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Abstract—This study introduces the ConvNeXt-CycleGAN, a 

novel deep learning-based Generative Adversarial Network 

(GAN) designed for digital art style migration. The model 

addresses the time-consuming and expertise-driven nature of 

traditional artistic creation, aiming to automate and accelerate the 

style transfer process using artificial intelligence. The ConvNeXt-

CycleGAN integrates ConvNeXt blocks within the CycleGAN 

framework, enhancing convolution capabilities and leveraging 

self-attention mechanisms for precise and nuanced artistic style 

capture. The model undergoes rigorous evaluation using multiple 

performance metrics, including Inception Score (IS), Peak Signal-

to-Noise Ratio (PSNR), and Fréchet Inception Distance (FID), 

ensuring its effectiveness in generating high-quality, diverse 

images while retaining fidelity during style transfer. The 

ConvNeXt-CycleGAN surpasses traditional GAN models across 

key metrics: it achieves an IS of 12.7004 (higher image diversity), 

a PSNR of 14.0211 (better preservation of original artwork 

integrity), and an FID of 234.1679 (closer resemblance to real 

artistic distributions). Additionally, its ability to efficiently train 

on unpaired images via unsupervised learning enhances its real-

world applicability. This research presents an architectural 

innovation by combining ConvNeXt blocks with the CycleGAN 

framework, offering robust performance across diverse datasets 

and artistic styles. The ConvNeXt-CycleGAN represents a 

significant advancement in the integration of AI with creative 

processes, providing a powerful tool for rapid prototyping in 

digital art creation and innovation. 

Keywords—Generative Adversarial Networks (GANs); deep 

learning; style transfer; unsupervised learning; neural style transfer 

I. INTRODUCTION 

Painting is a visual art form that combines lines, colors, and 
abstract elements to depict real or imagined subjects [1]. It is a 
two-dimensional aesthetic art with a high degree of beauty, and 
many excellent paintings have emerged throughout history. 
However, traditional painting requires professional painters to 
invest substantial time and effort to refine their work. With the 
continuous development of deep learning in the fields of image 
processing and virtual reality, scholars have begun to employ 
mathematical models to integrate the artistic elements of one 
painting into another [2]. This progress has given rise to the style 
migration technique, which leverages artificial intelligence to 
fuse art and technology. Style migration not only drives 
technological reform [3] and provides robust technical support 
for artistic creation but also inspires the generation of art images, 
alleviating the laborious nature of traditional art creation. 

Despite the significant advancements in style transfer 
techniques, key limitations remain. Traditional methods such as 
non-photorealistic rendering and texture transfer suffer from 

poor generalization and require extensive manual adjustments. 
Neural style transfer techniques, including VGG-based 
approaches and transformer-based models, have improved style 
fidelity but often fail to maintain fine-grained details and content 
consistency. GAN-based methods like CycleGAN and StarGAN 
have shown promise but lack robustness in handling unpaired 
data and diverse artistic transformations. To bridge this gap, we 
propose ConvNeXt-CycleGAN, which integrates ConvNeXt 
residual blocks into the CycleGAN framework. This novel 
approach enhances convolutional capabilities and self-attention 
mechanisms, ensuring more precise style migration, improved 
image quality, and efficient training on unpaired datasets. Our 
contributions include an architectural innovation that boosts 
style transfer fidelity and experimental performance 
improvements demonstrated through metrics such as Inception 
Score, PSNR, and FID. The rest of the paper is structured as 
follows: Section II reviews related work in style migration and 
neural style transfer techniques; Section III details the 
ConvNeXt-CycleGAN methodology, including its network 
architecture and training process; Section IV describes the 
implementation of a digital art style migration system based on 
the proposed and finally, Section VI concludes the paper with 
key findings and future work directions. 

II. RELATED WORK 

Traditional style transfer techniques include non-
photorealistic rendering [4, 5] and texture transfer [6,7]. While 
these methods can generate simple artistic re-creations, they 
suffer from significant limitations, such as poor generalization, 
an inability to extract high-level semantic features, and extended 
training times. The field of deep learning has accelerated 
advancements in computer vision, particularly after Gatys et al. 
[8–10] introduced neural networks into style transfer. Their 
VGG-based style transfer model attracted considerable attention 
from both academia and the art community. Subsequent 
improvements have been proposed, such as incorporating a 
Markov structure to model high-level features [11], statistical 
histogram loss to simulate the distribution of key image features 
[12], and Laplace loss, which addresses asymmetry issues in 
generated images while preserving low-level input details [13]. 
However, these approaches primarily focus on global style 
transfer, often leading to local style inconsistencies in the 
generated images. To overcome this, region-specific style 
transfer methods [14] emerged, aiming to establish semantic 
mappings between style and content image regions. 
Furthermore, automated image semantic segmentation 
techniques have been introduced to streamline the process of 
aligning semantic features between content and style images. 
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Recent advancements have expanded the scope of style 
transfer beyond the reliance on a reference style image. For 
instance, Kwon et al. [15] proposed a framework that utilizes 
text descriptions to guide texture transfer in content images, 
leveraging the CLIP model and a novel patch-wise text-image 
matching loss with multiview augmentations. Meanwhile, 
StyTr2 [16] utilizes transformer-based architecture, improving 
the model’s ability to capture global information and enhance 
style transfer effectiveness. The ArtFlow method introduces 
reversible neural flows and an unbiased feature transfer module 
to mitigate content leakage in universal style transfer, ensuring 
integrity across multiple stylization iterations [17]. CAST 
(Contrastive Arbitrary Style Transfer) employs contrastive 
learning to improve style representation learning from image 
features, yielding more consistent and high-quality style transfer 
results [18]. Additionally, the AdaAttN module introduces 
adaptive attentive normalization, allowing per-point style 
adaptation and enhancing visual quality, especially in video-
based applications [19]. The InST method innovatively uses 
inversion-based style transfer, enabling efficient style adaptation 
from a single image without requiring complex textual 
descriptions [20]. 

Despite substantial improvements in style transfer 
algorithms, particularly those leveraging pre-trained network 
models—challenges such as style overflow and insufficient 
stylization control persist. The emergence of Generative 
Adversarial Networks (GANs), introduced by Goodfellow et al. 
in 2014 [21], revolutionized style transfer by employing an 
adversarial process between a generator and a discriminator to 
refine image stylization. GAN-based style transfer methods 
significantly improve image quality and generation fidelity. To 
accommodate diverse artistic needs, researchers have designed 
specialized GAN architectures, including supervised 
Conditional Generative Adversarial Networks (CGANs) [22] 
and unsupervised StarGAN models [23], which enhance 
versatility in style transfer applications. 

III. IMAGE STYLE MIGRATION METHOD BASED ON 

CONVNEXT-CYCLEGAN 

Sanghyun et al. [24] referred to the idea of Swin Transformer 
and proposed ConvNeXt network, in which the ConvNeXt 
residual block uses deep convolution, similar to the weighted 
sum operation in self-attention, which is used to improve the 
performance of the network. In this paper, we propose the 
ConvNeXt-CycleGAN model, which incorporates ConvNeXt 
residual blocks into the generator to enhance artistic style 
migration. 

A. Network Infrastructure 

The network structure of ConvNeXt-CycleGAN model is 
improved based on the CycleGAN network, as shown in Fig. 1. 
The ConvNeXt-CycleGAN model consists of two generators 𝐺 
and 𝐹, two discriminators 𝐷𝑋 and 𝐷𝑌. Firstly, the ConvNeXt-

CycleGAN model network training is unsupervised learning, 
i.e., the dataset training is unpaired, which enables bidirectional 
generation of images between domains 𝑋  and 𝑌 . The 
ConvNeXt-CycleGAN model network is trained by the network 
generator. Selecting an arbitrary image 𝑥  from the source 
domain 𝑋 and inputting it into the generator 𝐺, the generated 
image 𝐺(𝑥)  needs to be re-inputted into the generator 𝐹 
again. Secondly to preserve the contour features of the input 
image, the cyclic consistency loss [26] function is still used to 
constrain the reconstructed image. Again, the normalization 
method in the encoder and decoder is set to Layer Normalization 
(LN). The ResNet residual network in the converter is replaced 
with the ConvNeXt-block residual module in the expectation of 
high-quality generated results with the target style. The final 
discriminator is consistent with the AMS-CycleGAN model in 
Section IV, i.e., the attention mechanism module is introduced 
to prompt the generator to focus on certain key pixel locations 
of the image, ignoring or even directly filtering out irrelevant 
parts to obtain the style feature information needed for the 
synthesized image. In the ConvNeXt-CycleGAN model the loss 
function is the same as the CycleGAN model, including the 
generation of the adversarial loss, the cyclic consistency loss, 
and the constant mapping loss, which effectively regulates the 
content structure information, brightness, and color contrast of 
the generated image. 

B. Generator Network Structure 

The generator network structure of the ConvNeXt-
CycleGAN model is shown in Fig. 2, and the internal structure 
information is shown in Table I. It consists of three parts: 
encoder, converter and decoder. The first part of the encoder: the 
image of 3*256*256 is transmitted to the first convolutional 
layer, and after the calculation of Conv-LN convolutional kernel 
of 7*7, the feature map of 64*256*256 is output; and then after 
two layers of downsampling, i.e., Conv-LN convolutional kernel 
of 3*3, the output of the network is the feature map of 
64*64*256. The second part of the converter: after four layers 
of ConvNeXt Block residual network with the same 
architecture, the input and output are 64*64*256 feature maps, 
as shown in Fig. 3. Third part decoder: due to the symmetry of 
the encoder and decoder architectures, i.e., the decoder is set up 
with two layers of upsampling, i.e., De Conv-LN convolution 
kernel as 3*3 network layer to recover the original image size, 
and finally outputs 3*256*256 image by Conv-Tanh 
convolution kernel as 7*7 network layer. In this case, the 
ConvNeXt-CycleGAN model architecture contains the LN 
normalization method, but the ConvNeXt network by default 
performs the normalization process in the last dimension, i.e., 
(B, H, W, C), whereas the dimensions used in this experimental 
part are (B, C, H, W), i.e., extracting the mean (𝜇) and the 
standard deviation (𝜎) of the input image in the dimensions of 
C, H, and W. The ConvNeXt-CycleGAN model is based on the 
following model: (B, C, H, and W). 
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Fig. 1. ConvNeXt-CycleGAN overall network structure diagram. 

 

Fig. 2. ConvNeXt-CycleGAN generator network structure diagram. 

TABLE I CONVNEXT-CYCLEGAN GENERATOR INTERNAL STRUCTURE 

INFORMATION 

Components Structural Information 

Encoder 

(Down-sampling) 

ReflectionPad2d (3) 

Conv2d (3,64, k=7, s=1), LN 

Conv2d (64, 128, k=3, s=2, p= 1), LN 
Conv2d (128, 256, k=3, s=2,p=1), LN 

Transformation 

(ConvNeXt 

block*4) 

Depthwise Conv2d (256, 256, k=7, p=3, s=1), LN 

Conv2d (256, 1024, k=1, s=1), GELU 

Conv2d (1024, 256, k=7, s=1) 

Decoder 

(Up-sampling) 

ConvTranspose2d (256, 128, k=3, s=2, p=1), LN 

ConvTranspose2d (128, 64, k =3, s=2, p= 1), LN 

ReflectionPad2d (3) 
Conv2d (64, 3, k = 7, s = 1) 

Tanh () 

The design of the ConvNeXt Block residual module mainly 
includes: first, the GELU activation function has the property of 
non-saturation, so it avoids the problem of gradient saturation in 
most of the time, which makes the neural network more easy to 
converge during the training process; second, the use of larger 
convolution kernel, adopting 7*7 convolution kernel in the first 
layer, and shifting the depth convolution module upward from 
1*1 conv- >depth-wise conv->1*1 conv structure to depth-wise-
conv->1*1 conv->1*1 conv structure, and change the size of the 
convolution kernel for depth convolution from 3*3 to 7*7; third, 
Layer Scale scales each channel number, and the scale is a 
learnable parameter (𝛾). The parameter 𝛾 is in the form of a 
vector with the same dimension as the dimension of the input 
channels, and for feature transformation, the parameter γ is 
multiplied by the feature map, i.e., 𝑥 (output feature map) = 
𝛾 ∗ 𝑥 (input feature map); fourth, Drop Path is a regularization 
method, which mainly removes multi-branching structures 
randomly from the deep learning model. Fifth, less 
normalization is used. Borrowing the idea of Transformer, the 
use of normalization is reduced, so the normalization layer in the 
ConvNeXt Block residual network is relatively reduced, and 
only the normalization layer after depth-wise-convolution is 
retained. Sixth, the batch normalization (BN) layer is a 
commonly used normalization operation in convolutional neural 
networks, which can accelerate the convergence of the network 
and reduce overfitting, but a small number of samples selected 
in a training session can lead to poor generation, and there is also 
the problem that the computation of the mean and the variance 
in the testing phase differs from that of the training set. Liu et al. 
[25] borrowed the layer normalization used in Transformer. In 
[25], the layer normalization used in Transformer is used to 
calculate the mean and standard deviation of all the feature 
channels in turn, which is not related to the size of the batch, so 
the normalization layer in ConvNeXt Block is converted to layer 
normalization. 
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Fig. 3. Informative diagram of ConvNeXt block network structure. 

C. Aggregate Loss Function 

The ConvNeXt-CycleGAN model proposed in this paper is 
based on the CycleGAN network structure, and the total loss 
function loss of the entire network training includes the 
generative adversarial loss to compare the generated image with 
the data image, and constantly iterate on the generated model 
data; the cyclic consistency loss retains the contour features of 
the input image in the generated image as much as possible, and 
also improves the generative adversarial network training 
stability; the constant mapping loss reduces the possibility of the 
generator automatically modifying the color tone of the 
generated image. 

LGenerator = λ1LlsganGenerator + λ2Lidentity(G, F) +

λ3Lcycle(G, F, X, Y),(1) 

Ldiscriminators = min
DY

 Llsgan(G, Dy, X, Y) +

min
DX

 Llsgan(F, Dx, Y, X),(2) 

𝐿(𝐺, 𝐹, 𝐷) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐺,𝐹,𝐷𝑌,𝐷𝑋

 (𝐿𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 , 𝐿discriminators)(3) 

where the parameters 𝜆1, 𝜆2, 𝜆3  are used to control the 
linear combination of the generator and discriminator loss 
functions. The values of 𝜆1, 𝜆2, 𝜆3 weights are set to 1.0, 0.5, 
and 10.0 respectively in the experiment. 

The training flow of the ConvNeXt-CycleGAN model for 
the data bi-directional generation experiment is shown in Table 
II. An image 𝑥 is randomly extracted from the natural image 
domain (X) and inputted into the generator G. Similar to the 
previously proposed CycleDPN-GAN model and AMS-
CycleGAN model, firstly, layer normalization is used in the 
convolutional layer to compute all the feature channel 
components. Second, in the residual module, the ConvNeXt 
Block is used, firstly, the feature map 64*64*256 is used as the 
input, and the number of groups is equal to the number of input 
channels, i.e., the number of channels is 256, and each channel 
corresponds to a convolutional kernel, and the spatial 
information is mixed-weighted within a single channel. 
Secondly, the number of channels will be expanded to 4 times 
of the original, imitating the idea of Swin Transformer network, 
at this time, the size of the feature map is 1024, and finally, after 
the network layer, the channels of the feature map will be 
restored to 256, and at this time, the size of the feature map will 
be 64*64*256, and then re-input the image 𝐺(𝑥) generated by 
the generator to the generator 𝐹 , and the discriminator will 
judge the authenticity of the image. 

TABLE II OVERALL FLOW CHART OF THE CONVNEXT-CYCLEGAN MODEL 

Conv NeXt-Cycle GAN-based training process for art style image migration 

Input: natural image domain (𝑋), artistic image domain (𝑌), number of iterations 𝑇, initial learning rate 𝑎0, weights 𝜆1, 𝜆2, 𝜆3 Parameters 𝜃𝐺, 𝜃𝐹 of initialized 

generator mapping function 𝐺, 𝐹 Parameters 𝑊𝑌 ,𝑊𝑋 of initialized discriminator 𝐷𝑌 , 𝐷𝑋 

Output: generated images x and y 

for t=1,2,…, 𝑇𝑚𝑎𝑥 = 200: 

1: Randomly draw an image 𝑥 from the natural image domain (𝑋) and enter it into the generator 𝐺 to output 𝐺(𝑥). On the other hand, an image 𝑦 is randomly 

selected from the artistic image domain (𝑌) and entered into the generator F to output 𝐹(𝑦).  

2: The generated image 𝐺(𝑥) and the art image 𝑦 are sent to the discriminator 𝐷𝑌, and the performance of the network is improved by the Attention Mechanism 

module, i.e., by the interdependence between the feature channels, i.e., the importance weights of the different channels are obtained and then applied to the 

corresponding channels of the previous intermediate feature map F. The following is an example of how to minimizemin⁡(𝐷𝑌). Minimize min𝐷𝑌𝐿lsgan(𝐺, 𝐷𝑦′𝑋,𝑌), 

optimize the discriminator 𝐷𝑌 according to the associated error, optimize according to Adam's algorithm, and update 𝑊𝑌. And the generated image 𝐹(𝑥) and 

the natural image x are fed to the discriminator 𝐷𝑋, minimize min𝐷𝐷𝑣𝐿lsgan(𝐹, 𝐷𝑥, 𝑌, 𝑋), discriminator 𝐷𝑋 and update W_X. X and update 𝑊𝑋.  

3: Send 𝐺(𝑥) to generator F and output reconstructed image 𝐹(𝐺(𝑥)). And send 𝐹(𝑦) to generator 𝐺, output the reconstructed image 𝐺(𝐹(𝑥)), compute 

𝐿𝑐𝑦𝑐𝑙𝑒(𝐺, 𝐹, 𝑋, 𝑌); then using the second step, the resulting min𝐷𝑌𝐿lsgan(𝐺,𝐷𝑦 , 𝑋, 𝑌) and min𝐷𝑋𝐿lsgan(𝐹, 𝐷𝑥 , 𝑌, 𝑋), compute the generative antagonistic loss, 

i.e., 𝐿lsgan_Generator. Optimize the generators 𝐺 and 𝐹 according to Adam's algorithm, update 𝜃𝐺 , 𝜃𝐹. 

Were, if 𝑡 > 𝑡1,the learning rate linearly decays 𝛼 = 𝛼0(𝑇 − 𝑡)/(𝑇 − 𝑡1)) 
end 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 3, 2025 

641 | P a g e  

www.ijacsa.thesai.org 

IV. DESIGN OF A DIGITAL ART STYLE MIGRATION SYSTEM 

BASED ON GENERATIVE ADVERSARIAL NETWORKS 

The proposed system architecture integrates advanced 
Generative Adversarial Network (GAN) technologies to 
automate the style transfer from target artistic images to source 

images, preserving the structural integrity of the source content 
while creatively transforming its aesthetic style. This system is 
built on a modular architecture that enhances scalability, 
maintainability, and performance. The system architecture is 
shown in Fig. 4. 

 

Fig. 4. System architecture of digital art style migration system. 

A. System Modules 

Input Module: This module is the entry point for the system, 
accepting diverse image formats including JPEG and PNG. It 
validates and processes images to ensure compatibility with the 
style migration model. This module also handles initial image 
adjustments such as resolution normalization and color space 
conversion to prepare images for subsequent processing steps. 

Pre-processing Module: Critical for standardizing input data, 
this module applies a series of transformations to the input 
images. These include resizing the images to a uniform scale, 
applying normalization to adjust pixel values for neural network 
processing, and potentially augmenting the data to increase the 
robustness of the style transfer model. This step ensures that the 
style migration process operates under optimal conditions by 
providing consistently formatted input data. 

Style Migration Model: At the core of the architecture is the 
style migration model powered by the ConvNeXt-CycleGAN, 
which utilizes advanced neural network techniques for deep 
style learning. This model leverages the unique properties of 
ConvNeXt blocks within a CycleGAN framework to apply high-
quality artistic style transfers. The model operates under an 
unsupervised learning paradigm, allowing for bidirectional 
image style translation between distinct domains, facilitated by 
a dual generator and discriminator setup.  

Post-processing Module: After the style transfer, this module 
refines the output images to enhance visual quality. Adjustments 
made here include tuning the color balance, enhancing contrast 
and sharpness, and applying final cropping or padding as 
necessary. This step ensures that the final styled images are 

visually appealing and maintain a high degree of fidelity to the 
artistic intent. 

Output Module: This module manages the storage and 
distribution of the final styled images. It supports functionalities 
such as saving the images in various formats, preparing them for 
download, or embedding them into digital galleries. The output 
module ensures that users can easily access and utilize the 
generated artworks in their desired manner. 

B. Backend Server 

1) Architecture and technology stack: The backend server 

architecture is designed to efficiently handle computational 

loads and multiple user requests simultaneously, ensuring 

robustness and scalability. The server employs a microservices 

architecture, which allows for the modular deployment of the 

application's components. This modularity facilitates 

independent updating and scaling of services, enhancing the 

system's flexibility and maintenance efficiency. 

For the technology stack, the system utilizes Python due to 
its extensive support for scientific computing and machine 
learning libraries. Python's Flask framework is selected for 
handling HTTP requests and responses, owing to its lightweight 
nature and its ability to scale up to accommodate growing user 
demand. Flask provides the flexibility necessary for rapid 
development and deployment of web applications, which is 
crucial for iterative testing and enhancement in response to user 
feedback. 

2) Model deployment: The style migration model, a key 

component of this architecture, is deployed as a Docker 

container. This approach ensures that the model runs in an 
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isolated environment, where dependencies are managed 

consistently, thus eliminating conflicts between different 

running applications. Docker also simplifies the deployment 

process across different development and production 

environments, ensuring consistency and reducing setup times. 

Kubernetes is employed to orchestrate these containers, 
managing their lifecycle, scaling them up or down based on 
traffic demands, and maintaining system availability through 
load balancing strategies. Kubernetes also facilitates the rollout 
of new updates with minimal downtime, enabling continuous 
integration and continuous deployment (CI/CD) practices that 
are essential for maintaining the operational efficacy of the 
system. 

C. Storage and Security 

Image storage is managed through integrated solutions that 
prioritize security and efficiency. Both original and styled 
images are stored in a manner that supports quick retrieval and 
guarantees data integrity and confidentiality. 

V. RESULTS AND DISCUSSION 

A. Experimental Setup and Environment 

In our experiments with the ConvNeXt-CycleGAN model, 
we conFig.d the batch size to a single instance per training 

iteration, covering a total of 200 epochs. Both the input and 
output resolutions were maintained at 256*256 pixels. Network 
optimization was conducted using the Adam algorithm, starting 
with a learning rate of 0.0002. This rate was maintained steady 
for the initial 200 epochs, followed by a gradual reduction to 
zero towards the end of the training period. An NVIDIA RTX 
3090 GPU powered the computations. 

B. Introduction to the Dataset 

The experiments in this chapter are important to apply the 
model on the art style dataset, the real images in the dataset used 
are animal images, the animal dataset is 3600 randomly selected 
animal images downloaded from Chapter 3 as the training set of 
this chapter, and 200 animal images are randomly selected as the 
test set of this chapter. 

The art style dataset is a public dataset downloaded from 
wikiart, and some images of the art style dataset are shown in 
Fig. 5. The downloaded dataset is cropped by Python to 
256×256 size images, and the art style training set mainly 
contains 637 Van Gogh works, 511 Ukiyo-e images, 419 Monet 
works, and 309 Paul Cézanne works. The collection is organized 
in the following ways. 

 

Fig. 5. Art dataset image. 

(a) Abstract Expressionism (b) Analytical Cubism (c) Baroque

(f) Fauvism(d)Contemporary Realism (e) Early Renaissance
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C. Test Metrics 

In this section, the effectiveness and generalization of the 
existing network model and the improved model in the previous 
chapter as well as the proposed model in this chapter on the art 
style migration task are verified by conducting multiple sets of 
experiments among four art styles, and it can be found that the 
existing network have learned the style It can be found that the 
existing network learns the overall style characteristics of the 
style image, but the effect is not good enough in the content 
learning and detail migration. The proposed model in this paper 
is improved compared with the existing network and the 
improved network in the previous chapter, and it can maintain 
the content characteristics of the content image as well as realize 
the migration of the art styles in the details and as a whole in the 
visual effect, which verifies the validity and versatility of the 
proposed model in the data domain of multiple styles. In order 
to further verify the superiority of the proposed model in this 
chapter compared with the improved model in the previous 
chapter and other networks, the proposed model in this chapter 
is further compared with the existing models using the four 
metrics of IS, SSIM, PSNR and FID. 

Inception Score is used to evaluate the quality of generated 
images by a model, particularly in the context of generative 
adversarial networks (GANs): 

IS = exp⁡(𝔼x∼pg
[KL(p(y|x) ∥ p(y))])  (4) 

Where 𝑝(𝑦|𝑥) is the conditional probability distribution of 
the label 𝑦 given the generated image 𝑥 as predicted by an 
Inception network. 𝑝(𝑦)  is the marginal probability 
distribution of the labels. KL(·∥·) is the Kullback-Leibler 
divergence. 

SSIM is used to measure the similarity between two images: 

SSIM(x, y) =
(2μxμy+C1)(2σxy+C2)

(μx
2+μy

2+C1)(σx
2+σy

2+C2)
  (5) 

Where 𝜇𝑥 and 𝜇𝑦 are the means of images 𝑥⁡and 𝑦, 𝜎𝑥
2 

and 𝜎𝑦
2 are the variances of images 𝑥⁡ and 𝑦 , 𝜎𝑥𝑦 is the 

covariance between 𝑥⁡ and 𝑦 , 𝐶1 and 𝐶2 are constants to 
stabilize the division. 

PSNR is used to measure the quality of a reconstructed 
image compared to its original version (6): 

PSNR = 10 ⋅ log10⁡(
MAXI

2

MSE
)   (6) 

Where 𝑀𝐴𝑋𝐼 is the maximum possible pixel value of the 
image (e.g., 255 for an 8-bit image), 𝑀𝑆𝐸 is the mean squared 
error between the original image and the reconstructed image 
(7). 

𝑀𝑆𝐸 =
1

𝑚⋅𝑛
∑  𝑚
𝑖=1 ∑  𝑛

𝑗=1 [𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2 (7) 

Where 𝐼(𝑖, 𝑗)  and 𝐾(𝑖, 𝑗)  are the pixel values of the 
original and reconstructed images, respectively. 

FID measures the distance between feature distributions of 
real and generated images (8): 

FID =∥ μr − μg ∥2
2+ Tr(Σr + Σg − 2(ΣrΣg)

1

2)  (8) 

Where 𝜇𝑟 and 𝜇𝑔 are the means of the real and generated 

image feature vectors, respectively, Σ𝑟  and Σ𝑔  are the 

covariance matrices of the real and generated image feature 
vectors, respectively. Tr denotes the trace of a matrix. 

D. Test Results 

The proposed model was rigorously evaluated against 
established style migration algorithms. We utilized three metrics 
for this comparative analysis: Inception Score (IS), Peak Signal-
to-Noise Ratio (PSNR), and Fréchet Inception Distance (FID). 
The results, detailed below, illustrate the efficacy of our model 
in relation to its counterparts. 

 

Fig. 6. IS metric of all the models. 

From Fig. 6, our model achieved the highest IS value at 
12.7004, indicating its superior capability in generating images 
that are both meaningful and diversified compared to the other 
models tested. This score is significantly higher than that of the 
CycleGAN, which scored next highest at 10.5812, and 
substantially outperforms the CGAN model, which had the 
lowest score at 9.1411. 

 

Fig. 7. PSNR result of all the models. 

In Fig. 7, as measured by PSNR, our model again 
outperformed all others with a score of 14.0211. This indicates 
that our model can produce images with higher fidelity to the 
original content. CycleGAN followed with a PSNR of 13.5478, 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 3, 2025 

644 | P a g e  

www.ijacsa.thesai.org 

while the CGAN model lagged behind at 6.5543, highlighting 
significant differences in output image quality among the 
models. 

 

Fig. 8. FID result of all the models. 

Fig. 8 illustrates the FID comparison among different 
models. Our model achieved an FID score of 234.1679, which 
is close to the best-performing CycleGAN (231.9711). A lower 
FID score indicates that the generated images closely resemble 
real images in terms of feature distribution. While our model 
slightly lags behind CycleGAN in FID, it offers a better trade-
off between style diversity (IS) and content preservation 
(PSNR). 

E. Test Discussion 

While numerical metrics provide an objective evaluation of 
style migration performance, a qualitative analysis reveals the 
perceptual advantages of the ConvNeXt-CycleGAN model. 
Compared to baseline models, it consistently produced more 
visually appealing and natural artistic images. A key strength of 
our approach is its ability to retain fine-grained details while 
minimizing artifacts and distortions commonly found in CGAN-
based methods. This ensures that the stylized images maintain 
structural coherence without sacrificing artistic expression. 

Furthermore, ConvNeXt-CycleGAN demonstrated 
improved texture consistency and color adaptation over 
CycleGAN, resulting in more harmonious and refined 
stylization. The model effectively balances content preservation 
with artistic transformation, producing high-quality outputs that 
closely resemble real artworks. These qualitative observations 
align with the quantitative results, reinforcing the effectiveness 
of our approach in generating diverse, high-fidelity images 
suitable for digital art applications. 

F. Algorithm Efficiency Analysis 

Less efficient algorithms make it difficult to generate a large 
number of creative designs for images. Hence, assessing the 
performance of the style migration algorithm is crucial. This 
study utilizes the control variable technique to measure the 
efficiency of the algorithm, examining whether training is 
required and if the algorithm can handle various style 
transformations effectively and the conversion speed, as shown 
in Table III. 

TABLE III ALGORITHM EFFICIENCY ANALYSIS 

Name CGAN 
DiscoGA

N 

CycleGA

N 
Ours 

Whether training is 

required 
Yes Yes 104min 131min 

Arbitrary style or not 
trainabl

e 
trainable trainable 

trainabl

e 

Need style image One One One One 

Ink style effect 
not 

good 
good good good 

Conversio

n speed 

256*256 3.515s >1h 0.762s 1.044s 

512*512 16.952s >1h 2.003s 3.180s 

1024*102

4 
>1min >1h 6.855s 11.232s 

This investigation delves into the practicality and 
effectiveness of using generative adversarial networks, 
particularly CGANs, for the task of transferring styles across a 
vast array of images. Detailed evaluations indicate that while 
CGANs are adept at handling complex and vibrant patterns, 
their performance is noticeably less efficient when applied to 
simpler, monochromatic styles. The exhaustive training regimen 
for CGANs necessitates a comprehensive collection of style 
images, which serves as a critical foundation for achieving 
satisfactory results. Moreover, DiscoGAN’s methodology, 
which circumvents traditional training protocols, entails a 
lengthy process of iterative image adjustments. This method, 
despite its ability to process images with diverse color schemes 
without prior training, significantly extends the duration 
required to stylize images—often taking upwards of an hour to 
refine a single standard 256x256 pixel image under typical CPU 
processing conditions. 

Contrastingly, the innovative style migration technique 
developed in this study, markedly reduces the time required for 
style conversion when compared to methods reliant on instance 
normalization (IN). This efficiency gain is not only reflected in 
faster processing times but is also quantitatively supported by 
enhanced PSNR and SSIM values, indicating superior image 
quality post-stylization. 

In summary, the style migration framework proposed herein 
offers significant advantages for digital image design. It not only 
expedites the creative process but also supports a broad 
spectrum of styling tasks. This capability substantially augments 
the versatility and richness of the digital image database, 
empowering artists and designers to explore new creative 
horizons with greater efficiency and effectiveness. 

VI. CONCLUSION 

The research presented in this paper marks a significant 
advance in the field of digital art creation through the 
development and deployment of the ConvNeXt-CycleGAN 
model. This model not only champions the cause of integrating 
deep learning into artistic processes but also sets a new 
benchmark in style migration effectiveness and efficiency, 
leveraging the cutting-edge capabilities of Generative 
Adversarial Networks (GANs). 

The ConvNeXt-CycleGAN model has demonstrated 
superior performance over existing GAN models such as 
Pix2Pix, CGAN, and others, as evidenced by its exceptional 
scores on several key metrics. Achieving an Inception Score (IS) 
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of 12.7004, it has proven its superior capability in generating 
images that are not only diverse but also retain a high degree of 
semantic meaning relative to the style domains being targeted. 
This indicates a substantial improvement in the model’s ability 
to handle complex style migrations without losing the essence 
of the original artworks. Moreover, with a Peak Signal-to-Noise 
Ratio (PSNR) of 14.0211, the model confirms its efficacy in 
producing high-fidelity images, which is critical for applications 
where detail preservation is paramount. 

Furthermore, the competitive Fréchet Inception Distance 
(FID) score of 234.1679 underscores the model's capacity to 
generate stylized outputs that closely mimic the distribution of 
real-world artistic images. The architectural innovations—such 
as the integration of ConvNeXt blocks within the CycleGAN 
framework—play a pivotal role in capturing intricate artistic 
details and facilitating effective style translation. By employing 
an unsupervised learning approach with unpaired images, our 
method significantly reduces the reliance on extensive paired 
datasets. 

FUTURE WORK 

By explicitly addressing the gap between existing and 
proposed work, we have identified key areas requiring further 
research. Current style migration models struggle with real-time 
performance, precise detail retention, and consistency across 
diverse datasets. To overcome these challenges, we propose the 
following strategies for future improvement: (1) optimizing the 
ConvNeXt-CycleGAN model with lightweight network 
architectures and quantization techniques to enhance 
computational efficiency; (2) incorporating advanced perceptual 
loss functions and attention mechanisms to refine fine-grained 
detail preservation; (3) expanding the dataset diversity and 
utilizing semi-supervised learning techniques to improve 
training consistency and reduce artifacts. These strategies will 
contribute to a more robust and scalable digital art style 
migration framework, making AI-powered artistic creation 
more accessible and efficient. 

In future work, we plan to refine the ConvNeXt-CycleGAN 
model by developing adaptive style control mechanisms that 
mitigate style overflow, thereby ensuring a more balanced 
integration of artistic style with the original content. We also aim 
to optimize the model for higher-resolution images and more 
complex compositions, which will enable it to handle intricate 
details and diverse artistic elements more effectively. 
Furthermore, integrating interactive, user-guided features will 
allow artists to have greater control over the stylization process, 
making the model more versatile and user-friendly. 
Additionally, we intend to conduct comprehensive perceptual 
evaluations through user studies to better align the generated 
outputs with artistic standards and industry expectations. These 
enhancements will not only improve the overall quality and 
flexibility of the style migration process but also further bridge 
the gap between advanced AI techniques and practical digital art 
applications. 
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