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Abstract—Currently, multi-spectral image transmission faces 

challenges such as high storage costs and low transmission 

efficiency. Although various technologies are attempted to solve 

these problems recently, such as improving encoding methods in 

some algorithms, there are still issues such as insufficient 

compression ratio and slow processing speed. Therefore, the 

research focuses on optimizing the Joint Photographic Experts 

Group Lossless Standard (JPEG-LS) algorithm and constructing 

a multi-spectral image processing system. Regarding the JPEG 

LS algorithm process, improvements are made to the 

conventional encoding method by adopting sub-block 

compression strategy and block compression algorithm based on 

dynamic image bit width. The results show that the optimized 

JPEG LS algorithm has an average compression ratio of 5.81, 

which is higher than the comparison algorithm. The average 

compression time is 0.35 seconds, the average peak signal-to-

noise ratio (PSNR) is 43.6, and the average structural similarity 

(SSIM) is 0.97, all of which are better than the comparison 

algorithm. In terms of system performance, stability testing of 

each module shows that the overall system tends to be stable, and 

the resource utilization rate of the image compression module is 

low, with a large resource margin that can meet practical 

application needs. 
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I. INTRODUCTION 

In the current era of rapid technological development, 
multi-spectral images play an indispensable role in many 
cutting-edge fields due to their ability to simultaneously obtain 
information about target objects in multiple spectral bands [1]. 
In medical imaging diagnosis, multi-spectral images can help 
doctors more accurately identify diseased tissues and improve 
the accuracy of disease diagnosis. In terms of ecological 
environment monitoring, they can comprehensively evaluate 
changes in forest cover and water pollution levels, providing 
strong basis for ecological protection decisions. In the field of 
intelligent security, their unique spectral characteristics can be 
utilized to effectively identify disguised targets and enhance 
the reliability of security systems [2]. However, with the 
continuous expansion of multi-spectral image application 
scenarios, the rapid increase in data volume has made its 
transmission efficiency a bottleneck that restricts further 
development. 

Currently, research on multi-spectral image transmission 
has been explored in multiple directions. Some scholars have 
improved the compression efficiency of data to a certain extent 
by designing new transformation encoding methods. Some 
studies also attempt to combine machine learning techniques to 

intelligently extract and process image features in order to 
optimize the transmission process [3]. However, there are still 
significant shortcomings in existing research. On the one hand, 
existing compression algorithms struggle to achieve an ideal 
balance between compression ratio and image quality, and 
excessive compression often leads to severe loss of image 
details, resulting in damage to key information. On the other 
hand, when facing multi-spectral images with complex spectral 
features and diverse spatial structures, most algorithms have 
poor universality and cannot adaptively adjust to different 
image characteristics. 

This study focuses on optimizing the Joint Photographic 
Experts Group Lossless Standard (JPEG-LS) algorithm in 
order to overcome the aforementioned challenges. By deeply 
mining the algorithm core and closely integrating the unique 
attributes of multi-spectral images, the algorithm is customized 
and improved. It is expected to significantly improve the 
compression ratio without compromising image quality, while 
enhancing the algorithm's adaptability to various types of 
multi-spectral images, thus laying a solid foundation for the 
deep application of multi-spectral images in various fields. 

The innovation of this study lies in addressing the 
shortcomings of the JPEG-LS algorithm in multi-spectral 
image compression. By improving the conventional encoding 
method, a sub-block compression strategy and a dynamic 
image bit width-based block compression algorithm are 
proposed, and the algorithm flow is optimized. Moreover, the 
study designs a multi-spectral image processing system that 
integrates optimization algorithms to jointly improve the 
storage and transmission efficiency of multi-spectral images 
from both algorithm and system levels. 

The research is divided into four sections, with Section II 
being a summary of the relevant work. Section III is about 
optimizing algorithms and system design processes. Section IV 
is the performance analysis of algorithms and systems. Section 
V is a discussion of the research results, and Section VI is a 
summary of the entire study. 

II. RELATED WORKS 

Recently, with the continuous progression of image 
processing technology, many scholars have devoted themselves 
to researching how to optimize image transmission algorithms 
to improve image transmission efficiency [4-5]. Zhang et al. 
proposed a spatial pilot-assisted fast adaptive framework to 
address the stability issue of multi-mode fiber image 
transmission. This framework could adaptively adapt to 
changes in physical channels and achieve online model updates 
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during continuous transmission. The experiment outcomes 
indicated that this approach could achieve a transmission 
accuracy of over 92% within a few hours, and the pilot frame 
overhead was about 2% [6]. Wu et al. raised an image 
transmission method based on semantic segmentation, which 
could distinguish between regions of interest and non-regions 
of interest, and achieve high-quality transmission of regions of 
interest with low communication overhead. The experiment 
outcomes indicated that this method significantly improved 
performance compared to existing semantic communication 
methods and traditional methods [7]. Khandelwal et al. 
proposed a secure image steganography technique based on 
discrete wavelet transform and deep learning to improve the 
quality of steganographic images and extracted secret images. 
The experiment outcomes indicated that this approach had a 
PSNR of 51.66 to 38.69 dB and a SSIM index of 0.99, 
demonstrating high robustness [8]. Gupta et al. proposed an 
effective approach for encrypting images based on a mixture of 
watermarking and cryptographic techniques, which was based 
on two-level security and was used to securely and error free 
transmit images between devices supporting the Internet of 
Things. The experiment outcomes indicated that this approach 
had strong resistance to various types of password attacks [9]. 
Al Kadhimi et al. proposed a transmission system based on 
prototype low-density parity check codes and orthogonal 
frequency division multiplexing for underwater image 
transmission problems. The experimental results showed that 
the system outperformed traditional polar cyclic redundancy 
check and turbo code in terms of performance, and the received 
image reconstruction effect was better [10]. 

JPEG-LS is a lossless compression algorithm that predicts 
images by utilizing adjacent pixels that have already been 
encoded. It is suitable for scenes that require high image 
quality. Sun et al. raised a lossless image compression and 
encryption algorithm that combines JPEG-LS, neural networks, 
and hyper chaotic mapping to improve the prediction 
performance of edge texture regions. They also adopted a 
threshold segmentation method to further improve the image 
compression ratio. Experiment outcomes indicated that the 
algorithm had a good compression ratio and could resist 
various attacks [11]. Hua et al. optimized the JPEG-LS 
algorithm for compressing the intermediate data layer in neural 
networks, utilizing computational memory technology for 
global prediction and efficient compression. The results 
indicated that the compression ratio reached a high level and 
the hardware cost was relatively low [12]. Rahman et al. 
proposed a JPEG-LS algorithm that reduced image 
dimensionality and utilized prediction techniques, followed by 
encoding prediction errors using Huffman coding. The 
experiment outcomes indicated that the algorithm performed 
well in terms of average code length, compression ratio, 
encoding time, decoding time, and other aspects [13]. Al 
Qerom et al. proposed a new LICA-CS algorithm that 
optimized compression results by strategically minimizing 
inter channel correlation, and used a new subtraction method to 
compress image data column by column, successfully solving 
the problem of similarity and proximity of pixel values in 
adjacent columns, significantly reducing image size by 71%. 

Experimental results showed that this algorithm outperformed 
existing algorithms in terms of compression rate, while 
exhibiting significant improvements in execution time, with an 
average compression and decompression process of 1.93 
seconds [14]. Hamano et al. applied the JPEG-LS algorithm to 
encrypted images and analyzed its impact on image 
classification. The outcomes revealed that the JPEG-LS 
algorithm could notably reduce the data volume of encrypted 
images while maintaining classification accuracy. When the 
quality factor was 85, the classification accuracy could be 
maintained at over 98%, and the image data volume could be 
reduced by over 90% [15]. 

In summary, there have been various methods to improve 
the stability, security, and efficiency of image transmission 
technology by optimizing the JPEG-LS algorithm or other 
image processing techniques. However, these methods still 
need further optimization in the efficient transmission 
application of multi-spectral images. Therefore, the research 
optimizes the JPEG-LS algorithm and applies it to efficient 
transmission of multi-spectral images, in order to improve 
transmission efficiency and stability while ensuring image 
quality. The innovation of the research lies in the use of sub 
block compression strategy and dynamic image bit width 
improvement to improve compression efficiency of the JPEG-
LS algorithm. 

III. METHODS AND MATERIALS 

A. Optimizing the Design of the JPEG-LS Algorithm 

The JPEG-LS algorithm is suitable for compressing 
grayscale images and multi-spectral images, and its process is 
in Fig. 1. The JPEG-LS algorithm first calculates the gradient 
of the image, and then determines whether it is a flat area based 
on the gradient. If it is a flat area, conventional encoding is 
performed and output [16-17]. If it is not a flat area, it enters 
the adaptive correction step, predicts through the median 
predictor, processes by the context modeler, and finally 
performs Golomb encoding and run length encoding to output 
the compressed image. 

The JPEG-LS algorithm mainly includes two methods: run 
length encoding and conventional encoding. However, due to 
the high amount of image noise and large fluctuations in 
grayscale values, run length encoding is not suitable in this 
situation. Therefore, the research mainly focuses on improving 
conventional encoding methods. In the conventional encoding 
process, context modeling constructs a model based on the 
surrounding pixel values to better predict the current pixel 
value. Firstly, each pixel in the image is sampled, and its 
surrounding pixel values are referenced to establish a 
probability distribution model for predicting the possible 
values of the current pixel. The local gradient calculation is in 
Eq. (1). 
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Fig. 1. JPEG-LS algorithm flow. 

In Eq. (1), the local gradient values are 
1D , 

2D , and 
3D , 

and the pixel values at the four pixel positions are 
1x , 

2x , 
3x , 

and 
4x , respectively. The quantization standard for local 

gradient values is shown in equation (2). 
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In Eq. (2), the quantized gradient value is 
iQ , and the non-

negative threshold is 
1 2 3[ , , ]T T T . The calculation for non-

negative threshold is shown in Eq. (3). 
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In Eq. (3), the micro loss is near  and the image bit width is 

bpp . After quantifying each gradient, it can be fused into a 

whole. Meanwhile, a context parameter address index needs to 
be set, which represents a specific symbol. This address index 
can be used to define predictive information. Secondly, 
prediction is based on the context model to calculate the 
predicted value of the current pixel value, and the prediction 
difference quantization process is shown in Eq. (4). 
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In Eq. (4), the predicted difference is Err , and its 
quantized value is 'Err . Predictive encoding is the process of 
predicting the current pixel value based on known pixel values, 
and then encoding the prediction error. When performing 
predictive encoding, it is necessary to utilize context related 
parameters to better predict and encode the next pixel. These 
context-related parameters can include known pixel values, 
neighborhood information of pixels, and so on. By updating 
these parameters, the precision and effectiveness of predictive 
coding can be enhanced. When encoding prediction errors, it is 
necessary to convert them into a one-sided exponential 
distribution. This is because the unilateral exponential 
distribution has a smaller variance, which can better represent 
the noise and detail information in the image [18]. Meanwhile, 
by taking the modulus of the error, negative modulus can be 
avoided, thereby ensuring the stability of the encoding. Finally, 
the Gloomb encoding method is used to convert the error of the 
one-sided exponential distribution into a bitstream for storage 
and transmission. After encoding the current pixel, it is 
necessary to update the context-related parameters in order to 
better predict and encode the next pixel. 

The JPEG-LS encoding method has the problem of error 
sensitivity. To solve this problem, a sub-block compression 
strategy is proposed in the encoding process, which divides the 
image into independent non-overlapping sub-blocks for 
compression. However, this method may have an impact on 
compression performance and requires further optimization 
[19]. In traditional methods, dynamic range is generally 
calculated by quantifying bit width. However, the research has 
proposed a block compression algorithm based on dynamic 
image bit width, which expands statistics on the local dynamic 
range of each image sub-block to improve compression 
performance. The process of local dynamic range statistics is 
shown in Fig. 2. 
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Fig. 2. Local dynamic range statistical process. 

In Fig. 2, in the initial stage, sub-block partitioning is first 
carried out for the image. After completion, statistical sub-
block dynamic range is analyzed. After the statistical work is 
completed, the compression parameters are calculated. Then, it 
is necessary to determine whether the processed sub-block is 
the last sub-block. If the determination result is not the last sub-
block, then the next sub-block is extracted and the operation 
continues according to the steps described earlier. If it is 
determined as the last sub-block, the compressed stream is 
output and the entire process ends. The calculation of dynamic 
range parameters is shown in Eq. (5). 

2log (max min )bpp G G                      (5)
 

In Eq. (5), after the image is segmented, its maximum 
grayscale value is maxG  and its minimum grayscale value is 

minG . The minimum grayscale value can be considered as 0, 

resulting in a simplified dynamic range parameter as shown in 
Eq. (6). 

2(log (max ) 1)bpp floor G                      (6) 

In Eq. (6), the rounding down operation is floor . After the 

dynamic range of the segmented image is calculated, the 
maximum value of independently-encoded pixel values is 
calculated as shown in Eq. (7). 

max 2 1bppP                                    (7) 

In Eq. (7), the independently-encoded pixel value is P . 
The calculation of the quantization range of prediction error is 
shown in Eq. (8). 

max 2
1

2 1

P near
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
 

                         (8) 

In equation (8), the quantization range of prediction error is 

Range . In the Golomb encoding algorithm, the encoding 

length limit is shown in Eq. (9). 

2( (8, ))Limit bpp bpp                            (9) 

In Eq. (9), the parameter Limit  plays an important role in 

controlling the encoding length and optimizing the encoding 
efficiency in Golomb limited length encoding. The initial value 
of the context is calculated as shown in Eq. (10). 
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In Eq. (10), the initial value of the context is 
0A . The 

optimized JPEG-LS algorithm flow is shown in Fig. 3. 
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Fig. 3. Optimized JPEG-LS algorithm process. 
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In the optimized JPEG-LS algorithm process, first, one 
frame of image is input. Next, the image is divided into sub-
blocks, the dynamic range of the sub-blocks is calculated, and 
the dynamic range sub-block information is recorded. 
Afterwards, image sub-blocks are generated and parameter 
calculations and settings are performed based on them. The 
calculation for image sub-blocks is shown in Eq. (11). 

M N
K

m n





                                    (11) 

In Eq. (11), the image size is M N , the sub-block size is 

m n , and the number of sub-blocks is K . In another parallel 

branch, contrast calculation and noise suppression processing 
are performed on the input image to calculate micro contrast. 
The contrast calculation of image sub-blocks is shown in Eq. 
(12). 

 
2

1 1

m n

iji j
P P
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m n

 





 
                        (12) 

In Eq. (12), the sub-block contrast is C , the pixel value of 

pixel ( , )i j  in the sub-block is ijP , and the average pixel value 

of the sub-block is P . Then, the suspected target points are 
determined through multi-scale and multi-threshold 
segmentation, and the positions of the suspected target points 
are recorded. Then the JPEG-LS algorithm is applied to 
classify and compress the target and background, and finally a 
compressed stream is output. The sub-block occupancy of false 
alarm images is in Eq. (13). 

f

p

k
F

K
                                           (13) 

In Eq. (13), the proportion of false alarm image sub-blocks 

is pF , and the number of false alarm sub-blocks is fk . The 

target sub-block is represented by Eq. (14). 

t

p

k
T

K
                                           (14) 

In Eq. (14), the proportion of target sub-blocks is pT , and 

the number of target sub-blocks is 
tk . The performance of 

compression algorithms is affected by object detection 
algorithms, and low false alarm rates help improve 
compression ratios. 

In summary, the optimized JPEG-LS algorithm is designed 
to address the characteristics of multi-spectral images. Due to 
the high level of image noise and large fluctuations in 
grayscale values, the research focuses on improving 
conventional encoding methods. A probability distribution 
model is constructed through context modeling to predict pixel 
values, and the prediction error is converted into a one-sided 
exponential distribution during encoding to ensure stability. To 

address the issue of error sensitivity, a sub-block compression 
strategy is adopted, and a block compression algorithm based 
on dynamic image bit width is proposed to improve 
compression performance. The optimization process also 
includes sub-block partitioning of the input image, dynamic 
range statistics, contrast calculation, and noise suppression 
processing, ultimately compressing the output stream for target 
and background classification. 

B. Design of Multi-Spectral Image Processing System 

After optimizing the JPEG-LS algorithm, a multi-spectral 
image processing system is further designed to compress and 
encode images using the optimized JPEG-LS algorithm, in 
order to reduce storage and transmission costs. The framework 
of the multi-spectral image processing system is in Fig. 4. The 
system consists of control, image acquisition, server, image 
processing, and client modules. The control module obtains 
real-time status information and sends control signals. The 
image acquisition module receives the signal and collects 
image data, which is then transmitted to the server. The image 
processing module integrates optimization algorithms to 
compress the image and transmits it to the client via USB. The 
client interacts with the server to ensure correct reception and 
processing of the data. The image processing module includes 
data transmission, storage, and compression sub-modules, 
relying on relevant chips and platforms, combined with 
reversible component transformation and algorithms to achieve 
lossless image processing. 

In Fig. 4, the control module plays a role in obtaining and 
controlling real-time status information, including position, 
angle, and operating status, through sockets. Based on these 
status information, the control module will issue corresponding 
control signals for adjusting posture and other operations. 
Meanwhile, there is data exchange between the control module 
and the image acquisition module, which sends control signals 
to the image acquisition module. After receiving the control 
signal from the control module, the image acquisition module 
begins to collect image data [20]. The image data it collects 
will be transmitted to the server. The image processing module 
plays a critical processing role in the entire system, integrating 
the optimized JPEG-LS algorithm. It receives control signals 
from the server and processes image data based on these 
control signals. The image processing module compresses the 
image data to reduce the amount of data transmitted during the 
transmission process. The compressed stream-processed image 
data are transmitted to the client through a USB interface. The 
server receives image data from the image acquisition module 
and sends control signals to the image processing module [21-
22]. The client is the terminal of the system, which receives 
compressed stream image data transmitted through USB from 
the image processing module. Meanwhile, the client and server 
interact through real-time transmission protocol control signals 
to ensure that the client can correctly receive and process 
image data. The process of the control module is shown in Fig. 
5. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 3, 2025 

616 | P a g e  

www.ijacsa.thesai.org 

Control module Image acquisition 

module

Image processing 

module

Server Client

Real time status

Control signal

Image data

Control signal

Compressed stream

Control signal

Compressed

stream

Control

signal

 
Fig. 4. Framework of the system. 
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Fig. 5. Process of control module. 

The process begins with determining whether an upper 
level command has been received, and if not, it remains in a 
waiting state. If received, it enters the initialization phase, 
during which offset calculation will be performed. After 
initialization is complete, data collection begins, followed by 
calibration of acceleration and angular velocity data. Next is 
the unit conversion stage, where data fusion is performed after 
conversion using the Mahony filtering method? After data 
fusion, the expected angle and current angle are obtained 
separately, and the expected angular velocity is calculated 
through the angle loop PID. Based on the current angular 
velocity, the pitch angle motor, roll angle motor, and yaw angle 
motor are finally controlled through PWM and GPIO after PID 
processing in the angular velocity loop. 

The image processing module can be mainly divided into 
three sub-modules: data transmission, data storage, and image 

compression. In the data transmission module, the USB 
interface and CY7C68013A chip are fully utilized to efficiently 
transmit image data between the server and FPGA. This chip 
supports USB 2.0 protocol and its development toolkit is also 
very complete, providing reliable guarantee for stable data 
transmission. The data storage module uses DDR2 SDRAM, 
which can properly store multi-spectral images and compressed 
bitstreams, ensuring secure storage and easy access to data at 
any time. The image compression module is shown in Fig. 6. 

The image compression module relies on FPGA high-
performance platform, combined with reversible component 
transformation and optimized JPEG-LS algorithm, to perform 
lossless compression of multi-spectral images in space and 
spectrum. After decoding, the image can be completely 
consistent with the original image, thus achieving lossless 
processing of the image. 
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Fig. 6. Image compression module. 
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IV. RESULTS 

A. Performance Analysis of Optimizing the JPEG-LS 

Algorithm 

The hardware environment configuration for algorithm 
performance analysis adopted Intel (R) Core (TM) i7-6700HQ 
core, with a CPU frequency of 2.6GHz, 8GB memory, 1TB 
hard drive, and ran on the Windows 10 operating system. The 
software environment was configured as MATLAB 2022. 
During the block compression process of the JPEG-LS 
algorithm, the compression ratio and prediction error curves 
are in Fig. 7. Fig. 7 (a) indicates the compression ratio under 
different block sizes and micro loss degrees. As the block size 
increased, the compression ratio of the image gradually 
increased. As the degree of micro loss increased, the 
compression ratio of the image also gradually increased. When 
the micro loss was 1, the compression ratios for block sizes of 

8×32, 64×64, and 515×512 were 1.61, 3.13, and 5.55, 

respectively. When the block size was 512×512, the image 

compression ratios corresponding to micro loss degrees of 0, 1, 
2, and 3 were 3.12, 5.55, 6.51, and 7.32, respectively. Fig. 7 (b) 
shows the prediction error curves for full image compression 
and block compression. The prediction error range for full 
image compression was [-40,40], and for block compression 
was [-45,45]. The above data indicated that block compression 
had a larger fluctuation range of prediction error compared to 
full image compression. In the process of block compression, 
the boundaries of each block and the local characteristics 
within each block may introduce more uncertainty, making the 
distribution of prediction errors more dispersed and wider. 
However, full image compression may be relatively more 
stable during the prediction process due to considering the 
global characteristics of the entire image, and the range of 
prediction errors may be relatively small. Therefore, it is 
necessary to introduce dynamic range parameters in the block 
compression process of the JPEG-LS algorithm to obtain an 
optimized version of the algorithm. 
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Fig. 7. Compression ratio and prediction error curve. 
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Fig. 8. Comparison of compression effects of optimized JPEG-LS algorithm. 
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The compression effect comparison of the optimized JPEG-
LS algorithm is in Fig. 8. In Fig. 8, as the block size increased, 
the compression ratio of block compression and optimized 
JPEG-LS algorithm gradually increased, and the compression 
ratio of optimized JPEG-LS algorithm was larger, but the 
distance between the two gradually decreased. In Fig. 8 (a), the 

micro loss was 0. When the block size was 8× 32, the 

compression ratios of block compression and optimized JPEG-
LS algorithm were 1.05 and 2.73, respectively. When the block 

size was 128 × 128, the compression ratios of block 

compression and optimized JPEG-LS algorithm were 2.75 and 
3.11, respectively. In Fig. 8 (b), the micro loss was 1. When the 

block size was 64× 64, the compression ratios for block 

compression were 3.13, and the optimized compression ratio 
for the JPEG-LS algorithm was 5.06. In Fig. 8 (c), the micro 

loss was 2. When the block size was 8×32, the compression 

ratios of block compression and optimized JPEG-LS algorithm 
were 2.08 and 5.15, respectively. In Fig. 8 (d), when the micro 

loss was 3 and the block size was 16×64, the compression 

ratios of block compression and optimized JPEG-LS algorithm 
were 5.31 and 7.48, respectively. The results indicated that the 
optimized JPEG-LS algorithm had a high compression ratio 
and exhibited relatively stable performance with changes in 
block size. 

In order to verify the stability of the algorithm, the 
experiment was tested by changing the image type, image 
resolution, and noise level. The test results are shown in Table 
I. From the perspective of image type, the compression ratio of 
texture image was the highest (5.01), followed by landscape 
image (4.23) and figure image (3.87). In terms of image 
resolution, as the resolution increased, the compression ratio 
increased from 3.56 at 640*480 to 4.78 at 1920*1080. In terms 
of noise level, the lower the noise, the higher the compression 
ratio, which was 3.98 at low noise and 3.21 at high noise. The 
results showed that the compression performance of JPEG-LS 
algorithm was affected by many factors. In terms of image 
types, images with rich textures were easier to obtain higher 
compression ratio. The higher the image resolution was, the 
higher the compression ratio could be achieved. The noise 
level was negatively correlated with the compression ratio, and 

the lower the image noise, the higher the compression ratio. In 
practical application, the compression effect of JPEG-LS 
algorithm could be estimated and optimized according to 
image characteristics such as type, resolution, and noise. 

TABLE I.  TEST RESULTS OF THE ALGORITHM UNDER DIFFERENT 

PARAMETERS 

Parameter 

type 
Parameter value 

Compression 

ratio 

Prediction 

error range 

Image type 

Landscape 4.23 [-35, 35] 

Character 3.87 [-30, 30] 

Texture 5.01 [-40, 40] 

Image 

resolution 

640*480 3.56 [-32, 32] 

1280*720 4.12 [-38, 38] 

1920*1080 4.78 [-42, 42] 

Noise level 

Low noise (mean 0, 

variance 0.01) 
3.98 [-33, 33] 

Medium noise (mean 0, 

variance 0.05) 
3.65 [-36, 36] 

High noise (mean 0, 
variance 0.10) 

3.21 [-40, 40] 

To confirm the progressiveness of the optimized JPEG-LS 
algorithm proposed by the research, the experiment compared 
the algorithms in study [12], study [13], study [23] and 
reference [24], and the comparison of compression ratio and 
compression time of different algorithms is shown in Fig. 9. 
Fig. 9 (a) shows a comparison of compression ratios for 
various algorithms. The optimized JPEG-LS algorithm had an 
average compression ratio (ACR) of 5.81, the algorithm in 
study [12] had an ACR of 5.56, and the algorithm in study [13] 
had an ACR of 5.46. The ACR of the algorithm in reference 
[23] was 5.76, and that of the algorithm in study [24] was 5.74. 
Fig. 9 (b) shows a comparison of compression times for 
different algorithms. The optimized JPEG-LS algorithm had an 
average compression time (ACT) of 0.35s, the algorithm in 
study [12] had an ACT of 0.37, and the algorithm in study [13] 
had an ACT of 0.35s. The ACT of the algorithm in study [23] 
and the algorithm in study [24] was 0.36. 
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Fig. 9. Comparison of compression ratios and compression times for different algorithms. 
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Fig. 10. Comparison of PSNR and SSIM for different algorithms. 

The comparison of PSNR and SSIM of different algorithms 
is shown in Fig. 10. Fig. 10 (a) shows the comparison of 
PSNR. The PSNR of the optimized JPEG-LS algorithm was 
higher than 43, with an average of 43.6. The average PSNR of 
the algorithm in study [12] was 43.1, and the average PSNR of 
the algorithm in study [13] was 42.7. The average PSNR of the 
algorithm in study [23] was 43.4, and the average PSNR of the 
algorithm in study [24] was 43.2. Fig. 10 (b) shows the 
comparison of SSIM. The average SSIM of the optimized 
JPEG-LS algorithm was 0.97, the average SSIM of the 
algorithm in study [12] was 0.97, and the average SSIM of the 
algorithm in study [13] was 0.96. The average SSIM of the 
algorithm in study [23] was 0.95, and the average SSIM of the 
algorithm in study [24] was 0.96. Compared with existing 
algorithms in studies [12], [13], [23], and [24], the optimized 
JPEG-LS algorithm exhibited many advantages. In terms of 
compression ratio, this algorithm was higher than existing 
algorithms. In terms of compression time, it was comparable to 
various comparison algorithms. In terms of image quality 
assessment, its PSNR was superior to existing algorithms, and 
its SSIM was not inferior or even better. Overall, the optimized 
JPEG-LS algorithm performed well in compression 
performance and image quality preservation, making data 
processing more efficient. 

B. Performance Analysis of Multi-Spectral Image Processing 

System 

After the construction of the multi-spectral image 
processing system was completed, its performance was tested 
and analyzed. The stability test results of each module are in 
Fig. 11. Fig. 11 (a) shows the stability test results of the control 
module. As the number of tests increased, the stability time of 
the control module fluctuated, with an average stability time of 
0.21s. Due to the impact of scheduling and resource allocation 
of different tasks within the system when processing various 
control instructions, the stability time fluctuated. Fig. 11 (b) 
shows the stability test results of the image acquisition module. 
As the number of tests increased, the stabilization time 

gradually decreased. After 30 tests, the image acquisition 
module took 0.18 seconds to stabilize. As the testing 
progressed, the module gradually adapted to the working 
environment and workflow, resulting in improved collection 
efficiency and reduced time consumption. Fig. 11 (c) shows the 
stability test results of the image processing module. As the 
number of tests increased, the stability time showed a 
fluctuating downward trend. In the first 30 tests, the average 
stability time of the image processing module was 0.19 
seconds. The image processing process involved multiple 
algorithms and complex operations, and its stability was 
affected by various factors such as data volume and algorithm 
complexity, resulting in fluctuations in stability time. However, 
the overall downward trend may be due to the system’s 
adaptive adjustment of resource management and algorithm 
execution during operation, which improved processing 
efficiency. Overall, all modules tended to stabilize to a certain 
extent, providing a certain guarantee for the normal operation 
of the multi-spectral image processing system. 

The resource utilization of FPGA in the image compression 
module is shown in Table II. The usage of Lookup Table 
(LUT) was 27582, the total allowed resources of FPGA system 
was 203800, and the percentage of FPGA system was 13.5%. 
The usage of Block Random Access Memory (BRAM) was 38, 
the total allowed resources were 455, and the percentage of 
FPGA system was 8.4%. The usage of Digital Signal Processor 
(DSP) was 69, the total allowed resources were 840, and the 
percentage of FPGA system was 8.2%. The usage of 
input/output (I/O) was 57, the total allowed resources ere 500, 
and the percentage of FPGA system was 11.4%. The usage of 
Hybrid Memory Cube (HMC) was 2, the total allowed 
resources were 12, and the percentage of FPGA system was 
16.6%. The results indicated that in the image compression 
module, FPGA had a low utilization rate of various resources 
and a large resource margin to meet the further expansion 
needs of the system. Meanwhile, it also indicated that the 
current system was relatively reasonable in resource utilization, 
and there was no excessive use of resources. 
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(b) Image acquisition module
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(c) Image processing module  
Fig. 11. Stability test results of each module. 

TABLE II.  RESOURCE UTILIZATION OF FPGA 

Index 
Resource type 

LUT BRAM DSP I/O HMC 

Usage amount 27582 38 69 57 2 

Total resource quantity 20380 455 840 500 12 

Proportion 13.5% 8.4% 8.2% 11.4% 16.6% 
 

V. DISCUSSION 

According to the characteristics of multi-spectral images, 
the JPEG-LS algorithm was optimized and the corresponding 
processing system was designed. From the application point of 
view, the optimized JPEG-LS algorithm had significant 
application potential in the field of multi-spectral image 
compression. For example, in the field of remote sensing, the 
amount of multi-spectral image data was huge, and the high 
compression ratio of the optimization algorithm could 
effectively reduce the cost of data storage and transmission, so 
that a large number of image data collected by satellites and 
other equipment could be processed and transmitted more 
efficiently. In the field of medical imaging, multi-spectral 
images were used for disease diagnosis, and the optimization 
algorithm could improve the compression ratio on the premise 
of ensuring image quality, which helped to store and transmit 
medical images quickly and facilitate doctors to obtain accurate 
information in time for diagnosis [25]. 

The advantages of this research work are more prominent. 
In terms of algorithm optimization, by improving the 
traditional coding method, a probability distribution model was 
constructed to predict pixel values, and the prediction error was 
converted into a unilateral exponential distribution, which 
effectively solved the problem of poor adaptability of the 
original algorithm to image noise and gray value fluctuations, 
and improved the stability of the algorithm. Meanwhile, the 

sub-block compression strategy and the block compression 
algorithm based on dynamic image bit width were adopted to 
significantly improve the compression performance. In the 
aspect of system design, the modules of the multi-spectral 
image processing system had clear division of labor and work 
together, which could efficiently complete the tasks of image 
acquisition, processing, compression and transmission. Among 
them, the image compression module was based on FPGA 
high-performance platform, combined with reversible 
component transformation and optimization algorithm to 
achieve lossless image compression, and ensure the image 
quality. 

VI. CONCLUSION 

Aiming at the problems of error sensitivity and 
compression performance in the efficient transmission of 
multi-spectral images using the JPEG-LS algorithm, this study 
proposed to optimize the JPEG-LS algorithm. By adopting sub-
block compression strategy, dynamic image bit width and other 
improvement measures, the goal of reducing error sensitivity 
and improving compression performance was achieved, and a 
multi-spectral image processing system was constructed. 
Experimental results showed that the optimized JPEG-LS 
algorithm performed well under different parameters. When 

the micro loss was 1 and the block size was 512×512, the 

compression ratio could reach 5.55. Compared with other 
algorithms, the average compression ratio of the optimized 
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algorithm was 5.81, which was higher than that of study [12] 
(5.56), study [13] (5.46), study [23] (5.76) and study [24] 
(5.74), and the average compression time was 0.35s, which was 
comparable to other algorithms. The average value of PSNR 
was 43.6, which was higher than other comparison algorithms, 
and the average value of SSIM was 0.97, which was equivalent 
or better than some algorithms. In terms of the performance of 
the multi-spectral image processing system, the stability test 
results of each module were good, the average stability time of 
the control module was 0.21s, the stability time of the image 
acquisition module was reduced to 0.18s after 30 tests, and the 
average stability time of the image processing module was 
0.19s in the first 30 tests. In the image compression module, 
the utilization rate of FPGA to all kinds of resources was low, 
the utilization rate of LUT was 13.5%, BRAM was 8.4%, DSP 
was 8.2%, I/O was 11.4%, HMC was 16.6%, and there was a 
large resource margin. The research method effectively 
improved the compression performance of multi-spectral 
images, reduced the storage and transmission costs while 
ensuring the image quality, and provided a more efficient 
solution for the application of multi-spectral images in many 
fields. However, there are some shortcomings in this study. In 
the process of algorithm optimization, although the influence 
of various factors on the compression performance was 
considered, the compression effect of images in complex 
scenes still needs to be further improved, and the 
computational complexity of the algorithm increased to a 
certain extent. In terms of system design, there is room for 
improvement in the communication efficiency between 
modules. The future research work can further optimize the 
algorithm, reduce the computational complexity, and improve 
the image compression effect in complex scenes. Then, by 
improving the communication mechanism between system 
modules, the overall operation efficiency is improved. The 
application of optimization algorithms and systems can be 
explored in more fields, such as intelligent security, industrial 
testing, etc., to expand its application range. 
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