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Abstract—In various engineering construction projects, 

construction safety problems caused by pit deformation continue 

to be solved. The existing early warning model for pit deformation 

management cannot effectively meet the needs of actual 

construction for complex pit projects. Artificial intelligence 

technology has more obvious advantages in foundation pit 

deformation detection due to its wide applicability, flexibility, and 

other characteristics. This study uses Gaussian regression analysis 

model to construct a corresponding deep foundation pit 

deformation monitoring and management warning model. The 

purpose is to better monitor and manage the deformation of deep 

foundation pits, ensuring the smooth and stable development of 

the entire construction project. In the experimental analysis, 

different performance indicators were used to verify the 

effectiveness of the research method, including different error 

indicators, precision, recall rate, F1 score, etc. MAE can effectively 

evaluate the deviation between predicted values and actual values, 

which indicates that the model is closer to the true value. Precision, 

recall, and F1 score can better evaluate the proportion of correctly 

classified samples and demonstrate the model's discriminative 

ability. These indicators comprehensively measure the 

performance of the model from different perspectives. In specific 

construction projects, the results showed that the proposed 

method had an RMSE of 0.012 and a MAE of 0.015, both 

significantly lower than the comparative methods, indicating 

better performance. The precision, recall, and F1 score of GRGA 

were 92.37%, 47.52%, and 0.17, respectively. In the comparison of 

existing foundation pit deformation monitoring methods BPNN, 

CNN, and GM, the precision was 90.52%, 90.03%, and 89.95%, 

respectively, the recall was 34.20%, 32.01%, and 29.67%, 

respectively, and the F1 score was 0.10, 0.13, and 0.14, respectively. 

The research method has more obvious advantages. The results 

demonstrate that the early warning model is an effective method 

for analyzing and predicting the deformation of deep foundation 

pits. The combination of Gaussian regression and genetic 

algorithm for deep excavation management can model and predict 

nonlinear deformation data, optimize the parameters of Gaussian 

regression process, and improve prediction accuracy. Compared 

with existing warning methods, the method proposed in this study 

utilizes Gaussian regression process to better model and analyze 

the deformation process of foundation pits, thus accurately 

analyzing the detailed changes of foundation pits. 

Keywords—Deep foundation pit; deformation; Gaussian 

regression analysis; management warning; artificial intelligence 

I. INTRODUCTION 

In recent years, there has been a notable increase in the 
number of engineering projects, both large and small, that are 

being undertaken as a result of the continuous deepening of 
infrastructure construction. The construction of underground 
space has become a topic of significant research interest. In the 
construction process, deep foundation pit becomes a 
construction problem that must be solved. Influenced by factors 
such as geology, topography, climate, and construction forces, 
there are various risks and safety problems in deep foundation 
pits [1-2]. Common pit deformations are mainly categorized into 
surface settlement, enclosure deformation, and base elevation 
and deformation. Prediction of pit deformation can provide 
effective guidance for on-site construction and reduce potential 
risks that may occur during construction [3]. Enclosure works of 
the pit need to be stable enough to ensure the safety of 
foundation construction. In the specific construction process, the 
prediction of deep pit deformation is mainly based on the 
competent judgment of artificial experience, which has strong 
subjectivity and low accuracy. For example, a collapse accident 
occurred at a subway construction site in Hangzhou in 2008. The 
accident caused the nearby river to breach its banks and the river 
water to flow backwards. 11 vehicles driving on the road fell 
into a deep pit, and multiple workers were killed. A series of 
chain damage effects such as damage to nearby residential 
buildings and underground pipelines. The progressive 
integration of artificial intelligence and intelligent monitoring in 
engineering management has paved the way for the 
development of an effective early warning model for the 
management of deep foundation pit deformation [4-5]. 
However, although the deep excavation deformation warning 
model based on neural networks and grey models has achieved 
certain research success, there are still shortcomings. The 
existing methods mainly rely on manual operation, which is 
time-consuming and labor-intensive, and the monitoring 
efficiency is limited, making it difficult to detect small 
deformations. In addition, they have limited coverage in the 
monitoring process, which can easily lead to blind spots in 
inspection and monitoring, further increasing safety hazards. At 
the same time, such methods face difficulties in determining 
thresholds and large parameter quantities during the calculation 
process. Gaussian regression, a relatively novel artificial 
intelligence technology, has emerged as a prominent topic in 
intelligent learning, with successful applications spanning 
diverse domains such as engineering construction and intelligent 
prediction. Based on the advantages of Gaussian regression 
modeling in early warning analysis, a deep excavation 
deformation management early warning model based on 
Gaussian process regression is studied and constructed. 
Meanwhile, in the calculation process, genetic computing is 
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used to determine the optimal parameters in the foundation pit 
modeling process, thereby reducing the number of parameters 
and optimizing the calculation process. It is expected to better 
realize the deformation problem of the deep foundation pit 
construction process, reduce the potential safety problems, and 
ensure the smooth and stable progress of the overall 
construction. 

The reasons for choosing Gaussian regression in the study 
are as follows. The Gaussian process regression model can 
effectively handle nonlinear and high-dimensional deformation 
data of foundation pits. During the solving process, Gaussian 
regression can infer unknown data by assuming the distribution 
relationship between data points, which has stronger flexibility 
and data prediction performance. The innovation of the research 
is as follows: Gaussian process regression is used to model the 
deformation problem of foundation pits, aiming to develop a 
more accurate model and conduct a more comprehensive 
analysis of the deformation process of foundation pits. 
Subsequently, a genetic algorithm is employed to optimize the 
intricate parameter calculations undertaken during the modeling 
process. This is done with the objective of attaining the optimal 
parameters for modeling the deformation of the foundation pit 
and thereby facilitating a more precise analysis of the 
deformation of the foundation pit. 

Most existing research is focused on the deformation of 
foundation pit structures and the resulting collapse issues. The 
research on early warning management of deformation 
problems during the construction process of deep foundation 
pits is relatively insufficient. Especially for the nonlinear 
changes in the deformation process of foundation pits, existing 
research has not achieved more accurate simulation. Therefore, 
in order to better capture the detailed changes in the deformation 
process of foundation pits and address issues such as settlement 
and collapse, a Gaussian regression-based foundation pit 
deformation modeling method was developed to analyze 
nonlinear deformation data. The contributions of the research 
are as follows. This study first used Gaussian regression to 
model the deformation of foundation pits, and optimized 
Gaussian regression using genetic algorithms to obtain a 
prediction method for foundation pit deformation. The method 
was validated through experiments, and better prediction results 
for foundation pit deformation were obtained than existing 
research methods. At the same time, the error results obtained 
were also within a reasonable range, providing effective 
evidence support for the prediction of foundation pit 
deformation. 

The study is divided into many sections. Section II reviews 
the current status of industry research on deep foundation pit 
deformation problems and Gaussian regression distributions. 
Section III designs a deep foundation pit deformation warning 
model based on Gaussian regression distributions. Section IV 
validates the performance of the designed method. The paper is 
concluded in Section V. 

II. RELATED WORK 

With the economic development, all kinds of infrastructure 
construction are increasing. In the project construction, all kinds 
of pit work develop in the direction of depth and large-scale. The 
deformation of foundation pits in the construction process has 

gradually received widespread attention. Many scholars have 
studied the causes of pit deformation and the monitoring and 
early warning. Kim T et al. observed the lateral deformation of 
excavation support walls in foundation pits. The study used 
inverse analysis techniques to conduct inverse analysis on 
excavation sites and summarized the evolution process of 
excavation deformation under different soil conditions [6]. 
Discontinuities or imbalances in the cambered support structure 
might lead to collapse, which may result in damage and 
casualties. Therefore, Nam et al. used a three-dimensional 
numerical model to convex corners of retaining walls in deep 
foundation pits. It was found that connecting two discrete 
longitudinal rows at the convex corner could effectively 
improve the stability [7]. Cui et al. used on-site monitoring and 
numerical simulation methods to explore the changes during 
excavation of foundation pits. The results indicate that 
excavation of the inner pit reduces the passive earth pressure, 
and setting up support structures or bottom plates in the step area 
can effectively suppress the deformation of the outer support 
structure, thereby reducing the deformation of the foundation pit 
[8]. Mao Z et al. used the finite element software Midas GTS 
NX (2019) to analyze the effects of different support types (pile 
anchor support and double row pile support) on the excavation 
of tunnel foundation pits near subway stations. The 
displacement of the foundation pit increases continuously from 
a distance away from the excavation to a distance closer to the 
excavation. This study can provide reference for related 
engineering projects to ensure the safety and stability of subway 
structures [9]. Shi established a finite element model for the 
damage caused by water inflow and seepage in foundation pits, 
and analyzed the effects of the depth of the confined water level 
and groundwater level on the deformation of the foundation pit. 
The results indicate that changes in groundwater level have a 
significant impact on the deformation of foundation pits [10]. 

With the development of artificial intelligence technology, 
various advanced artificial intelligence technologies are widely 
used for monitoring the deformation of foundation pits. Cui et 
al. constructed a PSO-GM-BP foundation pit deformation 
prediction model based on PSO-optimized GM(1,1) model and 
BP network model. A small amount of measured data during the 
excavation process of the bottomless foundation pit at Changsha 
Metro Station was used to validate the model. The method could 
accurately predict the deformation of a foundation pit with 
reliable precision and applicability, thereby providing effective 
guidance for the construction of the foundation pit [11]. Zhang 
et al. developed a 3D model based on FLAC3D for numerical 
simulation of excavation deformation at a subway station in 
Jinan city as a project. The horizontal displacement of the 
supporting structure, axial force of the support, and vertical 
displacement of the columns were compared with the data 
collected on site. The results indicated that during excavation of 
the foundation pit, the maximum deformation of the support 
structure gradually decreased from the top and increased 
gradually, with a final maximum deformation of about 17 meters 
deep [12]. Pan et al. proposed a new Probabilistic Deep 
Reinforcement Learning (PDRL) framework to optimize 
monitoring of deep excavation projects, aiming to minimize 
costs and risks caused by excavation. Firstly, a Bayesian 
bidirectional generalized regression neural network was 
established to describe the relationship and role between 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 3, 2025 

624 | P a g e  

www.ijacsa.thesai.org 

foundation pit ground settlement and the safety status of 
adjacent buildings. Subsequently, a dual deep Q-network 
method was trained for continuous learning of monitoring 
strategies. The findings indicated that this approach could 
address the inherent ambiguity within the environmental context 

and the model itself, thereby facilitating the optimization of 
monitoring strategies, the attainment of cost-effectiveness, and 
the mitigation of risk [13]. The summary of related work is 
shown in Table I. 

TABLE I. SUMMARY OF RELATED WORK 

Author Method Advantage Shortcomings 

He et al. [6] A compensated excavation method 
Verify the scientific validity and feasibility of the 

compensatory excavation method 
Not applied in other projects 

Nam et al. [7] A three-dimensional numerical mode Can effectively improve the stability Not applied in practical scenarios 

Cui et al. [8] 
An on-site monitoring and numerical 
simulation method 

Can effectively suppress the deformation of the 
outer support structure 

Accuracy needs further optimization 

Xu et al. [9] 
A construction safety method for water-

rich soft soil deep foundation pits 

Identify potential safety hazards and implement 

appropriate control measures 
High computational complexity 

Shi [10] 
A finite element model for the damage in 
foundation pits 

The change in groundwater level has a significant 
impact on the deformation of foundation pits 

Other complex factors were not taken into 
account 

Cui et al. [11] 
A PSO-GM-BP foundation pit 

deformation prediction model 

Accurately predict the deformation with reliable 

precision and applicability 
Not applied in other projects 

Zhang et al. [12] A 3D model based on FLAC3D 
The maximum deformation of the support structure 
gradually decreased 

Large deformation 

Pan et al. [13] 
A new Probabilistic Deep Reinforcement 

Learning (PDRL) framework 

Address the inherent ambiguity within the 

environmental context 
High computational complexity 

 

The deformation problem of deep foundation pits has been 
the subject of extensive attention and research by industry 
scholars. However, the majority of existing studies have focused 
on the deformation of the foundation pit structure and the 
subsequent collapse problem. However, most of the existing 
researches are about the deformation of foundation pit structure 
and the resulting collapse problem. There is a relative lack of 
research on the early warning management of the deformation 
problem of deep foundation pits in the construction process. 
Based on this, this study combines the advantages of Gaussian 
regression analysis in data warning management and constructs 
a corresponding deep excavation deformation pre-management 
model. It aims to provide timely and effective solutions to the 
deformation problem of deep foundation pits in engineering 
projects, ensuring the smooth progress of the overall 
construction of the project. 

III. EARLY WARNING MODEL CONSTRUCTION OF DEEP 

FOUNDATION PIT DEFORMATION BASED ON OPTIMIZED 

GAUSSIAN REGRESSION MODEL 

In recent years, with the continuous acceleration of 
urbanization construction, the safety problems caused by deep 
foundation pit deformation in various engineering projects occur 
frequently. The study addresses this problem by adopting 
Gaussian regression model to design the corresponding deep 
foundation pit deformation early warning model. Then, the 
model is utilized to design and monitor the specific deep 
foundation pit deformation for early warning. 

A. Deep Foundation Pit Deformation Engineering Design 

The early warning of deformation management of 
foundation pit denotes the timely monitoring of deep foundation 
pits in engineering projects through a variety of technical 
methods and means, aiming to implement early warning 
treatments in accordance with the statistical analysis of 
monitored data. This approach is of paramount importance for 
ensuring the safe and stable development of the project. The 
deformation of deep foundation pit is mainly reflected in the 

deformation of foundation pit enclosure structure, pit uplift, and 
surface settlement. There is a significant relationship between 
the deformation of the foundation pit and the surface 
morphology change of the periphery of the foundation pit, which 
roughly meets the change curve shown in Fig. 1 [14]. 
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Fig. 1. Surface subsidence relationship. 

There are many factors affecting the deformation of deep 
foundation pit, including climate, topography, construction 
program, and construction technology, etc. Its impact is also a 
process of qualitative change from quantitative change, 
therefore, its early warning management is a relatively difficult 
process. To better analyze the deformation of the deep 
foundation pit, the study takes the deep foundation pit in the 
project of a certain place as an example, and designs the 
monitoring layout design for the deep foundation pit project. The 
study selects a pit project in S city. The total area is 12,431 m2, 
of which the basement floor area is 3,716.29 m2, the shape of 
the pit is similar to the quadrilateral, and the excavation depth of 
the pit bottom is 6.43m. The soil conditions from the surface 
layer downwards are miscellaneous fill soil, sandy silt, silty clay, 
and clay [15-16]. The existing amount of buildings around the 
surface are mainly large-scale hotels, commercial buildings, 
etc., and the underground layer belongs to the garage and the 
human defense. The specific schematic diagram is shown in Fig. 
2 [17-18]. 
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Fig. 2. Schematic diagram of foundation pit structure. 

In this pit monitoring site, the placement of measuring 
instruments in the pit monitoring project, and the subsequent 
generation of a report for the surveyor, are carried out through 
the setting of various types of data acquisition instruments to 
obtain the corresponding sample data. However, there is an error 
between the study of the introduction of visual measurement 
technology for pit monitoring in the image acquisition, and the 
actual measured target object [19-20]. Visual measurement can 
be a single imaging multi-point observation, close-up 
photography in the target, and the measured object line into 
target points, from the shooting image to get the exact location 
of multiple target points, that is, the center of the target point. 
Then Gobor technique is used to process the acquired pit 
deformation sample images. The area around the key point is 

divided into ）（ 50LL  sub-windows of NN  , and 
then each sub-window is Gabor-transformed, and the 2D Gabor 
filter is defined in Eq. (1). 

2 1
2ln 2

2 1






 
  

               (1) 

In Eq. (1),   denotes the bandwidth of the 2D Gabor filter 

and 


 denotes the half-peak bandwidth in octave. The image 
feature extraction of 2D Gabor is shown in Eq. (2). 

     , ,, , * ,u v u vP x y G x y C x y
         (2) 

In Eq. (2), 
 , ,u vP x y

 denotes the Gabor features of the 

image when the scale is u  and the direction is v . 
 ,G x y

 

denotes the gray scale of the input image. *  denotes the 

convolution factor. 
 , ,u vC x y

 denotes the 2D Gabor kernel 
function. The computed local correlation features are shown in 
Eq. (3). 
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To facilitate the subsequent pit deformation early warning 
analysis, it is necessary to obtain and analyse sample data on pit 
deformation. This will inform the design of the corresponding 
pit deformation early warning management model. 

B. Construction of a Deformation Warning Model 

In the construction of engineering projects, the construction 
complexity, comprehensiveness, and technical requirements of 
deep foundation pit engineering are higher. Foundation pit 
engineering is actually a kind of protective engineering project. 
The main role is to provide corresponding support space for the 
overall construction of engineering structure to ensure the 
stability of the surrounding soil and the smooth progress of the 
construction project. In the construction of deep foundation pit, 
it is usually necessary to excavate to the surrounding to set up 
the corresponding protective structure and measures. However, 
in the specific construction process, the construction difficulty 
of deep foundation pits and potential risk factors are not 
effectively controlled. In particular, the deformation monitoring 
of various protective structures directly affects the construction 
of the main structure and the progress of the overall project. The 
traditional pit deformation monitoring models are time series-
based monitoring model and gray system-based monitoring 
model. In addition, the existing phase change monitoring 
methods for foundation pits mainly rely on manual operation, 
which is not only time-consuming and labor-intensive, but also 
has limited monitoring efficiency, making it difficult to detect 
small deformations. Overall, existing single point monitoring 
methods often have difficulty covering the entire area in various 
excavation projects, resulting in monitoring blind spots and 
increasing safety hazards. Other advanced monitoring 
technologies, such as 3D laser scanning technology, although 
have higher coverage, their corresponding costs also increase 
[21]. With the continuous development of artificial intelligence 
technology, it has a more significant role in risk prediction of all 
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kinds of engineering projects. Accordingly, the study introduces 
artificial intelligence technology to monitor and warn the 
deformation problems occurring in deep foundation pit projects. 
Gaussian regression model is a kind of artificial intelligence 
analysis method based on statistical knowledge for data 
processing. Gaussian regression captures complex nonlinear 
relationships through a specified kernel function. Modeling can 
be carried out based on the specific data characteristics of 
excavation deformation, in order to more accurately describe the 
changing patterns of excavation deformation. In addition, 
deformation monitoring of foundation pits involves multiple 
different variables, such as time, spatial location, historical 
deformation data, etc. Gaussian process regression can handle 
inputs and outputs of any dimension, making it suitable for 
multivariate regression problems. Therefore, it has good 
flexibility and applicability, allowing for the development of 
timely and effective measures to ensure the safety of foundation 
pit construction. 

The Gaussian regression process is a stochastic process that 
involves a sample function that obeys a Gaussian distribution. 
The mathematical definition of the Gaussian distribution process 
is shown in Eq. (4). 

 Xxxg ),(
                (4) 

In Eq. (4), X  is the set parameter set, and any point x  

belongs to X . Eq. (4) is a stochastic process defined on the 

probability space  . At this point, there exists a random 

variable ix
 corresponding to it, that is, the stochastic process. 

Gaussian regression process is a collection of random variables 
that conform to a Gaussian distribution. Taking a specific 

observation data x  as an example, the Gaussian regression 
process is shown in Eq. (5). 

 )),(),(()( xxwxfGPxg 
         (5) 

In Eq. (5), x  is any observation data. 
)(xf

 represents 

the mean function of the observed data. 
),( xxw

 represents 
the covariance function of the observed data. GP stands for 
Gaussian distribution process. Gaussian regression analysis is 
then based on the Gaussian regression process to perform 
specific data regression analysis. Regression analysis lies in 
determining the functional relationship that exists between two 
variables and is widely used in various scientific data analysis. 
The mathematical definition of the data regression problem is 
shown in Eq. (6). 

 )(xRZ
                 (6) 

)(xR
 denotes the functional relationship between any two 

variables, and   denotes the observation noise vector that 
independently obeys Gaussian distribution. Gaussian regression 

process needs to preprocess the initial data when constructing 

the objective function. If a  and b  constitute the observation 
data set of deep foundation pit deformation 

 ),...,2,1(),( nsbaE ss 
, 

*a  is the set of results to be 

predicted, and 
*b  is the set of samples to be predicted. 

According to the Gaussian distribution property, the joint prior 

distribution relationship between 
*a  and 

*b  is shown in Eq. 
(7). 
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In Eq. (7), 
),( aaw

 denotes the covariance function of the 

sample data a . 
2  denotes the noise variance. nI

 denotes 

the unit matrix. After obtaining the dataset E , according to the 

Gaussian distribution, the posterior distribution of 
*b  is 

shown in Eq. (8). 

)],(),([),( **** bbwbmaEbp 
        (8) 

In Eq. (8), 
)(bm

 denotes the corresponding output of x  

to be predicted, and 
),( ** bbw

 denotes the posterior variance 
of the predicted output value. The Gaussian distribution 
regression process actually describes the distribution of the 
function from the probability space dimension of the function. 
However, in some high-dimensional models, more sample 
points are required in the calculation process [22]. According to 
the above process, the prediction model construction of 
Gaussian distribution regression can be realized, and the 
construction of Gaussian regression model is shown in Fig. 3. 

The mean of the predicted values is a linear combination of 

the kernel function 
),( ** bbw

. The data with nonlinear 
relationship can be mapped to the feature space to complete the 
linear relationship transformation, thus simplifying the 
complexity of solving the nonlinear problem. Different 
covariance functions can be used in the Gaussian process. The 
commonly used covariance function is shown in Eq. (9). 

2 2 2

2

1
( , ) exp( )

2
i j n ijk x x r

l
    

       (9) 

In Eq. (9), 
2  denotes the covariance signal, l  denotes 

the moderating parameter, and ij
 denotes the Kronecker 

value. The larger the value, the less significant the correlation 
between the inputs and outputs of the sample data. 
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Fig. 3. Gaussian regression process. 

C. Early Warning Model Construction of Deep Foundation 

Pit Deformation Based on Optimized Gaussian Regression 

Model 

In the Gaussian regression process, the study uses the 
conjugate gradient method to solve the optimal 
hyperparameters. However, in the actual application process, the 
method gets unsatisfactory results. Accordingly, the study uses 
genetic algorithm to optimize it. Genetic algorithm, as an 
optimal algorithm as bionic, has a weak dependence of its 
objective function on the initial value and the global optimum. 
It has been widely used in computing multi-parameter and multi-
variable problems [23]. Therefore, the study constructs an 
improved Gaussian regression model based on genetic 
algorithm to determine the optimal parameters. In the 
optimization process, firstly, chromosome coding is used by 
code conversion to transform the form of target parameters to be 
solved in the Gaussian regression process into the form of 
genetic code strings. The fitness function is selected for 
evaluating the fitness of the individual, and the higher the value 
of the function obtained, the better the solution effect. Taking 

individual P  as an example, in the calculation process of 

genetic algorithm, the fitness function of P  is expressed as 
Eq. (10). 

 
2

12

1
)( 




N

k

kikii oyPE

           (10) 

In Eq. (10), N  represents the population size. iP
 

represents the node i  of individual P . kio
 represents the 

expected output value of node i  on chromosome k . kiy
 is 

the actual output value. Finally, the selection of individuals in a 
population generally adopts proportional selection, which is 
based on the ratio of individual fitness to the sum of fitness of 
all individuals. This way, every individual has the possibility of 

being selected. If n  is used to represent the size of the 

population, i  represents the individual. iF
 is the individual 

fitness which can be obtained. The probability of i  being 
selected in shown in Eq. (11). 


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n

i

i

i
i

F

F
P

1                   (11) 

After the initial selection is completed, the optimal strategy 
is used to further select the optimal value, i.e., the optimal value 
is determined by searching for the individuals with the two 
extreme values of the highest and the lowest fitness. 
Accordingly, the pit deformation prediction model is 
constructed based on the optimized Gaussian regression network 
of genetic algorithm to predict the pit deformation, and the 
inverse normalization results are output in MATLAB [24]. The 
implementation process of the improved Gaussian regression 
model based on genetic algorithm is shown in Fig. 4. 
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Fig. 4. Improved Gaussian regression process based on genetic algorithm. 

In Fig. 4, when using an improved Gaussian regression 
model based on genetic algorithm for predicting excavation 
deformation, data samples are first collected and the genetic 
algorithm and Gaussian regression model are initialized. Then, 
the data samples are trained to generate parameter values for the 
GRGA model. Determine the optimal parameter values based on 
the training results. If the optimal value can be obtained from the 
training results, the process can be ended by outputting the 
optimal value. If the optimal value cannot be obtained from the 
training results, select a higher fitting value for sample training 
again. The Gaussian regression model has relatively few 
parameters in the modeling process, and the model 
hyperparameters can effectively avoid the data bias that occurs 
when manually assigning values by adaptive solving. The new 
Gaussian regression model is obtained by improving the 
Gaussian regression process using the above process. In the 
Gaussian regression process, the arbitrary variables are mutually 
independent Gaussian stochastic processes. Therefore, the 
established Gaussian regression process model is shown in Eq. 
(12). 

* *( ) ( , )
n

i

g x K x x
             (12) 

In Eq. (12), 
( )K 

 represents the combination function, 

which is the covariance matrix between the input sample x  

and the input value x

 to be predicted. 
( )g x

 represents the 

Gaussian regression process of the input value x

 to be 
predicted. In accordance with the principle of "systematic, 
economical, convenient, and intuitive," the suitable monitoring 
location is determined based on the geological, climatic, and 
hydrological conditions in the vicinity of the foundation pit. 
Subsequently, a model is established based on the genetic 
algorithm to predict the horizontal deformation displacement of 
the foundation pit from both horizontal and vertical 
perspectives. The acquired monitoring sample data are 
normalized and then trained in MATLAB. The genetic 
algorithm is initialized first to determine the initial weights and 
thresholds, and then the corresponding training parameters are 
input to train genetic algorithm. The training is terminated when 
the training error is less than the established thresholds or when 

the search training reaches the preset value. The normalized 
values are outputted. Finally, the trained network is simulated 
on the prediction samples, and the final prediction results are 
obtained after the inverse normalization. The specific process is 
shown in Fig. 5. 

Construct a sample 

dataset

Start

Data preprocessing

Gaussian regression

Performance evaluation

End

Mean squared error

Gabor

 

Fig. 5. Gaussian regression analysis process. 

This study trained and tested the research method using the 
AI Earth - A Map of China's Surface Deformation (2022) 
dataset. This dataset covers the national surface deformation 
situation, with over 300 map views. To ensure data quality, the 
sample data is first preprocessed by adjusting the pixel values of 
the image to a specific range (usually between 0 and 1), which 
speeds up model training and improves model accuracy. Scale 
the images based on the average and standard deviation of the 
image dataset to ensure that the feature distributions have similar 
distributions. The two datasets are divided into a training set and 
a testing set in a 7:3 ratio to train the model. 

IV. EXPERIMENTAL ANALYSIS OF DEEP FOUNDATION PIT 

DEFORMATION WARNING MODEL BASED ON OPTIMIZED 

GAUSSIAN REGRESSION MODEL 

Based on the Gaussian regression warning model, the study 
introduces a genetic algorithm to optimize it and constructs a 
corresponding pit deformation warning model. In this section, 
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the study verifies the performance and application effect of the 
proposed method, and at the same time introduces relevant 
comparison methods to verify its performance. 

A. Performance Analysis of Early Warning Model for Deep 

Foundation Pit Deformation 

To verify the performance effect of the early warning model, 
the corresponding experiments were designed to analyze it. In 
genetic algorithms, the population size determines the size of the 
model's search space. Appropriate population size can 
effectively solve complex problems while avoiding premature 
maturity. The crossover probability and mutation probability 
determine the search capability of the model. Both too high and 
too low can affect the diversity of the population. Therefore, 
based on existing research results, the parameters of the genetic 
algorithm used in the study are set as follows. The population 
size was set to 20, the crossover probability was set to 0.9, and 
the mutation probability was set to 0.05. This study uses the 
number of iterations of the algorithm as the convergence 
criterion. To ensure consistency in the experimental 
environment, the number of iterations is set to 100. The study 
first set the parameters of the genetic algorithm. The pre-set 
genetic algorithm was used for parameter optimization to obtain 
the optimal parameter combination for foundation pit 
deformation modeling and prediction. The optimal parameter 
combination obtained through multiple experiments is shown in 
Table II. The number of hidden layers determines the 
complexity and learning ability of the model, and this parameter 
range can explore the performance changes from shallower 
models (16 layers) to deeper models (128 layers) to obtain the 
optimal value. Dropout can explore different regularization 
effects. A lower Dropout rate may not be sufficient to effectively 
reduce overfitting, while a higher Dropout rate may lead to 
insufficient model learning. The Batch-size range is designed to 
find a balance between training speed and stability. 100 
iterations is a relatively common choice that allows the model 
enough time to learn features from the data while avoiding 
excessively long training time. 

TABLE II. PARAMETER VALIDATION 

Optimal parameters Initial value Optimal value 

Number of hidden layers in the 

network 
[16, 128] 81 

Dropout [0.01, 0.5] 0.078 

Bach-size [16, 128] 41 

Maximum number of iterations 100 100 

The optimal parameters obtained through multiple 
experiments are used for subsequent model validation. In the 
Gaussian regression model, the choice of covariance function 
has a direct impact on the model fitting effect. Consequently, 
this study examines the suitability of different covariance 
functions for analyzing the fitting effect of the Gaussian 
regression model. Commonly used covariance functions include 
the neural network function (NN), the periodicity function 
(PER), the squared exponential function (SE), and the Matern 
function (Matern 32), etc. They are evaluated by the average 
relative error and fitting time. The fitting effect of Gaussian 
model under different covariance functions is shown in Fig. 6. 
In Fig. 6 (a), among the five different covariance functions, the 
NN has the smallest value of average relative error with an error 
value of 2.347. The average relative error values of LIN, PER, 
SE, and Mnter32 are 18.63, 15.21, 8.95, and 7.46, respectively, 
which are significantly higher than the research method. In Fig. 
6 (b), the time consumption of LIN, PER, SE, Mnter32, and NN 
are 0.689, 2.53, 0.712, 0.694, and 0.527, respectively. Except for 
the periodicity function, the time consumption differences of 
other methods are relatively small. The covariance function has 
a significant impact on the fitting performance of the model, 
including its smoothness and generalization ability in the input 
space. A suitable covariance function can capture complex 
nonlinear relationships in data and achieve accurate prediction 
of new data. Therefore, considering the average relative error 
values and time consumption of different covariance functions, 
the neural network function has the best fitting effect, proving 
that the covariance function used in the study is reasonable. 
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Fig. 6. The fitting effect of different covariance functions. 

To better analyze the performance of the proposed method 
(GRGA), the study uses commonly used methods for 
comparison, including the Gray Prediction-based method (GM), 
Convolutional Neural Network-based method (CNN), and BP 
Neural Network-based method (BPNN). The Root Mean Square 
Error (RMSE) and Mean Absolute Error (MAE) are used to 

evaluate the performance of the above methods. In the 
monitoring of foundation pit deformation, RMSE can measure 
the accuracy and reliability of monitoring data by calculating the 
difference between actual values and model measurements. 
MAE can effectively reflect the average error between the 
predicted and actual values of the model, which helps evaluate 
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the accuracy and reliability of the model's predictions. The error 
values of the different methods in the process of deep foundation 
pit deformation are shown in Fig. 7. In Fig. 7 (a), the RMSE 
values of the GM, CNN, BPNN, and GRGA are 0.055, 0.079, 
0.043, and 0.012, respectively. In Fig. 7 (b), the MAE values of 
the GM, CNN, BPNN, and GRGA are 0.078, 0.112, 0.059 and 

0.015, respectively. Lower RMSE and MAE values mean that 
the deviation between the predicted values and the true values of 
the model is smaller, indicating that the model's predictions are 
more accurate. Overall, the RMSE and MAE of the proposed 
method are significantly lower than those of the comparative 
method, indicating better performance. 
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Fig. 7. Comparison of errors between different models. 

To further validate the performance of the research method, 
the study analyzes the recall, precision, and F1 score of the 
Gaussian regression model and the GRGA. F1 takes into 
account both accuracy and recall. In the monitoring of 
foundation pit deformation, it can effectively study the specific 
performance of the model in predicting foundation pit 
deformation. The results are shown in Fig. 8. In Fig. 8 (a), the 
precision of the GRGA is 92.37%, and the precision of the other 

three methods of BPNN, CNN, and GM are 90.52%, 90.03%, 
and 89.95%, respectively. In Fig. 8 (b), the recall of the GRGA 
is 47.52% and the other three methods are 34.20%, 32.01%, and 
29.67%, respectively. In Fig. 8 (c), the F1 value of the GRGA is 
0.17, and the F1 values of the remaining three methods are 0.10, 
0.13, and 0.14, respectively. Therefore, it appears that the 
GRGA has a better performance. 
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Fig. 8. Comparison of recall, precision, and F1 for different methods. 
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To verify the performance of the GRGA, Freidman detection 
analysis is conducted. Benchmark methods GM and BPNN are 

introduced for comparison. The obtained P-values and 
2

 test 
results are shown in Table III. According to Table III, the 
research method has stability in the test results of different 
indicators. Although the P-values of the indicators for GM and 
BPNN are significant, the level of significance is low, and the 
model performance is significantly lower than that of the 
research method. Based on the comprehensive verification, the 
research method performs the best among various comparison 
methods, verifying its practicality and effectiveness in solving 
and analyzing the deformation of foundation pits. 

TABLE III. FREIDMAN TEST RESULTS OF THE RESEARCH MODEL 

Testing index Research method GM BPNN 

Testing index P 
2  P 

2  P 
2  

Accuracy 0.001 6.257 0.01 4.901 0.02 5.554 

Recall 0.001 10.329 0.01 6.782 0.01 3.712 

F1 0.001 9.0264 0.05 5.998 0.01 6.072 

RMSE 0.002 5.295 0.02 8.208 0.01 6.225 

MAE 0.001 6.164 0.01 7.461 0.01 3.012 

After comparing with commonly used methods, the study 
compares it with the benchmark method (GR) to verify the 
effectiveness of the improved strategy (GRGA). The results are 
shown in Table IV. According to Table IV, the F1 score, 
Precision, Recall, and AUC of the GRGA reach 0.85, 0.89, 0.92, 
and 0.93, respectively. In benchmark testing, the evaluation 
results of the GRGA's indicators are significantly better than its 
GR, demonstrating higher model performance. 

Subsequently, to validate the effectiveness of the GRGA in 
data analysis, the sensitivity of several comparative methods is 
analyzed, and the results are shown in Fig. 9. In Fig. 9, the 
sensitivity and specificity values of BPNN are 0.786 and 0.791, 
while the sensitivity and specificity values of CNN are 0.823 and 
0.837. The sensitivity and specificity of GM are 0.843 and 

0.862. The sensitivity and specificity of GRGA are 0.888 and 
0.959. From this perspective, this research method has better 
accuracy than its comparative methods, can achieve data 
convergence faster, and has a certain degree of stability in the 
calculation results. 

TABLE IV. RESEARCH METHOD BENCHMARK TESTING 

Performance Metric GR GRGA 

F1 score 0.79 0.85 

Precision 0.81 0.89 

Recall 0.85 0.92 

AUC 0.82 0.93 

B. Analysis of the Practical Application Effect of Deep 

Foundation Pit Deformation Modeling 

Four different profile monitoring points (ABCD) are set up 
in the horizontal direction to monitor the deformation changes 
in both vertical and horizontal directions. The monitoring period 
lasts for one year, and data collection is completed in six stages, 
with an interval of two months between each stage. Then, the 
obtained deformation monitoring data of the foundation pit are 
analyzed. To address the outliers and heterogeneity of the initial 
intention during data collection, some outliers are removed. 
Removing outliers that contain important information may result 
in the model being unable to capture the true distribution of the 
data. Therefore, replace outliers with the mean. The substitution 
method can preserve the integrity of the dataset and avoid 
information loss. The specific deformation data of four 
monitoring points are fitted, and the visualization results 
between their deformation warning values and actual 
deformation are shown in Fig. 10. In Fig. 10 (a), the difference 
between the warning results obtained by fitting using the 
research method and the actual results is small. The results 
obtained from the fifth monitoring are basically consistent with 
the actual results. In Fig. 10 (b), (c), and (d), the difference 
between the actual values obtained and the fitted values is 
relatively large, but the overall error range is within an 
acceptable range. 
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Fig. 9. Sensitivity and specificity analysis. 
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Fig. 10. Visualization results of deformation warning values and actual deformation.

Taking the four monitoring points set up for the study as the 
base point, the cumulative pit deformations in the vertical and 
vertical directions are analyzed, and the cumulative pit 
deformations in the vertical and horizontal directions are 
obtained as shown in Fig. 11. In Fig. 11 (a), in the vertical 
direction, the cumulative deformation in the four cross-sections 
varies significantly, and the average deformation in the four 

cross-sections reaches 1.32 mm, 1.21 mm, -3.47 mm, and -6.51 
mm, respectively. Fig. 11 (b) shows the cumulative deformation 
in the horizontal direction. All the four monitoring locations 
show significant displacement changes between the second and 
the fourth monitoring, which may be related to the changes of 
construction and climatic conditions and other changes. 
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Fig. 11. Accumulated settlement in vertical and horizontal directions. 
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The most prominent manifestations during the deformation 
process of deep foundation pits are surface settlement, 
deformation of foundation pit enclosure, and uplift of foundation 
pits. The study statistically analyzes the actual and predicted 
values of the three types of pit deformations under different 
monitoring times of the pit monitoring project, and the obtained 
statistics are shown in Table V. This research method can 
provide ideal warnings for different types of deep excavation 
deformations. 

In the same monitoring location, the proposed early warning 
analysis of the deformation trend of the deep foundation pit is 
carried out using the GM method and the research method. The 
obtained early warning results are shown in Fig. 12. Fig. 12 (a), 
(b), (c), and (d) represent the deformation warning results for 
four different monitoring locations, respectively. In general, the 
proposed method demonstrates superior performance in tracking 
the specific deformation trend. While some of the specific points 
align closely with the actual values, there are also instances 
where the proposed trend significantly deviates from the 
observed data. From this point of view, the performance of the 
GRGA can better track the specific trend of deep foundation pit 
deformation. Especially for the detail changes, there is a better 
presentation effect, which can better facilitate the subsequent 
audit monitoring management. 

TABLE V. ERROR ANALYSIS OF PIT DEFORMATION PREDICTION (MM) 

Excavation 

deformation type 
Time Actual value Predictive value 

Surface 

subsidence 

2 10.651 10.656 

4 10.659 10.661 

6 10.667 10.662 

8 10.684 10.681 

10 10.703 10.695 

12 11.214 11.219 

Deformation of 

enclosure 
structure 

2 8.562 8.641 

4 8.647 8.648 

6 8.718 8.802 

8 8.866 8.871 

10 9.510 9.504 

12 9.964 9.935 

Pit uplift 

2 14.112 14.135 

4 14.347 14.356 

6 14.548 14.537 

8 14.791 14.776 

10 15.602 15.598 

12 15.964 15.985 
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Fig. 12. Fitting the deformation trend of deep foundation pits. 
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To further validate the effectiveness of the research method, 
it was compared with methods proposed by other scholars on 
different datasets, including "AI Earth-China's Surface 
Deformation" mentioned above and "Safety Management Data 
for Deep Excavation Construction". The latter comes from the 
data statistics of a construction project on the Zhejiang 
Provincial Data Knowledge Registration Platform, which 
includes 25,251 pieces of data.  Comparison methods include 
the PSO-GM-BP model proposed by Cui D et al. [11], the PDRL 
model proposed by Pan Y et al. [13], GM and BPNN. The 
precision prediction results of the obtained deformation are 
shown in Table VI. The research method outperforms its 
comparative methods in terms of monetization in various 
indicator tests. In dataset A, the precision, recall, and F1 of the 
research method are 93.75%, 94.33%, and 89.06%, respectively. 
The precision, recall, and F1 of the GM are 79.52%, 79.52% and 
80.75%. The precision, recall, and F1 of the BPNN are 82.03%, 
83.79% and 85.94%. In dataset B, the research method 
precision, Recall and F1 are 83.47%, 80.56%, and 83.77%, 
respectively. From this perspective, the study has better 

performance and can accurately analyze the specific 
deformation size of the foundation pit. 

To further validate the application effect of the research 
model in different engineering projects, an experimental 
verification was conducted on a foundation pit project under 
sandy soil conditions in a certain location. Select sample data 
from a monitoring point in both horizontal and vertical 
directions for analysis. Collect monitoring data from point H3 in 
the horizontal direction and L5 in the vertical direction of the 
foundation pit for analysis. Using the monitoring data from 2018 
as an example for analysis. A total of 246 sets of data were 
obtained, and 5 sets of sample data were randomly selected for 
displacement change prediction analysis. From Table VII, it can 
be seen that in this engineering project, the prediction errors of 
both horizontal and vertical displacements are within a 
reasonable error range, with the maximum error occurring in 
sample 4 of the horizontal displacement monitoring point, which 
is 0.9mm. In most cases, the predicted value is smaller than the 
actual value. Overall, this method has good accuracy and 
applicability, and can adapt to different geotechnical conditions. 

TABLE VI. COMPARISON OF PRECISION, RECALL AND F1 OF RESEARCH METHOD 

Datasets AI Earth-China's Surface Deformation Safety Management Data for Deep Excavation Construction 

Methods Precision Recall F1 Precision Recall F1 

PSO-GM-BP 76.45% 84.27% 83.04% 78.25% 81.06% 79.45% 

PDRL 83.02% 82.12% 85.34% 80.05% 79.86% 81.33% 

Research method 93.76% 94.33% 89.06% 83.47% 80.56% 83.77% 

GM 79.52% 82.31% 80.75% 77.25% 75.96% 76.31% 

BPNN 82.03% 83.79% 85.94% 79.56% 80.26% 76.59% 

TABLE VII. PREDICTION AND ANALYSIS OF DISPLACEMENT CHANGES UNDER SANDY SOIL CONDITIONS 

H3 L5 

Sample 

Number 

Actual displacement  

(mm) 

Predicted 

displacement (mm) 

Error 

(mm) 

Sample 

Number 

Actual displacement  

(mm) 

Predicted 

displacement (mm) 

Error 

(mm) 

1 24.1 23.6 0.5 6 5.2 5.6 0.4 

2 25.6 25.4 0.2 7 5.9 5.4 0.5 

3 27.9 27.5 0.2 8 6.3 6.0 0.3 

4 28.5 27.6 0.9 9 7.4 6.9 0.5 

5 28.6 28.2 0.4 10 7.8 7.5 0.3 
 

To further validate the generalization performance of the 
model, the deformation data of the foundation pit engineering 
project during the construction process of a certain subway line 
8 is used to verify the model. The depth of the foundation pit is 
18.7-24.3m. Construction began in June 2018, and the project 
covered an area of 5681 m2. At the same time, four different 
monitoring points (named 1, 2, 3, and 4) are set up to collect 
real-time deformation data of the foundation pit and 
dynamically update the collected deformation data set. The 
deformation data monitored every four months are selected for 
analysis, as shown in Table VIII. Table VIII shows that the 
deformation data of the foundation pit predicted and analyzed 
by the research method are basically consistent with the 
measured data, and the existing errors are also within a 
reasonable range. Based on this data analysis, it can further 
prove the feasibility of the research model in different data 

environments, that is, the model has a certain degree of 
generalization performance. 

TABLE VIII. PREDICTION AND ANALYSIS OF FOUNDATION PIT 

DEFORMATION (MM) 

Time 1 2 3 4 

2018.10 2.4 1.7 5.4 10.1 

2019.02 2.5 3.6 9.2 13.8 

2019.06 2.9 5.2 11.3 15.4 

2019.10 3.1 6.8 12.7 19.6 

In the application of deformation models for foundation pits, 
the first step is to collect relevant monitoring data during the 
construction process, such as surface settlement, horizontal 
displacement, excavation depth, etc. These data are the 
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foundation for building and validating predictive models. Then 
preprocess the data to ensure its accuracy and consistency. Then 
train the model and continuously adjust its parameters to 
improve its prediction accuracy. Finally, the trained prediction 
model will be integrated into the construction project for real-
time monitoring and early warning of foundation pit 
deformation. The integration of deformation prediction models 
for foundation pits into practical engineering projects is of great 
significance. This can not only improve construction safety and 
optimize construction decisions, but also promote intelligent 
construction and drive industry technological progress. 

V. CONCLUSION 

Excavation monitoring is a very important component of 
civil engineering safety, as well as an important guarantee and 
technical support for the smooth progress of subsequent 
projects. The traditional pit deformation monitoring method has 
many shortcomings in the early warning management process. 
Accordingly, the study constructed a deep pit deformation early 
warning model based on Gaussian regression model, and then 
used genetic algorithm to optimize the model. The experimental 
results showed that the accuracy of the proposed method was 
92.37%, the recall rate was 47.52%, and the F1 value was 0.17, 
significantly higher than its comparison method. Freidman 
showed that the research method has better stability. In 
comparison with the benchmark method, the research method 
has yielded considerable optimization outcomes, thereby 
substantiating the assertion that the proposed enhancement 
strategy is efficacious. The research method measured 
significant differences in the longitudinal cumulative 
deformation of four sections. The average deformation of the 
four sections was 1.32mm, 1.21mm, -3.47mm, and -6.51mm, 
respectively. In the real-time updated dataset collected from a 
certain engineering project, the data measured by the research 
method was basically consistent with the actual measured data, 
and the errors that exist were also within a reasonable range. The 
results demonstrate that the proposed method is more effective 
in the early warning management of deep foundation pit 
deformation. It produces a more accurate fit between the actual 
deformation and the early warning results, with an acceptable 
level of error. 

The comparison results of different datasets are different, 
which is the result of multiple factors working together. Firstly, 
the data sources of different datasets are different, that is, there 
are differences in data collection methods and standards, which 
affects the data results. Then, different data processing methods 
may lead to errors and biases, resulting in differences in 
comparison results. In addition, there are differences in sample 
sizes among different datasets, which directly affects the 
comparison results. Finally, in the process of data analysis, the 
comparison results may also be influenced by subjective factors 
such as human judgment, which can affect the comparison 
results. During the comparison process, it is advisable to choose 
datasets with similar sources, consistent collection methods, and 
high-quality annotations for comparison. At the same time, 
preprocessing and standardization of the data should be carried 
out before comparison to reduce the impact of data differences 
on the comparison results. 

However, there are also corresponding difficulties in 
practical analysis under deterministic conditions, such as 
deviations between theoretical models and actual conditions, 
limitations in calculation methods, etc. Meanwhile, the 
scalability of the model in different types of projects has not 
been validated. Therefore, future research based on the 
perspective of artificial intelligence can optimize the model and 
further improve its application performance in construction 
engineering. It can also timely and effectively monitor changes 
in engineering data caused by changes in the surrounding 
environment, providing effective support for construction safety 
and quality. Based on future engineering construction, the 
monitoring performance of this model in foundation pit 
deformation has been optimized, thereby expanding its 
application in different construction projects. This can 
effectively meet the design requirements of various other 
engineering construction projects, such as subway, large 
shopping malls, residential community construction, etc. 
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