(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

Smart Insoles for Multi-User Monitoring: A Case
Study on Received Signal Strength Indicator-Based
Distance Measurement

Victor Huilca Cabay®, Alexandra Flores®, Paidl Herndn Machado Herrera®, Byron Paul Huera Paltan
Department of Informatics and Electronics, Escuela Superior Politécnica De Chimborazo, Riobamba, Ecuador 060150

Abstract—In the current context of high adoption of wearables
and Internet of Things (IoT) devices, this work develops a
smart insole system to measure the distance between users using
the RSSI signal (Received Signal Strength Indicator). ESP32
WROOM microcontrollers with Bluetooth Low Energy, Wi-Fi,
and multiple functionalities were used. The prototype includes
sensors to count steps, detect activity (walking/running) and a
configurable alarm to alert when the distance is less than a
threshold. Collected data are sent directly and in real-time to
a database using the ThingSpeak web platform, which allows to
visualize the data acquired from the insole sensors. Using the
RSSI signal provided by the Bluetooth LE module, a significant
response was interpreted and modeled using a multilayer per-
ceptron (MLP) neural network, achieving an average distance
estimation accuracy of 90.89% using data measured in real time.

Keywords—Internet of Things; RSSI; smart insole; distance;
wearables; neural network

I. INTRODUCTION

Modern electronics have achieved the miniaturization of
devices and rapid processing speeds, reaching a level of
integration that has made it possible to include computational
capabilities in everyday objects. In addition, garments can ad-
vantage over the potential of digital electronics, incorporating
sensors and actuators. Two strong areas, industry and scientific
research, are promoting this type of device, commonly called
wearables [1]. Typically, wearables gather user data related
to specific activities or physiological parameters. Usability,
discretion, and reliability are the key points involved in the de-
sign of these devices. Furthermore, measurement precision and
reliability play an important role, particularly in professional
sports [2] and health applications [3]], where portable devices
are intended to replace or at least act as closely as possible with
high-quality laboratory and hospital devices. Activity trackers,
which incorporate inertia detection [4], are one of the most
popular types of wearable devices, taking advantage of the
consumer’s need to maintain healthy behaviors, stay active,
and take care of their physical condition. Currently, there are
wearable devices with several sensors that are of great help in
collecting body data in general [5], [6], but none include cell
phones and devices from the Global Positioning System (GPS)
that determine the distance between devices or users. These
wearable devices are very useful when it comes to monitoring
the behavior and movement of people; An example of this is
human walking [7]], which is one of the most common activities
that humans perform from an early age. This activity provides
us with several useful data to determine aspects related to

the health of the individual and also considerations in the
sports area. Plantar pressures in a walk provide important
information on the duration and symmetry of gait cycles [8];
With this we can determine whether an individual walks in a
normal way or suffers from pathologies and abnormal plantar
conformations, as they often alter the functionality of the foot
with consequences throughout the muscular system of the
lower extremities and in the spine. Lately, intelligent insole
systems have come onto the market for individual use and
are mainly aimed at the sports area, allowing monitoring data
related to walking or running.

In [9], the authors propose the use of Smart Insole to
obtain an accurate step count directed to the real world. The
step counting method is based on the threshold differential
value of the mean plantar pressure. The results obtained
with this prototype indicate an accuracy of almost 100% in
measuring the count of steps. The Smart Insole FreeWalker
detailed in [10] works with a custom designed acquisition,
transmission, and reception unit. It is composed of an MPU-
6050 inertial unit that has an accelerometer and gyroscope,
fed 3.3 Vdc, a robust and sufficient microcontroller to carry
out the objective of the project. This device is capable of
identifying the steps during a gait cycle, both the acquisition
and the transmission of information being carried out in real
time. In [[11], the comparison of three methods is proposed to
estimate the distance by means of the received RSSI signal,
with which they obtain the indoor positioning and navigation
(IPIN). The proposed methodology is that of a novel multi-
step approach that combines the flat-earth model, the Friis free
space model, and the linear approximation model to measure
the distance from RSSI for smart devices with Bluetooth low-
energy connectivity (BLE). In addition, the authors propose an
improved RSSI averaging and smoothing algorithm to obtain
a better result, with which they claim a reduction of 13.4% in
the error of the measured distance.

This work presents the development of a smart insole
with user-friendly and reliable features, designed to monitor
human gait. Its primary function is to determine the distance
between two individuals, each equipped with a smart insole,
offering innovative applications in both sports and medical
fields. In sports, this technology facilitates training in pairs
or teams by ensuring that users maintain an optimal distance
to improve coordination and prevent accidents during physical
activity. In the medical field, smart insoles serve as a valuable
tool for physical rehabilitation, allowing the monitoring and
evaluation of patient progress in gait therapy. Additionally,
their implementation in sports competitions could help ensure

www.ijacsa.thesai.org

57| Page

https://orcid.org/0009-0009-8820-7316
https://orcid.org/0000-0002-7726-582X
https://orcid.org/0009-0004-5216-8654
https://orcid.org/0000-0002-1721-2574

(IJACSA) International Journal of Advanced Computer Science and Applications,

safe and efficient performance. To achieve this goal, a system
was developed using smart insoles capable of quantifying the
distance between two devices through the RSSI signal. The
technological solution uses ESP32 WROOM microcontrollers
with low-energy Bluetooth (BLE) modules, complemented by
sensors for step detection, activity analysis, and scheduled
notifications. The data collected are transmitted in real time to
a cloud database via the ThingSpeak platform [12], allowing
precise and continuous data analysis.

The paper is structured as follows. Section II describes the
system architecture. Section III provides a detailed explanation
of the system implementation along with each of the processes
involved. Section IV presents the numerical results obtained.
Finally, the conclusions are presented in Section V.

II. SYSTEM ARCHITECTURE

This section details the complete architecture of the smart
insoles system through electrical diagrams. Fig. [I] shows a
high-level schematic in its entirety. The system is composed
of the ESP-32 WROOM processing unit or microcontroller,
the FSR (Force sensing resistors) sensors connected by analog
pins, the MPU6050 accelerometer to identify the stroke phase,
the BLE module built into the ESP32 WROOM, to determine
the RSSI parameter, the Wi-Fi module to communicate be-
tween the smart insole and the ThingSpeak Web Server and
finally the 3.7 Volt battery used as the power supply of the
entire system.

FSR Pressure
Sensors

Accelerometer Microcontroller,

BLE RSSI

Fig. 1. High-level scheme of the smart insole system.

The diagram in Fig. 2] details the connection of all the
electronic elements used for the smart insoles, these are:

e The ESP32 WROOM microcontroller;
e A BLE module included in the microcontroller;

e Three FSR sensors (heel, right forefoot and left fore-
foot);

e The inertial module MPU6050;
e Three 220 ohm resistors;

e A 3.7 volt and 1000mAh battery.

Due to the versatility of the microcontroller used, it is
possible to choose between a 5Vdc supply through the Vin pin,
or also a 3.3 Vdc supply through the 3V3 pin; for this work
the 3.3Vdc option has been used since with this voltage is also

Vol. 16, No. 3, 2025

fed directly to the MPU6050 inertial module. In the case of
FSR sensors, to properly condition their signals before entering
the reading into the analog inputs of the microcontroller, it
is necessary to make a voltage divider for each of these. To
measure RSSI, it is useful to determine the distance between
the two smart insoles using the Bluetooth BLE module built
into ESP32. As mentioned above, the 3.7Vdc battery is also
shown, which provides the adequate voltage for the operation
of the entire system, it should be noted that the above detailed
is considered for both the MASTER and SLAVE prototypes.

FSR sensor

F FSR sensor
Right Forefoot Left Forefoot
MPUG050
module
] 220Q 1
resistor
220Q N i i
resistor = J
Lo_n “ESFIE
resistor

Battery
+ E603450 7B20
E7B02-D60-1
+ 1000mAh 3.7V

fritzing
Fig. 2. Smart Insole system architecture.

Fig. 3] details the steps carried out by the master and slave
systems: in which the procedure is exactly the same, with the
difference that the slave will be the one that processes the RSSI
signal of the system. The raw signals are acquired by the three
pressure sensors, the accelerometer, and the RSSI, after which
all this data is processed by the microcontroller and determine
the phases of movement (stop, walk, and running), distance
traveled, and distance between the two individuals through
the algorithms. Using the Wi-Fi module, this information is
transmitted to the ThingSpeak platform for visualization and
can later be exported in .zls format for further analysis of the
collected data.

GENERAL DIAGRAM OF MASTER AND SLAVE SYSTEMS

Raw signal Signals
acquisition processing |

I

WEB SERVER

Of the three FSRs,
the accelerometer From E5P32

and the BLE-RSSI

Fig. 3. Conceptual diagram of the MASTER/SLAVE smart insole system.

www.ijacsa.thesai.org

58| Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

III. IMPLEMENTATION

The elements integrated into the smart insole system are
described in detail below:

A. Processes for Reading Data from FSR Sensors

The procedure of obtaining the step count begins with the
analysis of the FSR 402 and FSR 406 sensors. The initial
stage involves collecting the signals from each of these sensors.
Since these sensors operate by changing their resistance in
reaction to applied force, it is crucial to condition their signals
utilizing a voltage divider circuit, as depicted in Fig. {i] This
voltage divider converts resistance changes into an analog
signal for processing. To analyze analog signals more precisely
and reliably, a mapping is needed to discretize the output of
the voltage divider to a value between 0 and 5000, which is
more manageable for the electronic field.

Battery ——
L 1
o = ESP-WROOM-32

R1 A ND|
1 £5% P e —1_—< o2
220Q = 23

=en 1022
FSR sensor +_W ﬁ% i ,,\J,L L —< 2 g
Right Forefoot o fresislol 5300« s by S S g =
W5, [“ —< g8
FSR sensor resistor 3300 l —< £5
Left Forefoot o8
v < o0g
13 resistor —ta?

FSR sensor
Heel

HESEaEaaaaEaE|

Fig. 4. Smart insole system wiring diagram.

B. Processes for Counting Steps and Identify Walk

The system initiates the step counting phase by pressing the
heel sensor, then applies pressure to the right forefoot sensor,
and completes the sensing process by applying pressure to the
left forefoot sensor, which corresponds to the heel strike, mid-
stance, and toe-off phases. To ensure accurate step detection,
a state variable is implemented. This variable helps the system
recognize when the heel sensor has already been pressed,
preparing it to read subsequent inputs from the forefoot sen-
sors. This mechanism ensures that only valid step sequences
are counted. In addition, a control mechanism is integrated to
distinguish between isolated steps and continuous walking. To
achieve this, a fine-step variable is used to determine whether
the user has taken more than two consecutive steps, which is
considered the threshold to detect the beginning of a walk. To
further refine the identification of steps, a function was used
to store time stamps, allowing the system to measure the time
difference between successive steps. The system then compares
this difference to a predefined update rate value, enabling it
to distinguish between a walking state and a stationary state.
Algorithm [I] details this process.

C. Process for Determining the Run

This section analyzes the method for determining when
the individual utilizing the smart insole starts a race. We have

Vol. 16, No. 3, 2025

Algorithm 1 Step Counting and Walk Detection

1: Initialize: step_count, motion_state, start_steps, com-
pleted_steps, walking < false

2: Set Thresholds: heel_activation, forefoot_low

Detect Step

4: if heel_pressure > heel_activation and forefoot_pressure
< forefoot_low then

5: motion_state <— 1, last_time < get_current_time() (if
first step)

6: end if

7. Confirm Step

8: if motion_state and heel_pressure > heel_release and
forefoot_pressure < forefoot_release then

9: step_count++, motion_state <— 0, start_steps++, com-
pleted_steps++

10: end if

11: Check Walking

12: if completed_steps > step_threshold and time since
last_time < time_window and not running then

13: walking < true, last_time < get_current_time()

14: end if

15: Reset If Inactive

16: if time since last_time > time_window then

17: start_steps, completed_steps <— 0, walking < false

18: end if

hed

selected the IMU MPU6050 sensor for this purpose because it
provides acceleration data across three critical axes. X, Y, and
Z, essential for analysis and comparison in this context. Due
to the placement of the sensor, it is adequate to perform the
analysis solely on the X-axis, as it exhibits the most significant
variation throughout the running movement. The Algorithm [2]
determines whether a user is running based on acceleration
measurements from the IMU sensor on X —axis. First, it reads
the absolute acceleration and scales it by multiplying it by a
factor of 5. If the acceleration exceeds a predefined threshold,
it indicates the start of movement, storing the timestamp. If
acceleration remains above the threshold with control = 1, it
checks whether the time difference between detections is less
than the running frequency threshold. If successive peaks are
detected within this time window, a hit counter is incremented.
When more than three peaks are detected within the running
frequency, the system confirms that the user is running. If too
much time passes without detecting new acceleration peaks,
the algorithm assumes that the user has stopped running,
resetting the variables. Finally, if hit_coun is reset to 0, the
function ensures that the running is also set to false, preventing
false running detections.

D. Process for Determining the Distance Traveled

In this section of the study, the distance traveled should
be measured while keeping in mind whether the walking and
running stages have already started. The logic followed is
detailed in Algorithm [3]

The Algorithm 3| determines the distance traveled. It begins
by establishing parameters including the step length and update
interval, and initializing the required variables. The method
gets the current time, computes the distance by multiplying the
step count by the average step length using (I, and displays

www.ijacsa.thesai.org

59|Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Algorithm 2 Running Detection Algorithm

1: Initialize: motion_state, hit_count, running < false

2: Set Thresholds: acceleration_limit, time_window,
hit_threshold

3: Measure Acceleration: acceleration < abs(sensor_data)
X scale

4: Detect Motion

5: if acceleration > acceleration_limit then

6: motion_state < 1, last_time < current_time()

7 if time since last_time < time_window then

8 hit_count++

9

: else
10: hit_count < 0, motion_state < 0
11: end if
12: end if

13: Determine Running

14: if hit_count > hit_threshold and time since last_time <
time_window then

15: running < true

16: else

17: running < false, hit_count < 0

18: end if

19: return running

Algorithm 3 Distance Traveled Calculation

1: Initialize: previous_time, current_time, steps, state
2: Set Parameters: step_length, update_interval

3: if time since previous_time > update_interval then
4: current_time <— get_current_time()

5: distance < steps x Average_Steps

6: Print ”Steps:”, steps, “Distance Traveled:”, distance
7: if walking and not running then

8: Print "Walking”

9: state < 1

10: else if not walking and not running then
11: Print ”Stopped”

12: state <— 0

13: else if running then

14: Print "Running”

15: state <— 2

16: end if

17: previous_time <— current_time

18: end if

19: Delay 100 ms

the number of steps and the distance traveled every time the
designated update interval has passed. It then checks the user’s
activity state: if the user is walking (but not running), it prints
Walking and sets the state to 1; if the user is stopped, it prints
Stopped and sets the state to 0; if running, it prints Running
and sets the state to 2. After updating the state, it records
the current time as previous_time for the next interval and
introduces a 100 ms delay to control the update frequency.

d = (s* Aa) (1)

where: d is the distance traveled, s is the number of steps
and Aq is the average step length.

Vol. 16, No. 3, 2025

E. Mechanism to Evaluate the Distance between Two Individ-
uals

The interpersonal distance between two smart insoles
(Master and Slave) is determined using RSSI (Received Sig-
nal Strength Indicator) values through BLE communication.
The ESP32 modules transmit signals, and RSSI readings are
translated into distances measured in meters. A multilayer
perceptron (MLP) neural network was used due to the non-
linear relationship between RSSI values and distance, which
is influenced by elements such as interference, reflections, and
signal attenuation in the surroundings. Although linear models
such as regression could serve as an initial approximation,
environmental variability induces data fluctuations that require
a more adaptable model. Initially, 200 samples were used;
however, to enhance the model’s generalization, data augmen-
tation techniques were implemented, expanding the dataset
to 1000 samples, hence facilitating improved learning and
adaption to data variances.

1) Data processing: The dataset comprises 1000 RSSI val-
ues along with their associated real distances. To enhance the
learning efficiency of the model, the normalization of the data
was performed using Min-Max Scaling [[13]], which ensured
that the input values were maintained within a standardized
range. The application of this transformation was executed

using (2).

X — X
X/ _ min o)
Xmax - Xmin ()

where X is the original value and X’ is the normalized
value.

After normalization, the dataset was divided into three
subsets: 80% designated for training, 10% for validation, and
10% for testing. This division enables the model to train
effectively while ensuring robust generalization to new inputs.

2) MLP Neural network model: A deep multilayer percep-
tron (MLP) was constructed with three hidden layers compris-
ing 32, 16, and 8 neurons, respectively, as shown in Fig. [5]
We employed the ReLU activation function after each hidden
layer to incorporate non-linearity, thereby enhancing the ability
of the model to discern intricate correlations between RSSI
and distance. The Adam optimizer [14] was selected for
its efficiency in weight adjustments, facilitating accelerated
convergence and stability. The model was trained with Mean
Squared Error (MSE) [15] as the loss function to reduce the
discrepancy between the predicted and actual distances.

3) Training process: The model was trained for 500
epochs, during which training loss and validation loss were
continuously monitored to ensure proper learning and avoid
overfitting. A training vs. validation loss plot (Fig. [6) was
generated to visualize the learning process of the model over
time. The plot shows that the model learned the RSSI-to-
distance mapping correctly because the loss continued to
decrease with each epoch.

After training, the model produced the learned (@) to
predict the distance from the RSSI values.

Distance = 0.0386 x RSSI — 1.3271 3)

www.ijacsa.thesai.org

60| Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Input Layer € R Hidden Layer € R® Hidden Layer € B° Hidden Layer € R OQutput Layer € R

Fig. 5. Deep multilayer perceptron (MLP).

Training and Validation Loss (Deep MLP)

—— Training Loss

Validation Loss
0.14 A

0.12 A

0.10 A

0.08 A

Loss (MSE)

0.06

0.04 A

0.02 A

0.00 A

0 100 200 300 400 500
Epochs

Fig. 6. Training and validation loss plot.

The learned weight is represented by 0.0386, and the
learned bias from the first layer of the deep MLP is repre-
sented by -1.3271. This equation gives a number value to the
relationship between RSSI and distance, which makes it easier
to figure out distances in the future without having to retrain
the model. To evaluate the prediction of the model, a scatter
plot was generated (Fig. [7). In it, the blue dots represent the
predicted distances, while the red dashed line indicates the
ideal predictions, corresponding to a perfect correlation. The
predictions closely align with the ideal line, indicating their
high predictive accuracy.

In the Arduino GUI code, (]3) was used to calculate the
power values in decibels that correspond to changes in dis-
tance, as shown in Fig. [§] which shows these changes through
the Arduino serial interface. It is now feasible to achieve an
automatic variation of the distance values.

Vol. 16, No. 3, 2025

Test Set Results (Deep MLP)

1.04 @ Predictions s
=== ldeal Line ol
4
o .y
0.8 f/ °e
’ s
’a
/, °
%
/”’ .
0.6 R

Predicted Distance

041 -
L[] e
. .
Vg ?
0.2 V4
&
d(
02 0.4 06 08 10

Actual Distance

Fig. 7. Predictions vs Actual distances plot.

Ouiput Serial Monitor x

Data sent to ThingSpeak!
hesl 36: 0
right 29: 328
left 34: g1le6
Number of Steps: ¢
¥YOU ARE ESTOPPED

iz

RE25I: -64dEm

Distance: 0.44m

Data sent to ThingsSpeak!
hesl 36: 0

right 3%: 3812

left 34: 8la

Number of Steps: &

¥OU ARE STOPPED

RE8I: -64dEm

Distance: 0.44m

Fig. 8. Reading the arduino IDE serial port.

FE. Process to Transmit Data to ThingSpeak

The platform used for real-time visualization of the data
acquired by the intelligent insole is ThingSpeak [16]; this
allows us to collect and store data from sensors in the cloud
and develop IoT applications. Described as an open source
platform with an API to store and retrieve data from objects
using the HTTP protocol over the Internet or through LAN
(local area network) [17]. All data, user state, step count,
traveled distance, RSSI, and interpersonal distance are sent
to a ThingSpeak database. The system is configured to update

www.ijacsa.thesai.org

6l |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

every 15 seconds with an alert mechanism for distances below
the set threshold. This comprehensive monitoring supports
multi-user activity tracking and ensures accurate validation
of the functionality of the smart insole. Fig. |9 illustrates the
representation of the parameters on the ThingSpeak platform.

FITNESS SYSTEM
Channel ID: 2881579
0000036414565

PrivateView | PublicView ChamnelSettings Sharing APlKeys Datalmport/ Export

MAILAB Anclysis

Channeldofa < >

Channel Stats

Number of Steps User 1 Number of Steps User 2.

Fig. 9. Parameters on the ThingSpeak platform.

IV. NUMERICAL RESULTS

This section analyzes the test data from the smart insole
system across various scenarios and planned routes. The
system comprises two prototypes: a MASTER that transmits
the RSSI signal via Bluetooth and a SLAVE that processes
these RSSI data before transmitting them to the ThingSpeak
platform, which functions as an IoT database, enabling real-
time data visualization and export to Excel for subsequent
statistical analysis. Each prototype has an ESP32-WROOM
microcontroller, an MPU6050 module, and is powered by a
rechargeable lithium battery of type NCR18650B, as an option,
a Lipo battery of lower volume and higher performance or
characteristics is recommended for an optimal wearable design.
Several tests were performed to make sure that the RSSI-
based step-counting and distance measurement system worked.
These tests also found the system’s accuracy and error range,
which helped with the comparative analysis. Following the
methodology described in [I8]], routines for data collection
were designed, including two patterns per scenario: frontal
crossing and cross-crossing within a defined area of 5 x 5
m?2. For this work, the results of a single scenario called

Vol. 16, No. 3, 2025

”Crossing between smart insole prototypes in parallel opposite
directions” are shown. The configuration for this scenario is
illustrated in Fig. The calculation of the real distance
traveled by the participants was performed using a pedometer-
based system. To obtain the real distance, we relied on the
step count obtained from the system and multiplied it by an
average step length that was calibrated for the individual. The
speed of travel can be derived by calculating the time between
updates and dividing the distance by the time elapsed.

Furthermore, to reduce interference, we executed the exper-
iment in open and unobstructed environments, avoiding areas
with walls or reflections that can influence sensor results.
Outdoor testing was carried out on clear, dry days with
minimal wind to mitigate weather influences. We verified that
all equipment, including sensors, was fully charged before
testing and performed periodic checks during extended tests to
prevent battery-related data loss. In addition, test routes were
meticulously chosen to avoid significant obstructions, such as
trees or other objects, that could disrupt sensor readings, thus
ensuring accurate data collection.

Fig. 10. Example of crossing between smart insole prototypes in parallel
opposite direction.

A. Results of Crossing between Smart Insole Prototypes in
Parallel Opposite Direction

Table |I| shows the data obtained for this case of analysis, in
which it can be observed that the individual using the SLAVE
prototype has taken 7 steps during the 5 meters of established
area, for the user who uses the MASTER prototype visualizes
that it has taken 8 steps during the established area. The
average distance traveled by each prototype is 5.012 meters.
It can also be visualized that in the fourth value, the distance
measured by the system reflects 1.0404 meters; this distance
will be compared with the real distance in Table[[l and we will
also obtain a percentage of precision and realative error. The
relative error Re and the accuracy percentages were calculated

using Eq. @) and ():

www.ijacsa.thesai.org

Calc. Distance — Real Distance
he % = (Real Distance) x100
Accuracy % = 100% — Error % (5)
62| Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Furthermore, to compare our work with that proposed by
[11]], we used the root mean square error (RMSE), as detailed
in Eq. (6). For the data obtained in Table [[} the calculated
RMSE was 0.313. To compute the RMSE percentage as in
[11], we follow the procedure described in Eq. (7). The result
obtained is 8. 79%, which is less than the 13. 4% reported
in the reference work. This indicates that our proposed model
achieves superior performance.

_ .52
RMSE =, | - ;(yz 3:) (6)

Where, y; is the distance obtained, y; is the real distance,
and n is the total number of observations.

RMSE
RMSEy, = [———] x 100)
mean(y;)

TABLE I. CROSS BETWEEN SMART INSOLE PROTOTYPES IN PARALLEL
OPPOSITE DIRECTION

Samples RSSI Userl User2 Distance Distance
(dBm) Steps Steps Obtained Traveled
(m) (m)

1 -90 0 0 5.785 0

2 -92 0 1 4.335 0

3 -81 1 1 2.601 0.716
4 =72 2 3 1.040 1.432
5 -80 2 4 2.081 1.432
6 -92 3 5 4.029 2.148
7 -88 5 7 5.027 3.58
8 -91 7 8 5.297 5.012

TABLE II. INDIVIDUAL ERROR PERCENTAGE: CROSS BETWEEN SMART
INSOLE PROTOTYPES IN PARALLEL OPPOSITE DIRECTION

Sample Distance Obtained (m) Real Distance (m) | Re (%)
1 5.28 5.1 3.62
2 4.34 3.7 17.16
3 2.60 2.3 13.09
4 1.04 1.2 13.30
5 2.08 2.3 9.53
6 4.03 3.7 8.89
7 5.27 5.1 3.39
8 5.30 5.1 3.86

According to the findings presented in Table [[I] the mean
Re rate is 9.11% and the accuracy rate is 90.89%, as there
are no impediments influencing the RSSI signal. Furthermore,
it is evident that eight samples were collected during the test,
with one instance of proximity between prototypes where the
measurement fell below the stipulated minimum allowable
distance of 2 meters.

Finally, in Fig. [T1] we can see the system of multi-user
intelligent insoles, mounted or assembled on the shoe of each
person. We can also see graphically how the system works
by collecting the data from the FSR force sensors, and IMU
inertial, the interaction between Master and Slave prototypes,
the connection of each prototype to the Wi-Fi network of a

Vol. 16, No. 3, 2025

cell phone and the sending of the data to the ThingSpeak cloud
platform.

COMMUNICATION
BETWEEN MASTER
AND STAVE: "

Fig. 11. Multi-user intelligent insole system assembled in each person’s shoe.

V. CONCLUSIONS

In this work, a smart insole-based system has been pro-
posed that allows the main objective to measure the distance
between two users who interact with each other, be it in a
daily activity, sports, or even at a medical level, in which the
measurement and real information of the distance between in-
dividuals plays an important role. The prototype also includes
sensors to count steps, detect activity (walking/running), and
a configurable alarm to alert when the distance is less than
a threshold. This system allows the storage, visualization, and
monitoring of the data on the ThingSpeak Web platform, which
allows quick and timely access to the data obtained thanks
to the fact that the information is sent remotely to the web
through protocols of wireless communication based on the
internet of things. Distance estimation relies on the (RSSI), a
cost-effective but unstable method due to low signal power and
environmental obstructions. To address this, the work applied
an MLP neural network, achieving an average accuracy of
90.89% in real data. The easy use and easy insertion in a
common shoe make this system one of the best options as
a wearable system, in addition to having a cost well below
existing systems and with versatile features, which due to the
microprocessor features can be varied or added according to
the need of the end user.

In future work, the accuracy of the system could be
improved by optimizing the RSSI method, integrating multiple
sensors, and using advanced localization algorithms. In addi-
tion, its functionality could be expanded by creating a com-
plementary mobile application and integrating it with wearable
devices. Furthermore, new applications could be explored in
the healthcare sector, such as monitoring patients or elderly
individuals, and in high-density scenarios like mass events,
enhancing safety and accident prevention.

ACKNOWLEDGMENT

The authors express their sincere gratitude to the Uni-
versity of Calabria, Italy, for the support provided during
the development of this work. In particular, we extend our

www.ijacsa.thesai.org

63| Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

appreciation to the Department of Computer Engineering,
Modeling, Electronics, and Systems, DIMES, where the testing
and implementation of the system were carried out. We also
extend our heartfelt thanks to the Escuela Superior Politécnica
de Chimborazo, ESPOCH, Ecuador, for its valuable support
and collaboration in this research.

REFERENCES

[1] J. J. Rutherford, "Wearable Technology,” in IEEE Engineering in
Medicine and Biology Magazine, vol. 29, no. 3, pp. 19-24, May-June
2010, doi: 10.1109/MEMB.2010.936550.

[2] A. C. Seckin, B. Ates, and M. Seckin, “Review on wearable technology
in sports: Concepts, challenges and opportunities,” Appl. Sci., vol. 13,
no. 18, p. 10399, Sep. 2023, doi: 10.3390/app131810399.

[3] A.K. Yetisen, J. L. Martinez-Hurtado, B. Unal, A. Khademhosseini, and
H. Butt, “Wearables in Medicine,” Adv. Mater., vol. 30, no. 33, 2018,
Art. no. 1706910.

[4] A. Wang, G. Chen, J. Yang, S. Zhao and C. -Y. Chang, ”A Comparative
Study on Human Activity Recognition Using Inertial Sensors in a
Smartphone,” in IEEE Sensors Journal, vol. 16, no. 11, pp. 4566-4578,
Junel, 2016, doi: 10.1109/JSEN.2016.2545708.

[5S] M. Chan, D. Esteve, J.-Y. Fourniols, C. Escriba, and E. Campo, “Smart
wearable systems: Current status and future challenges,” Artif. Intell.
Med., vol. 56, no. 3, pp. 137-156, 2012.

[6] S. M. A. Igbal, I. Mahgoub, E. Du, M. A. Leavitt, and W. Asghar,
“Advances in healthcare wearable devices,” npj Flexible Electron., vol.
5, no. 1, pp. 1-14, Apr. 2021.

[71 G. Zizzo and L. Ren, “Position tracking during human walking using an
integrated wearable sensing system,” Sensors, vol. 17, no. 12, p. 2866,
Dec. 2017.

[8] M. N. Orlin and T. G. McPoil, “Plantar pressure assessment,” Phys. Ther-
apy, vol. 80, no. 4, pp. 399409, Apr. 2000, doi: 10.1093/ptj/80.4.399.

Vol. 16, No. 3, 2025

[9]1 FE Lin, A. Wang, C. Song, W. Xu, Z. Li y Q. Li, “A comparative study
of smart insole on real-world step count.,” IEEE Signal Processing in
Medicine and Biology Symposium (SPMB), vol. 1, no. 1, pp. 1-6, 2015.

[10] B. Wang, K. Rajput, W. Tam, A. Tung y Z. Yang, “FreeWalker: a
smart insole for longitudinal gait analysis,” 37th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), vol. 37, pp. 3723-3726, 2015.

[11] T. I Chowdhury et al., ”A multi-step approach for RSSi-based distance
estimation using smartphones,” 2015 International Conference on Net-
working Systems and Security (NSysS), Dhaka, Bangladesh, 2015, pp.
1-5, doi: 10.1109/NSysS.2015.7042942.

[12] S. Pasha, “Thingspeak based sensing and monitoring system for IoT
with MATLAB analysis,” Int. J. New Technol. Res., vol. 2, pp. 19-23,
Jun. 2016.

[13] S. G. K. Patro and K. K. Sahu, "Normalization: A preprocessing stage,”
Mar. 2015, arXiv:1503.06462.

[14] I. K. M. Jais, A. R. Ismail, and S. Q. Nisa, “Adam optimization
algorithm for wide and deep neural network,” Knowl. Eng. Data Sci.,
vol. 2, no. 1, pp. 4146, 2019

[15] Harville, D. A., and Jeske, D. R. (1992). "Mean squared error of
estimation or prediction under a general linear model,” Journal of the
American Statistical Association, vol. 87, no. 419, pp. 724-731, 1992.

[16] M. A. A. Razali, M. Kassim, N. A. Sulaiman, and S. Saaidin, “A
ThingSpeak IoT on real time room condition monitoring system,” in
Proc. IEEE Int. Conf. Autom. Control Intell. Syst. 12CACIS), Jun. 2020,
pp. 206-211.

[17] M. Artiyasa et al., “Comparative study of internet of things (IOT)
platform for smarthome lighting control using NODEMCU with Things-
peak and Blynk Web Applications,” FIDELITY : Journal of Electrical
Engineering, vol. 2, no. 1, pp. 1-6, 2020. doi:10.52005/fidelity.v2il.10.

[18] I P. 1. Pappas, T. Keller, S. Mangold, M. R. Popovic, V. Dietz and
M. Morari, A reliable gyroscope-based gait-phase detection sensor

embedded in a shoe insole,” in IEEE Sensors Journal, vol. 4, no. 2,
pp. 268-274, April 2004, doi: 10.1109/JSEN.2004.823671.

www.ijacsa.thesai.org

64| Page

	Introduction
	System Architecture
	Implementation
	Processes for Reading Data from FSR Sensors
	Processes for Counting Steps and Identify Walk
	Process for Determining the Run
	Process for Determining the Distance Traveled
	Mechanism to Evaluate the Distance between Two Individuals
	Data processing
	MLP Neural network model
	Training process

	Process to Transmit Data to ThingSpeak

	Numerical Results
	Results of Crossing between Smart Insole Prototypes in Parallel Opposite Direction

	Conclusions
	References

