust and 
promotes brand building. Therefore, it is of great theoretical 
significance and practical value to carry out research on the life 
prediction of LED lamps and lanterns [5]. 

The current methods on LED luminaire life prediction can 
be mainly divided into two categories: methods based on 
physical models and methods based on data-driven methods. 
The former builds mathematical models by analyzing the 
internal structure of LEDs and their working principles. The 
latter relies on a large amount of historical data for statistical 
analysis or machine learning training [6]. Although each of 
these methods has achieved certain results, there are some 
shortcomings. For example, physical model-based approaches 
usually require an in-depth understanding of the specific 
construction details of LEDs, which is not easy to realize for 
ordinary users. And traditional data-driven methods may have 
poor prediction accuracy due to the lack of effective feature 
extraction mechanisms [7]. 

In this paper, we aim to combine advanced feature 
engineering techniques with deep learning algorithms to 
propose a novel LED luminaire lifetime prediction framework, 
with a view to overcoming the above challenges and 
significantly improving the prediction performance. 
Specifically, we first identify the key factors affecting the 
lifetime of LED luminaires by comprehensively analyzing the 
heterogeneous data from multiple sources generated during the 
operation of LED luminaires, and design a reasonable feature 
engineering scheme accordingly. Next, a carefully selected 
deep neural network architecture is utilized as the base 
predictor, combined with a transfer learning strategy to solve 
the problem of insufficient sample size [8]. Finally, the 
effectiveness and superiority of the proposed method is 
demonstrated through a series of experiments. 
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II. REVIEW OF RELEVANT WORK 

A. Application of Feature Engineering to Life Prediction 

Feature engineering is a crucial step in the machine 
learning process, which involves extracting useful features 
from raw data to improve model performance. For lifetime 
prediction, effective feature selection or construction can 
significantly enhance the model's ability to learn complex 
patterns. For example, in life prediction of electronic products, 
engineers usually consider physical quantities such as 
temperature variations and current fluctuations as input 
features. In the field of mechanical equipment, on the other 
hand, more attention may be paid to factors such as vibration 
signal analysis and wear and tear. These carefully selected or 
transformed features can help algorithms better capture key 
information that affects the target variables [9, 10]. 

In recent years, with the growth of computing power and 
the development of big data technology, automatic feature 
selection methods based on statistics and machine learning 
have become popular. Such methods are not only capable of 
handling large-scale datasets, but also of discovering potential 
associations that are difficult to recognize by traditional means. 
For example, Random Forests can filter out the most influential 
attributes by evaluating the importance of each feature. 
Principal Component Analysis (PCA), on the other hand, is a 
commonly used dimensionality reduction technique that maps 
the original high-dimensional space to a new space of lower 
dimensions while retaining as much information as possible 
from the original data. Nonetheless, when dealing with specific 
industries such as LED lighting, generalized methods often 
need to be further adapted to achieve optimal results [11]. 

B. Deep Learning Techniques and Their Performance on 

Prediction Problems 

In 2022, the paper in [12] proposed a hybrid model 
combining Transformer and LSTM for power equipment fault 
prediction. This model effectively captures long sequence 
dependencies through the self-attention mechanism. In 2023, 
[13] fused CNN and LSTM and applied it to traffic flow time 
series prediction, using CNN to extract spatial features and 
LSTM to process temporal features. Compared with these 
studies, the hybrid model in this paper is designed for LED 
lamp life prediction in terms of feature extraction, model 
structure and application scenarios, which further highlights the 
innovation and value of the research and broadens the research 
horizon in this field. 

Deep learning, as a powerful artificial intelligence 
technology, has achieved great success in recent years in a 
variety of fields such as image recognition and natural 
language processing. Its core advantage lies in its ability to 
automatically learn complex representations from large 
amounts of unlabeled data with good generalization ability. For 
the task of time series prediction, Recurrent Neural Networks 
(RNNs), especially Long Short-Term Memory Networks 
(LSTMs), are widely recognized as one of the very effective 
tools [14]. Their ability to remember long-term dependencies 
and adapt to the behavioral patterns of nonlinear dynamical 
systems makes them particularly suitable for dealing with data 
that have significant trends or seasonality. In addition to this, 
Convolutional Neural Networks (CNNs) are also used in some 

special prediction scenarios. For example, if the target variable 
to be predicted is closely related to its spatial distribution, 
CNN's powerful local sensing ability and parameter sharing 
mechanism can be utilized for feature extraction. It is worth 
noting that although deep learning models usually perform 
well, they also suffer from problems such as long training time 
and easy overfitting, especially when the sample size is 
relatively small [15, 16]. Therefore, it is often necessary to 
incorporate other technical tools, such as regularization 
strategies or migration learning, to mitigate the negative impact 
of these problems in practical applications. 

C. LED Lamp Life Prediction 

Research on life prediction for LED luminaires can be 
broadly divided into two main categories: physical modeling-
based approaches and data-driven approaches. The former 
mainly relies on an in-depth understanding of the internal 
structure and material properties of LEDs, and simulates the 
working process of the device by establishing an accurate 
mathematical model. This type of approach has the advantage 
of providing a more intuitive physical explanation, but in 
practice it is often limited by the difficulty of obtaining the 
required parameters and the complexity of the model itself [17, 
18]. In contrast, the latter focuses more on learning patterns 
directly from historical records without the need to assume any 
particular form of relational expression in advance. With the 
proliferation of sensor technologies and Internet of Things 
(IoT) platforms, more and more studies have begun to explore 
how to effectively utilize the collected data on various 
operating states to improve prediction accuracy. Specifically, 
some scholars have proposed the use of classical machine 
learning algorithms such as support vector machines (SVMs) 
and decision trees for classification or regression analysis. 
These attempts proved that even in a relatively simple 
framework, good prediction results can still be obtained with 
proper feature selection. However, with the deepening of 
research, it has been found that traditional shallow models can 
hardly fully explore the deep connections hidden behind the 
massive multi-source heterogeneous data. Therefore, in recent 
years, more and more attention has turned to more advanced 
deep learning architectures [19, 20]. 

D. Evaluation and Comparison of Existing Methods 

It can be seen from the combing of the above literature that 
some progress has been made in the current research on LED 
luminaire life prediction, whether based on physical modeling 
or data-driven approaches. However, each method has its scope 
of application and limitations. Although the physical modeling 
method has a solid theoretical foundation, it is difficult to adapt 
to the needs of all situations due to the lack of flexibility. And 
although purely relying on data-driven methods is easy to 
operate, it is easy to ignore the underlying root causes. More 
importantly, most of the existing work utilizes one of the 
technical tools alone, and few examples of organic 
combination of the two have been seen [21, 22]. 

III. METHODOLOGY 

In order to construct an efficient and accurate LED 
luminaire life prediction model, this study adopts a systematic 
methodology, including data collection and preprocessing, 
feature selection and engineering, design of deep learning 
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architecture, model training and tuning process, and definition 
of performance evaluation metrics [23]. 

A. Data Collection and Pre-processing 

The dataset was provided by a well-known LED luminaire 
manufacturer and covers records of several models of LED 
luminaires operating in different environments. These records 
contain time series data (e.g. temperature, current, voltage, etc.) 
as well as information on the final lifetime of the luminaire. In 
addition, some static attributes, such as manufacturing lot, 
material type, etc., are also included. In order to ensure the 
quality and representativeness of the data, we have strictly 
screened the data and excluded records that are obviously 
abnormal or incomplete [24]. 

Raw data usually suffers from noise, missing values, etc., 
so a series of preprocessing steps are required to improve the 
effectiveness of the subsequent analysis. First, for a small 
number of missing data points, we use interpolation (e.g., 
linear interpolation or spline interpolation) to fill them in. If the 
missing rate of a feature is too high, the feature is considered to 
be removed. Next, statistical methods are utilized to identify 
and remove extreme values that may affect model training. In 
order to eliminate differences in magnitude between features, 
we use Min-Max scaling or Z-Score normalization to transform 
all numerical features to the same scale range [25]. 

B. Feature Selection and Principal Component Analysis 

1) Feature selection: Feature selection is one of the key 

steps in improving model performance. By selecting the most 

influential features, model complexity mitigated, prediction 

accuracy can be improved, and the risk of overfitting can be 

reduced. In this study, we used several methods to identify the 

most influential features, including correlation analysis and 

mutual information [26]. 

The temperature feature is retained because the luminous 
efficiency and life of LED lamps are closely related to 
temperature. According to the principles of semiconductor 
physics, high temperature will accelerate the chemical reaction 
inside the LED chip, resulting in increased light decay. Domain 
knowledge shows that within a certain temperature range, the 
life of LED lamps may be shortened by 20% - 30% for every 
10°C increase in temperature, so temperature is a key feature. 
The current feature is retained because excessive current may 
cause the LED chip to overheat and cause irreversible damage. 
Industry standards and past studies have pointed out that the 
life of the lamp will be significantly reduced if the rated current 
exceeds 10%. When selecting features, refer to the relevant 
standards of the International Commission on Illumination 
(CIE) and combine expert experience to screen the initial 
features to ensure that the retained features have a key impact 
on the prediction of the life of LED lamps. 

To ensure the robustness of the Pearson correlation 
coefficient and mutual information threshold, a method of 
cross-validation combined with sensitivity analysis was used. 
The data set was divided into multiple subsets, and the feature 
selection results under different thresholds were calculated on 
different subsets, and the model performance was evaluated. 
Through multiple cross-validations, the model's ability to 

handle nonlinear and irrelevant relationships under different 
threshold combinations was observed. At the same time, a 
sensitivity analysis was performed to study the impact of slight 
changes in the threshold on feature selection and model 
performance. If the model performance fluctuates less when 
the threshold changes, and it can effectively identify nonlinear 
relationships and filter irrelevant relationships, it means that 
the threshold has good robustness. The final threshold is the 
optimal choice after comprehensive consideration of model 
stability and accuracy. 

The Pearson Correlation Coefficient (PCC) is a commonly 
used measure of the linear relationship between two variables. 
It is defined as Eq. (1). 
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where ix  and iy  are the eigenvalues and objective values of 

the ith sample, respectively. n is the number of samples. x and

y  are the mean values of the eigenvalues and objective, 

respectively. n is the number of samples. The Pearson's 

correlation coefficient xyr  is in the range of [-1, 1], and 1xyr   

denotes perfect positive correlation.  1xyr   The value of 

Pearson's correlation coefficient ranges from [-1, 1], indicates 
perfect negative correlation. 

In practice, we compute the Pearson's correlation 
coefficient between each feature and the target variable and 
retain those features that are significantly correlated. Typically, 
we can set a threshold |r| > 0.5 and retain only those features 
whose absolute value is greater than this threshold. 

Mutual Information (MI) is a measure of nonlinear 
dependence between two random variables. It is based on the 
concept of entropy in information theory, defined as Eq. (2) 
[27]. 
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Where  ,  p x y  is the joint probability distribution of X 

and Y . p(x) and p(y) are the marginal probability distributions 
of X and Y, respectively. A larger value of the mutual 
information I (X; Y) indicates a stronger dependence between 
X and Y. Mutual information captures both linear and 
nonlinear relationships and is therefore more comprehensive 
than the Pearson correlation coefficient [28]. 

In practice, we compute the mutual information between 
each feature and the target variable and retain those features 
with higher mutual information values. Similarly, a threshold 
can be set (e.g., I (X; Y) > 0.5, and only features greater than 
this threshold are retained). 
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2) Principal Component Analysis (PCA): Despite the 

initial selection, the dataset may still contain redundant 

information. For this reason, Principal Component Analysis 

(PCA) is further applied to reduce the dimensionality and 

extract the main components. The basic idea of PCA is to find 

a new set of basis vectors such that the variance of the 

projected data is maximized. Assume that the original data 

matrix is
n pX   , where n is the number of samples and p 

is the number of features. The process of PCA can be 

described as the following steps, and its flowchart is shown in 

Fig. 1 [29]. 

a) Centered data: Subtracting the mean of each column 

yields cX . 

b) Calculate the covariance matrix at
1

1

T

c cX X
n

 


. 

c) Solve for eigenvalues and eigenvectors: Obtain the 

eigenvalues 1 2, ,..., p    and the corresponding eigenvectors

1 2, ,..., pv v v  of the covariance matrix. 

d) Sorting and selecting the first k principal 

components: sort the eigenvalues in descending order of 

magnitude and select the first k largest eigenvalues and their 

corresponding eigenvectors. 

e) Transformed data: The original data are projected 

onto the selected k principal components to obtain the 

downscaled data
n kZ  . 

c kZ X V  where kV  is the matrix consisting of the first k 

eigenvectors [30]. 

C. Deep Learning Architecture Design 

As shown in Fig. 2, in this paper, we propose a novel 
hybrid neural network architecture that combines convolutional 
neural networks (CNNs) and long-short-term memory 
networks (LSTMs), aiming to fully utilize the strengths of 
both. 

The deep learning architecture proposed in this paper aims 
to effectively extract and utilize key features in 
multidimensional time series data to improve the accuracy of 
LED luminaire lifetime prediction. The architecture consists of 
the following main components: 

1) Input layer: Accepts multi-dimensional time series data 

after Principal Component Analysis (PCA) dimensionality 

reduction, which contain key factors affecting the lifespan of 

LED luminaires. 

2) Convolutional layers: The multiple convolutional 

kernels are used for feature extraction from the input data, and 

each convolutional layer is back-connected to the ReLU 

activation function to introduce nonlinearities and to reduce the 

spatial dimensions of the feature maps by a maximal pooling 

operation so as to preserve the most important local features. 

3) LSTM layer: It receives the time series features output 

from the convolutional layer and learns complex temporal 

patterns through multiple stacked Long Short-Term Memory 

(LSTM) units. LSTM is capable of capturing long-term 

dependencies and is suitable for processing data with temporal 

dynamics. 
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Fig. 1. PCA framework diagram. 
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Fig. 2. Model architecture. 
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4) Attention layer: An attention module is added after the 

LSTM layer to compute the importance weights for each time 

step, which are then weighted and summed to obtain the final 

contextual representation. The attention mechanism allows the 

model to adaptively focus on the most important time 

segments, thus enhancing the model representation. 

5) Fully-connected layers: Mapping the output of the 

attention layer to the final prediction results, further feature 

fusion and abstraction is performed through a series of fully-

connected neural network layers. 

6) Output Layer: Produces an estimate of the remaining 

useful life of the luminaire, providing the user with an 

intuitive and accurate prediction. 

Suppose the input time series data is
N T DX    , where 

N denotes the number of samples, T denotes the time length, 
and D denotes the feature dimension. After convolutional layer 

processing, it is obtained as
N T F

convH
   , where T' is the 

length of the sequence after convolution and F is the number of 
convolutional kernels. The hidden state of the LSTM layer is 

denoted as
H

th   , and H is the number of hidden layer 

units. The attention weight t  is calculated as shown in Eq. (3) 

and Eq. (4). Where aW  and ab  are learnable parameters. The 

final context vector c is shown in Eq. (5). 
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D. Model Training and Tuning Process 

Considering the characteristics of the lifetime prediction 
problem, we choose the mean square error (MSE) as the loss 
function, as shown in Eq. (6). 
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Where iy  is the true life and ˆ
iy  is the predicted life. 

In order to accelerate convergence and avoid falling into 
local optima, we choose the Adam optimizer. Adam combines 
the advantages of momentum gradient descent and RMSprop, 
and is able to dynamically adjust the learning rate during 
training. The choice of hyperparameters has an important 
impact on the model performance. 

In a small data set (such as data set A with 5000 samples), 
in order to confirm that there is no overfitting or suboptimal 
convergence using the Adam optimizer (learning rate 0.001), 

the strategy of early stopping combined with monitoring the 
validation set indicators is adopted. During the training 
process, the loss value and accuracy of the training set and 
validation set are recorded for each epoch. When the validation 
set loss no longer decreases within 10 consecutive epochs, the 
early stopping mechanism is triggered. At the same time, the 
loss curve and accuracy curve during the training process are 
plotted to observe the convergence trend of the model. If the 
curve shows that the loss of the training set and the validation 
set are gradually decreasing and stabilizing, and the accuracy is 
continuously improving and maintaining good performance on 
the validation set, it means that the model has not experienced 
overfitting and suboptimal convergence, and can effectively 
learn on a small data set. 

E. Definition of Performance Assessment Indicators 

In order to fully evaluate the performance of the model, we 
define the following key performance indicators. Root Mean 
Square Error (RMSE): used to measure the degree of deviation 
between the predicted and true values. It is specified as shown 
in Eq. (7). 
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The mean absolute error (MAE) reflects the absolute 
difference between the predicted value and the true value, as 
shown in Eq. (8). 
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The coefficient of determination (R²) indicates the 
proportion of variability explained by the model and takes a 
value ranging from 0 to 1, with closer to 1 indicating a better 
fit. This is specifically shown in Eq. (9). 
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Relative error (RE) is used to compare the prediction 
accuracy at different scales, as shown in Eq. (10). 
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The CNN-LSTM-Attention hybrid model in this study is 
unique in its architectural design. In the CNN layer, a 
deformable convolution kernel is innovatively used, which can 
adaptively adjust the receptive field according to the data 
characteristics. Compared with the traditional fixed 
convolution kernel, it can more accurately extract the key 
spatiotemporal features in the operation data of LED lamps. In 
the LSTM layer, a gated recurrent unit (GRU) variant is 
introduced to optimize the gating mechanism, reduce the 
amount of calculation, and enhance the ability to capture long-
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term and short-term dependencies. In addition, the attention 
mechanism adopts a multi-scale attention calculation method 
based on position encoding, which not only pays attention to 
the importance of time steps, but also considers the weights of 
different feature dimensions at different scales, so that the 
model has a more comprehensive and in-depth understanding 
of the data, effectively improving the accuracy and stability of 
the prediction. This is a significant innovation that is different 
from the conventional model combination. 

IV. DISCUSSIONS AND RESULTS 

A. Experimental Design 

1) Data set description: This study is based on a dataset 

provided by a well-known LED luminaire manufacturer, 

which covers the operation records of a wide range of LED 

luminaire models under different environmental conditions. 

Each sample contains 100 time-steps of data, including time-

series information such as temperature, current, voltage, and 

the final lifetime of the luminaire, along with static attributes 

such as manufacturing batch and material type. There are a 

total of 20 features in the original dataset, and after a rigorous 

feature selection process, 10 of the most influential features 

were retained as model inputs. The goal is to predict the 

remaining useful life (in hours) of the luminaire. 

In the data preprocessing stage, a small number of missing 
data points were first filled in using linear interpolation, while 
those features with a missing rate of more than 30% were 
removed. Next, the Z-Score method was used to identify and 
remove all outliers corresponding to standard scores with 
absolute values greater than 3. In order to ensure the 
consistency of the numerical features and the stability of the 
model training, a Min-Max scaling technique was applied to 
transform these features into the interval [0, 1]. 

2) Benchmarking model: In order to evaluate the 

performance of the proposed hybrid neural network models, 

we have selected several commonly used benchmark models 

for comparison. These benchmark models include (1) Linear 

Regression (LR): a simple regression model based on linear 

assumptions. (2) Support Vector Regression (SVR): a 

nonlinear regression model that uses a radial basis function 

(RBF) as the kernel function. (3) Random Forest Regression 

(RFR): a regression model based on decision tree integration. 

(4) Long Short-Term Memory (LSTM): a deep learning model 

using only LSTM layers. The hybrid neural network 

architecture proposed in this paper combines Convolutional 

Neural Networks (CNN), Long Short-Term Memory (LSTM), 

and Attention Mechanism. This hybrid architecture aims to 

make full use of different types of feature information to 

improve the generalization of the model. 

3) Experimental setup: In order to construct an efficient 

LED luminaire life prediction model, we designed a hybrid 

neural network structure that incorporates a convolutional 

neural network (CNN), a long short-term memory network 

(LSTM), and an attention mechanism. The specific parameters 

are set as follows: three convolutional layers are used with 

convolutional kernel sizes of 3 × 1, 5 × 1, and 7 × 1, and the 

number of convolutional kernels in each layer is 32. This is 

followed by two layers of stacked LSTM units, each with a 

number of units of 128. After the LSTM layer, a single-head 

self-attention mechanism is added to compute the importance 

weights of each time step and weighted sum to obtain the final 

contextual representation. Finally, the output of the attention 

layer is mapped to the final prediction by two fully connected 

layers with 64 and 32 hidden layer nodes, respectively. The 

loss function of the model uses the mean squared error (MSE), 

and the optimizer chooses the Adam optimizer with an initial 

learning rate of 0.001. The batch size is set to 64, and the 

number of training rounds is 200, and an early stopping 

strategy is used, whereby the training is stopped early if the 

loss on the validation set does not decrease for 10 consecutive 

rounds does not decrease, then the training is stopped early. 

B. Analysis of Results 

1) Comparison of the performance of different models: As 

can be seen from Table I, the proposed hybrid neural network 

model significantly outperforms the other benchmark models 

in all performance metrics. In particular, the coefficient of 

determination R2R2 reaches 0.85, indicating that the model is 

able to explain most of the data variability. 

2) Impact of feature engineering on model performance: 

In order to deeply investigate the specific impact of feature 

engineering on model performance, we designed and 

implemented a series of experiments. First, in the first set of 

experiments, the model is trained directly with 20 raw features 

in the dataset without any processing, which serves as a 

baseline reference. Then, in the second set of experiments, two 

statistical methods, Pearson's correlation coefficient and 

mutual information, are used for feature selection, from which 

the 10 most influential features are selected for model 

construction, aiming to improve the model performance by 

reducing redundancy and increasing the relevance of the 

features. The results of the principal component analysis are 

shown in Fig. 3. 

TABLE I.  THE PERFORMANCE METRICS OF DIFFERENT MODELS ON THE 

TEST SET 

Model RMSE MAE R² 

Linear regression (LR) 23.45 17.23 0.65 

Support Vector Machine (SVR) 22.12 16.78 0.68 

Random Forest (RFR) 20.89 15.34 0.72 

LSTM 18.56 14.23 0.78 

propose a model 15.23 12.11 0.85 
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Fig. 3. PCA results with K-Means clustering. 

TABLE II.  EFFECT OF DIFFERENT FEATURE PROCESSING METHODS ON 

MODEL PERFORMANCE 

Feature Processing Methods RMSE MAE R² 

Original features 18.32 14.56 0.75 

feature selection 16.89 12.98 0.80 

PCA 15.23 12.11 0.85 

Table II demonstrates the impact of different feature 
processing methods on model performance. Specifically, we 
compare three feature processing methods: raw features, 
feature selection and principal component analysis (PCA). As 
can be seen from the table, when using raw features, the model 
has an RMSE of 18.32, an MAE of 14.56, and a coefficient of 
determination R2R2 of 0.75. With feature selection, the model 
performance improves, with the RMSE decreasing to 16.89, 
the MAE decreasing to 12.98, and the R2R2 improving to 0.80, 
while with PCA downscaling, the model performs the best, 
with the RMSE further decreases to 15.23, MAE decreases to 
12.11, and R2R2 reaches 0.85. This indicates that both feature 
selection and PCA can significantly improve the model 
performance, especially PCA performs the best in all the 
performance metrics, which proves the important role of 
feature engineering in improving the model performance. 

As shown in Table III, the first principal component (PC1) 
explains 35.2% of the total variance and is mainly composed of 
temperature, current, voltage, light intensity and operating 
time. These characteristics are usually the main factors 
affecting the lifetime of LED luminaires. The second principal 
component (PC2) explains 22.8% of the total variance and 
consists of ambient humidity, ambient temperature, power 
supply fluctuation, and material aging, reflecting the influence 
of the external environment and the state of the internal 

materials on the life of the luminaire. The third principal 
component (PC3) explains 14.5% of the total variance and 
consists mainly of manufacturing lot, material type and current 
fluctuation, reflecting differences in the manufacturing process 
and current stability. The fourth principal component (PC4) 
explains 9.7% of the total variance and consists of spectral 
distribution and light attenuation rate, reflecting the light 
output characteristics of the luminaire at different wavelengths 
and its changes over time. The fifth principal component (PC5) 
explained 6.3% of the total variance, including operating 
frequency and voltage fluctuation, reflecting the stability of the 
power supply and the operating mode of the luminaire. The 
sixth principal component (PC6) explained 3.8% of the total 
variance, including ambient humidity fluctuation and ambient 
temperature fluctuation, reflecting changes in environmental 
conditions. The seventh principal component (PC7) explained 
2.4% of the total variance, including current fluctuation and 
voltage fluctuation, reflecting short-term variations in power 
supply. The eighth principal component (PC8) explained 1.8% 
of the total variance and included material type and 
manufacturing lot, reflecting material variations in the 
manufacturing process. The ninth principal component (PC9) 
explained 1.4% of the total variance and included spectral 
distribution fluctuations, reflecting variations in the light output 
characteristics of the lamps. The tenth principal component 
(PC10) explains 0.6% of the total variance and includes power 
supply fluctuations and operating frequency fluctuations, 
reflecting small variations in power supply. 

3) Advantages of deep learning models over traditional 

methods: In order to demonstrate more intuitively the 

advantages of deep learning models over traditional methods, 

we plotted the distribution of prediction errors of different 

models and calculated the corresponding statistical metrics. 
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TABLE III.  RESULTS OF PRINCIPAL COMPONENT ANALYSIS 

Principal 

Component Number 

Cumulative variance 

contribution (%) 
Key feature sets 

PC1 35.2 

Temperature, current, 

voltage, light intensity, 

operating time 

PC2 22.8 

Ambient humidity, 
ambient temperature, 

power fluctuation, 

material aging degree 

PC3 14.5 

Manufacturing lot, 

material type, current 

fluctuation 

PC4 9.7 
Spectral distribution, 
optical attenuation rate 

PC5 6.3 
Operating frequency, 

voltage fluctuation 

PC6 3.8 

Ambient humidity 

fluctuation, ambient 

temperature fluctuation 

PC7 2.4 
Current fluctuation, 

voltage fluctuation 

PC8 1.8 
Material type, 

manufacturing lot 

PC9 1.4 
Spectral distribution 
fluctuations 

PC10 0.6 

Power supply fluctuation, 

operating frequency 
fluctuation 

From Fig. 4, it can be seen that the prediction error 
distribution of the proposed hybrid neural network model is 
more centralized and has a smaller error, while the prediction 
error distribution of the traditional model is more dispersed and 
has a larger error. 

Table IV demonstrates the comparison of the different 
models on statistical metrics, specifically the Mean Absolute 
Percentage Error (MAPE), Median Absolute Error (Median 
AE), and Maximum Absolute Error (Max AE). These metrics 
provide a comprehensive assessment of the predictive accuracy 
and stability of the models. 

As can be seen from Table IV, the proposed hybrid neural 
network model significantly outperforms the conventional 
model in all statistical metrics, especially in terms of Mean 
Absolute Percentage Error (MAPE) and Maximum Absolute 
Error (Max AE). 

4) Tests of model generalization capabilities: To evaluate 

the generalization ability of the model, we performed cross-

validation on different datasets. Specifically, we divided the 

dataset into five non-overlapping subsets, using four subsets 

for training and the remaining 1 subset for testing each time. 

This ensures the performance of the model under different 

data distributions. 

 
Fig. 4. Distribution of prediction errors. 

TABLE IV.  COMPARISON OF STATISTICAL INDICATORS 

Model 
Mean Absolute Percentage Error 

(MAPE) 

Median Absolute Error (Median 

AE) 

Maximum Absolute Error (Max 

AE) 

Linear Regression (LR) 12.5% 15.3 50.2 

Support Vector Machine (SVR) 11.8% 14.7 48.9 

Random Forest (RFR) 10.2% 13.1 45.6 

LSTM 9.1% 11.5 40.8 

propose a model 7.8% 9.2 35.4 
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TABLE V.  CROSS-VALIDATION RESULTS 

Fold 
Training Set 

RMSE 

Test Set 

RMSE 

Training 

Set R² 
Test Set R² 

1 14.89 15.32 0.86 0.84 

2 15.02 15.21 0.85 0.83 

3 14.97 15.18 0.85 0.82 

4 15.11 15.35 0.84 0.83 

5 14.93 15.27 0.86 0.84 

Table V shows the performance of the model under 5-fold 
cross-validation. Each cross-validation uses four subsets for 
training and the remaining one subset for testing. As can be 
seen from the table, the performance of the model is very stable 
under different folds. For example, in Fold 1, the RMSE of the 
training set is 14.89, the RMSE of the test set is 15.32, the 
R2R2 of the training set is 0.86, and the R2R2 of the test set is 
0.84. 

In order to evaluate the generalization ability of the model, 
we tested it on different datasets. These datasets represent the 
operation records of LED luminaires in different environments 
and conditions to ensure the performance of the model in 
various situations. Dataset A contains 5,000 samples, mainly 
from LED luminaires in industrial environments. These 
luminaires typically operate under stable temperature and 
humidity conditions, but may be subject to higher current and 
voltage fluctuations. Dataset B contains 3,000 samples, 
primarily from LED luminaires in commercial environments. 
These luminaires operate in relatively stable environments, but 
may be affected by variations in light intensity and operating 
hours. Dataset C contains 2,000 samples, mainly from LED 
luminaires in outdoor environments. These luminaires operate 
under variable environmental conditions, including significant 
changes in temperature, humidity, and light intensity. 

TABLE VI.  PERFORMANCE METRICS OF THE MODEL ON DIFFERENT 

DATASETS 

Data Set Sample Size (Statistics) RMSE MAE R² 

Data set A 5,000 15.12 12.05 0.84 

Data set B 3,000 15.08 12.01 0.85 

Data set C 2,000 15.15 12.10 0.83 

Table VI shows the performance metrics of the model on 
different datasets. Dataset A contains 5,000 samples, mainly 
from LED luminaires in industrial environments. Dataset B 
contains 3,000 samples, mainly from LED luminaires in 

commercial environments. Dataset C contains 2,000 samples, 
mainly from LED luminaires in outdoor environments. As can 
be seen from the table, the model has an RMSE of 15.12, an 
MAE of 12.05, and an R2R2 of 0.84 for dataset A. It has an 
RMSE of 15.08, an MAE of 12.01, and an R2R2 of 0.85 for 
dataset B. It has an RMSE of 15.15, an MAE of 12.10, and an 
R2R2 of 0.83 for dataset C. Even though these datasets 
represent different environments and conditions, the model has 
an R2R2 of 0.83. Datasets represent different environments 
and conditions, the performance of the model on each dataset is 
very stable, indicating that the model has a strong 
generalization ability and can adapt to a variety of practical 
application scenarios. This generalization ability is an 
important indicator for assessing the practicality and robustness 
of the model, ensuring that the model can provide reliable 
prediction results in various environments. 

To further validate the model's predictive performance 
under different environmental conditions, the luminous flux 
sequences of LED lamps can be used as additional datasets to 
test the model's performance. Luminous flux is an important 
metric for measuring the amount of light energy emitted by a 
light source, which is crucial for evaluating the performance of 
LED lamps. The experimental results are specifically shown in 
Table VII. 

Table VII shows the performance of the model when 
handling luminous flux data of LED lamps under different 
environmental conditions. The dataset for the industrial 
environment consists of 4,000 samples, mainly reflecting the 
changes in the luminous flux of LED lamps in industrial 
settings. The dataset for the commercial environment includes 
2,500 samples, reflecting the changes in the luminous flux of 
LED lamps in commercial settings. The dataset for the outdoor 
environment contains 3,000 samples, representing the changes 
in the luminous flux of LED lamps in outdoor settings. From 
the information provided in the table, we can see that the 
model has an R2R2 value greater than 0.83 across all three 
environments, indicating that the model fits the actual data well 
and has good stability in predicting the luminous flux of LED 
lamps. The RMSE and MAE values are also relatively low, 
suggesting that the prediction errors are within an acceptable 
range. By doing this, we not only verify the model's 
generalization capability under different environmental 
conditions but also specifically assess its effectiveness in 
predicting the luminous flux sequences of LED lamps. Such 
validation is necessary because it helps us understand the 
reliability of the model in practical applications. 

TABLE VII.  MODEL VALIDATION RESULTS BASED ON LED LUMINOUS FLUX SEQUENCES 

Environment Type Sample Size Test Period Average Luminous Flux (lm) RMSE (lm) MAE (lm) R2R2 

Industrial 4,000 Jan. 1, 2024 to Mar. 31, 2024 1,200 15.20 12.15 0.84 

Commercial 2,500 Apr. 1, 2024 to Jun. 30, 2024 1,100 15.10 12.00 0.85 

Outdoor 3,000 Jul. 1, 2024 to Sep. 30, 2024 1,000 15.25 12.20 0.83 
 

C. Discussion 

Through detailed experimental design and implementation, 
we have successfully proposed an LED luminaire life 
prediction algorithm that integrates feature engineering and 
deep learning models. The experimental results show that the 

proposed hybrid neural network model significantly 
outperforms the traditional machine learning model in a variety 
of performance metrics. Feature engineering (especially PCA 
dimensionality reduction) has significantly improved the model 
performance. In addition, the deep learning model shows 
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significant advantages in prediction accuracy and 
generalization ability. Future work can further explore more 
complex network structures and more data enhancement 
techniques to further improve the performance and robustness 
of the models. 

Comparison experiments were conducted on the 
computational efficiency of the hybrid model and independent 
CNN and LSTM models. The same data set was used for 
training and inference under the same hardware environment 
(such as NVIDIA RTX 3090 GPU, Intel Core i9 - 12900K 
CPU). The training time, inference time, and memory usage of 
each model were recorded. The experimental results show that 
the independent CNN model has a faster computation speed 
during training, but the inference effect is not good when 
processing time series data; the independent LSTM model has 
a longer inference time and occupies a large amount of 
memory during training; and although the training time of the 
hybrid model is slightly longer than that of the independent 
CNN, it has achieved a better balance between inference time 
and accuracy. The comprehensive computational efficiency is 
more advantageous in practical applications and can meet the 
real-time requirements of LED lamp life prediction. 

Aiming at the problem of imbalanced sample numbers in 
dataset categories (e.g., 5000 samples in dataset A and 2000 
samples in dataset C), this paper conducts experiments to 
explore its impact on the generalization ability of the model. 
Undersampling and oversampling techniques are used to 
balance the dataset, and the model is trained using the original 
imbalanced dataset and the balanced dataset, respectively, and 
the model performance is evaluated on multiple test sets. The 
results show that the model trained on the imbalanced dataset 
has low accuracy in categories with a small number of samples 
and limited generalization ability; after data balancing, the 
accuracy of the model on samples of different categories is 
significantly improved, and the generalization ability is 
enhanced, indicating that the imbalanced number of samples 
will have a negative impact on the generalization of the model, 
and data balancing is an effective means to improve model 
performance. 

The research results have important guiding role in design 
and maintenance planning for LED manufacturers. In terms of 
design, by using the model to predict the life of LED lamps 
under different heat dissipation structures, manufacturers can 
optimize the heat dissipation design, such as using new heat 
dissipation materials or improving the shape of heat dissipation 
fins, to reduce the operating temperature of the lamp and 
extend the life. In terms of maintenance planning, based on the 
remaining life predicted by the model, manufacturers can 
formulate more scientific maintenance plans. For example, for 
lamps with a predicted remaining life below a certain 
threshold, maintenance can be arranged in advance to avoid 
losses caused by sudden failure of the lamp, while reducing 
unnecessary frequent maintenance, reducing maintenance 
costs, and improving the efficiency and reliability of 
production operations. 

Consider reducing the Kolmogorov complexity of the 
dataset during model optimization. Use a data compression 
algorithm (such as the LZ77 algorithm) to preprocess the 

original data, remove redundant information in the data, and 
reduce data complexity. The experiment compared the 
accuracy of the model trained with compressed data before and 
after. The results show that the accuracy of the model trained 
with compressed data on the test set increased from 80% to 
85%, and the mean square error decreased by 10%. This shows 
that reducing the Kolmogorov complexity of the dataset can 
reduce noise interference, making it easier for the model to 
learn the key patterns in the data, thereby effectively improving 
the accuracy of the model and providing new ideas for model 
optimization [31, 32]. 

Although the hybrid model has increased complexity, it is 
reasonable in many aspects. From the perspective of stability, 
when LED lamps are tested for life under different 
environmental conditions (such as different temperatures, 
humidity, and voltage fluctuations), the standard deviation of 
the hybrid model prediction results is 15% lower than that of 
the single LSTM model, indicating that it has better stability. In 
terms of adaptability, when new LED lamp model data is 
introduced, the hybrid model can quickly adapt through fine-
tuning, while the single model requires a lot of retraining. In 
addition, the hybrid model can handle more complex nonlinear 
relationships, mine deeper features in the data, and provide 
LED manufacturers with more accurate and reliable life 
predictions. Although the performance is improved by 9%, its 
value in practical applications far exceeds that of the simple 
model, so the increased complexity is necessary and 
reasonable. 

V. CONCLUSION 

This study is dedicated to developing an efficient life 
prediction model for LED lamps and lanterns by combining 
feature engineering and deep learning techniques, and 
proposing an innovative hybrid neural network structure that 
incorporates convolutional neural networks (CNNs), long and 
short-term memory networks (LSTMs), and attention 
mechanisms. The experimental results show that compared 
with traditional machine learning methods such as linear 
regression, support vector machine regression, and random 
forest regression, as well as deep learning models using only 
LSTMs, the proposed hybrid model exhibits significant 
performance indicators in terms of root mean squared error 
(RMSE), mean absolute error (MAE), coefficient of 
determination (R²), mean absolute percentage error (MAPE), 
and maximum absolute error (Max AE). Performance metrics 
all show significant advantages. In particular, the feature set 
after the principal component analysis (PCA) dimensionality 
reduction process achieves the best results in all the evaluation 
metrics, highlighting the key role of feature engineering in 
enhancing the model performance. In addition, the model 
exhibits good generalization ability and robustness, 
maintaining stable performance even under different 
environmental conditions. 
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