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Abstract—Chronic kidney disease (CKD) is a serious chronic 

illness without a definitive cure. According to WHO in 2015, 10% 

of the population suffers from CKD, with 1.5 million patients 

undergoing global haemodialysis. The incidence of CKD is 

increasing by 8% annually, ranking it as the 20th highest cause of 

global mortality. The Random Forest (RF) technique utilizes 

decision trees as an ensemble model, where class predictions are 

derived from the combination of results from each tree. The final 

decision is based on the highest outcome of class predictions 

generated by each decision tree, employed in this study. In testing, 

Random Forest with PSO-based Bagging achieved the highest 

performance with precision of 98.12%, recall of 100.00%, and 

AUC of 0.999. The Random Forest with PSO-based Bagging model 

demonstrates high performance in CKD detection, but metrics 

like precision, recall, and AUC alone do not guarantee clinical 

applicability. Balancing false positives and negatives is crucial, 

and its real-world integration should be evaluated to assess its 

impact on patient outcomes and clinical workflows. Research on 

predicting chronic kidney disease using the Random Forest 

algorithm with Bagging based on Particle Swarm Optimization 

(PSO) indicates that Bagging with PSO feature selection can 

enhance accuracy and kappa values. These findings contribute to 

understanding the roles of Bagging and PSO methods in 

improving the performance of several algorithms, including 

Random Forest. 
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I. INTRODUCTION 

The World Health Organization (WHO) stated in 2015 that 
the incidence of CKD reached 10% of the population, and there 
were 1.5 million CKD patients undergoing haemodialysis (HD) 
worldwide. This number is expected to increase by 8 percent 
per year [1]. CKD is a chronic disease with the 20th highest 
global mortality rate [2].Compared to patients with other 
conditions, chronic kidney disease (CKD) patients have a 
mortality rate of 75% and a fivefold risk of hospitalization  [3]. 
This aligns with the increased mortality rate from chronic 
kidney disease over the past ten years, making it the second 
highest cause of death worldwide after diabetes [4]. More than 
2 million people have been diagnosed with chronic kidney 
disease (CKD), and only 10% of those two million people 
receive adequate treatment. Even in the United States, 87.3% of 
people undergo peritoneal dialysis, and 2.5% receive kidney 
transplants [5]. Therefore, to treat chronic kidney disease 
promptly, a method to diagnose the condition is needed [6]. 

The best accuracy can be obtained by conducting research 
on the categorization of chronic kidney failure using Particle 
Swarm Optimization (PSO) and Random Forest optimization. 
PSO is an optimization technique that, according to previous 
research, can be used to diagnose disease problems in very large 
datasets, with PSO optimization achieving the highest accuracy 
rate of 99.167% [7]. Through research on improving the 
accuracy of the C4.5 algorithm classification using the bagging 
technique in heart disease diagnosis, an accuracy rate of 81.84% 
was obtained [8]. 

Meanwhile, a study by [9] and proposed FPA-DNN model 
was evaluated through simulation analysis using the benchmark 
CKD dataset. The results were analysed from various 
perspectives and demonstrated the exceptional performance of 
the FPA-DNN technique, achieving a sensitivity of 98.80%, 
specificity of 98.66%, accuracy of 98.75%, an F-score of 99%, 
and a kappa value of 97.33%. Whilst making Random Forest 
the best algorithm for predicting coronary heart disease [10], 
[11]. As a result, more research is needed to identify more 
accurate techniques that offer better diagnostic accuracy. In this 
case, PSO, Bagging, and Random Forest will be used in the 
research because other hybrid techniques are needed to 
optimize the algorithm for diagnosing chronic kidney disease. 

According to study [12], Adaptive Backpropagation Neural 
Network (ABPNN-ANFIS) is then classified using fuzzy logic, 
which integrates the ABPNN results for enhanced decision-
making. It can assist experts in determining the stage `of 
chronic kidney disease. The Adaptive Neuron Clearing 
Inference System (ABPNN-ANFIS) was implemented in 
MATLAB to develop adaptive inverse neural networks. The 
results indicate that the proposed ABPNN-ANFIS model 
achieves an efficiency of 98% in terms of accuracy.  Another 
works introduced by study [13] that Deep learning algorithms 
(DLAs) surpassed the Kidney Failure Risk Equation (KFRE) in 
predicting the initiation of renal replacement therapy (RRT). 
The model integrating CNN, LSTM, and ANN layers achieved 
a ROC-AUC of 0.90, while the standalone CNN reached 0.91. 
In comparison, both the 4-variable and 8-variable KFRE 
models attained a ROC-AUC of 0.84. Furthermore, DLAs 
accurately predicted uncoded renal transplants and identified 
patients who would require dialysis after five years, 
demonstrating their ability to capture complex, non-linear 
patterns. 
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The problem of classification of chronic kidney disease 
involves developing a robust and accurate model to identify 
chronic kidney disease (CKD) in patients based on medical data. 
CKD is a serious condition that requires early detection to 
prevent progression to more severe stages. The challenge lies 
in accurately classifying patients into CKD and non-CKD 
categories using a large dataset that may contain noisy or 
imbalanced data. 

Therefore, the aim of this research is to develop a robust and 
accurate model for the classification of chronic kidney disease 
(CKD) by integrating Bagging and Particle Swarm 
Optimization (PSO) methods. The objective is to improve the 
detection and classification of CKD from medical data, 
ensuring early and reliable diagnosis. By addressing challenges 
such as noisy or imbalanced data, the research seeks to enhance 
classification accuracy, minimize false positives and negatives, 
and contribute to more effective early intervention and 
treatment of CKD. To address this, the approach combines 
Bagging, an ensemble method that improves the stability and 
accuracy of machine learning algorithms by creating multiple 
versions of a model and averaging their predictions, with 
Particle Swarm Optimization (PSO), a technique inspired by 
the social behaviour of birds to optimize the model's parameters. 
The goal is to enhance classification accuracy, reduce false 
positives and negatives, and ultimately improve the model's 
ability to detect CKD, thereby aiding in timely diagnosis and 
treatment. 

II. METHODS 

The data was processed using RapidMiner, including 
preprocessing, to prepare it for further data mining operations. 
Data pre-processing was carried out by handling missing values, 
as chronic kidney disease (CKD) datasets often contain missing 
data due to incomplete medical records. Common techniques 
for handling missing data include mean/mode imputation, K-
nearest neighbours (KNN) imputation, or removing records 
with excessive missing values to preserve data integrity. The 
dataset is shown in Fig. 2. 

A. Random Forest 

Several decision trees are created using the Random Forest 
(RF) technique, where each tree is combined and functions as 
an ensemble model. Each decision tree has class predictions, 
and choices are arranged based on the highest results [14]. 
There are several processes involved in using the Random 
Forest approach, specifically [15]. The process begins with the 
random sampling stage, where data is drawn with replacement 
from the training set using a technique known as bootstrapping. 
Next, during the random subsetting stage, trees are constructed 
using different variables selected through the optimal random 
discount process (m < d) based on the available data. These two 
steps are repeated k times until k trees are randomly generated. 
Finally, a combined estimate is obtained from the k trees, which 
can be applied to regression by averaging the results or to 
classification by taking the majority selected. 

The goal of this technique is to build decision trees 
consisting of root nodes, internal nodes, and leaf nodes using 
data and attributes randomly. The root node is the top node of 
the decision tree, and internal nodes are branching nodes that 

have one input and at least two outputs. Leaf nodes, or terminal 
nodes, are the final nodes, which only have one input and no 
outputs. Entropy value calculation uses the formula in Eq. (1). 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑦) = − ∑ 𝑖𝑝 (
𝑐

𝑦
) log 𝑝(

𝑐

𝑦
)  (1) 

The Eq. (1) represents the concept of entropy in information 
theory, which quantifies the uncertainty or disorder within a 
probability distribution yyy. In this context, entropy is a 
measure of how unpredictable the outcomes are within the 
distribution. The equation sums the product of each outcome's 
probability p(c/y), p(c/y), p(c/y) and the logarithm of that 
probability across all possible outcomes. The negative sign 
ensures that entropy is a positive value, reflecting the average 
level of "information" or "uncertainty" inherent in the 
distribution. When all outcomes are equally likely, the entropy 
is higher, indicating greater uncertainty. Conversely, when one 
outcome is much more likely than others, the entropy is lower, 
signifying less uncertainty. This measure is crucial in various 
fields, including machine learning, where it helps in decision-
making processes, such as determining the most informative 
feature in decision trees [16]. 

 

Fig. 1. Simple structure of a Random Forest. 

Fig. 1 illustrates a random forest is an ensemble learning 
technique that enhances predictive accuracy and reduces the 
risk of overfitting by combining multiple decision trees. In its 
basic framework, numerous decision trees are constructed using 
different subsets of the training data and features. Each tree 
independently generates a prediction, and the final output is 
determined by aggregating their results—usually through 
majority voting for classification tasks or averaging for 
regression tasks. This approach increases robustness and 
accuracy compared to using a single decision tree, as it reduces 
variance and mitigates the risk of overfitting. Each sub-tree 
model performs random sampling with replacement from the 
training data and ultimately produces an average result from all 
sub-models [17]. Each sub-model runs in parallel without 
dependencies. Besides building each tree using different data 
subsets, random forest differs in how these trees are constructed   
[18] . In a standard decision tree, each node splits based on the 
most optimal decision across all variables, minimizing entropy 
by dividing the dataset represented by the parent node. In 
contrast, a random forest selects the split point for each node 
randomly from the best split points within a subset of predictors, 
[19]. Moreover the study in [9] proposed FPA-DNN model was 
evaluated using the benchmark CKD dataset. Results confirmed 
its superior performance, achieving 98.80% sensitivity, 98.66% 
specificity, 98.75% accuracy, a 99% F-score, and a 97.33% 
kappa score. 
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B. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is used by study [20] to 
model the swarming behaviour of insects, including birds, 
termites, ants, and bees. The PSO algorithm mimics the social 
interactions of these animals. Social behaviour includes every 
action performed by an individual as well as the influence of 
other group members. For example, the term "particle" 
describes a flock of birds. With their intelligence, each particle 
or individual acts in a distributed manner, and their intelligence 
also affects the behaviour of the aggregate group. Consequently, 
no matter how far they are from the group, other members can 
quickly follow if one particle or bird finds the right or shortest 
path to a food source. The swarm is of a definite or fixed size 
in multivariate optimization, with each particle starting from a 
random location in multidimensional space. It is believed that 
each particle has two characteristics: location and velocity. 
Each particle in each space remembers its optimal location that 
emerged or was found concerning the objective function or 
food source. After providing the information or desired location 
to other particles, each particle adjusts its position and velocity 
according to the chosen information position of other particles. 
For example, the behaviour of birds in a flock. Consequently, 
the behaviour of a flock of birds will depend on the combination 
of the following three basic factors: Cohesion, or the ability to 
fly together; Separation, or not being too close; Alignment, or 
knowing to head in the same general direction. According to 
study [21], [22]  PSO is designed around the idea that birds, 
while not explicitly following one another, tend to adjust their 
paths based on the movements of others when searching for 
food. Each particle's behaviour is influenced by both its own 
experience and the collective behaviour of the swarm. This 
process is repeatedly simulated within a multi-dimensional 
space, with each iteration gradually steering the particles 
toward the optimal solution—whether it involves minimizing 
or maximizing the target function. The iterative process 
continues until specific convergence criteria are met or the 
maximum number of iterations is reached [17]. 

Furthermore the study in [23] explained that particle Swarm 
Optimization (PSO) is a swarm intelligence-based algorithm 
used to optimize hyperparameters in machine learning models. 
Particles, representing candidate solutions, navigate the search 
space by updating their positions based on their personal best 
(pBest) and the global best (gBest) solution found by the swarm. 
This iterative process refines hyperparameter selection, 
minimizing model error. PSO enhances Bagging by optimizing 
base learners, sampling ratios, and model parameters, 
improving ensemble diversity. In Random Forest, it fine-tunes 
tree-related parameters, balancing bias and variance. By 
automating hyperparameter tuning, PSO improves model 
generalization, reduces overfitting, and enhances predictive 
accuracy efficiently. According to study [24] who described 
that the velocity update in the Particle Swarm Optimization 
algorithm, balancing inertia, personal experience, and the 
global best influence on movement. It is written as Eq. (2). 

vi
r+1=ω.vi

t+𝑐1.𝑟1.(𝑝𝐵𝑒𝑠𝑡𝑖- xi
t)+𝑐2.𝑟2.(gBest-xi

t  (2) 

where: 

 vi
r+1: Velocity of the ith particle at iteration r+1. 

 ω: Inertia weight, controlling the influence of the 
previous velocity. 

 vi
t: Velocity of the iii-th particle at iteration ttt. 

 c1: Cognitive acceleration coefficient, influencing 
personal experience. 

 r1: Random factor (uniformly distributed) associated 
with the cognitive component. 

 pBesti: Personal best position of the iii-th particle. 

  xi
t: Current position of the iii-th particle at iteration ttt. 

 c2: Social acceleration coefficient, influencing global 
experience. 

 r2: Random factor (uniformly distributed) associated 
with the social component. 

 gBest: Global best position among all particles. 

Study by [25] described that PSO enhances Bagging and 
Random Forest by optimizing hyperparameters, improving 
performance and generalization. In Bagging, PSO fine-tunes 
the number of base learners, data subsampling ratio, and model-
specific parameters, boosting ensemble diversity and stability. 
In Random Forest, it optimizes the number of trees, maximum 
depth, feature selection, and split criteria, balancing bias and 
variance. By automating hyperparameter selection, PSO 
reduces manual effort, making both techniques more efficient 
and effective for complex predictive tasks. 

C. Cross Validation 

Cross-validation is one metric for measuring the results of 
classification algorithms. Meanwhile, K-fold validation is one 
method to determine the average success rate of a classification 
system. K-fold validation will randomly shuffle a dataset, 
allowing the system to be tested on various previously 
randomized datasets   [26], [27]. Furthermore, as stated by 
study [28] , [29] the purpose of cross-validation is to prevent 
data from dominating the learning of the classification model. 
The division of data into the desired n-fold will be used for k-
fold validation. For example, if the data s into 5, it will produce 
5 data partitions of the same size, such as D1, D2, and D3. After 
that, the testing and training processes are carried out as many 
times as the number of folds. The n partition data will become 
the test dataset divided and the training dataset in each ith 
iteration. The Confusion Matrix contains four combinations of 
actual and predicted values. 

D. Calculating Accuracy 

Accuracy is a measure used to evaluate classification 
models. Simply put, it represents the percentage of predictions 
made by the model that are correct. As shown in Equation (3-
4), accuracy can also be calculated in terms of positives and 
negatives, [23], [24].   The accuracy in Eq. (3) measures a 
model's performance by calculating the proportion of correctly 
predicted positive (TP) and negative (TN) instances out of all 
predictions. 

Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (3) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (5) 

The classification accuracy value is shown by the TP (True 
Positive) and TN (True Negative) scores. Generally, 
classification accuracy is higher with larger TP and TN values. 
False Positive (FP) occurs when the output prediction label is 
positive, but the actual value is incorrect. False Negative (FN) 
occurs when the output prediction label is negative, but the 
actual result is correct.  Moreover, stated that the ratio of related 
items selected to all selected items in the Confusion Matrix is 
known as accuracy. Furthermore, accuracy is the degree of 
conformity between the data expected by the user and the 
system's response [16]. Eq. (2) measures a model's accuracy in 
identifying positive instances. It represents the proportion of 
true positives (TP) out of all instances predicted as positive, 
including false positives (FP). High precision indicates 
outcome; the model predicts a positive outcome; it is likely 
correct. This metric is particularly important in scenarios where 
false positives are costly or undesirable.  The probability of the 
relevant item being selected is called recall. 

Recall is a metric that evaluates a model's effectiveness in 
identifying all relevant instances within a dataset. It is 
calculated as the ratio of true positives (TP) correctly identified 
by the model to the total number of actual positive cases, which 
comprises both true positives and false negatives (FN). A high 
recall signifies that the model successfully detects most positive 
instances making it particularly critical in situations where 
failing to identify positive cases can have severe consequences, 
such as in medical diagnostics or fraud detection. While high 
recall is desirable, it may come at the expense of precision, as 
the model might also flag more false positives. Balancing recall 
with precision is essential for achieving overall effectiveness 
and ensuring that the model performs well across various 
aspects of its predictions. 

E. Bagging 

Introduced by study [30], bagging, also known as bootstrap 
aggregating, is a classical method for ensemble creation. 
Although data regression problems may also benefit from its 
use, classification problems are its primary goal. This is shown 
by taking multiple samples from the same dataset with 
replacement through the bootstrap technique. This is useful for 
generating aggregate predictions because it allows the creation 
of multiple different trees for the same estimation [31]. The 
basic principle of the bagging method is to create a new dataset 
by randomly resampling the original dataset and returning it. 
Using a random sample of size N with replacement from the 
training data (bootstrap sample SkS_kSk from DkD_kDk), the 
[3∣D∣|D|∣D∣. Classification trees with various versions are then 
created with the new dataset. The final estimate is then 
produced by combining the classification trees from each 
version [32] . The final estimate of this method can be produced 
by voting or averaging for challenges related to regression and 
classification. This allows multiple samples to be set to be the 
same [21]. The goal is to generate data subsets using surrogate 
variables from randomly selected training sets. Essentially, the 
learning process is trained using each subset of the dataset. As 
a result, we have a set of different models. By using the average 

of all predictions from different base learners, the results are 
more reliable than just using one base learner  [33]. The benefit 
of batch creation is to reduce errors in basic predictors, which 
may be unstable before specific disturbances, and to provide an 
estimate of their predictive performance, hampered by the test 
set or cross-validation estimate [34], [35], [36]. The bagging 
method consists of two stages. Bootstrapping is the first step, 
and aggregation is the second. Samples from the available 
training data are used for the bootstrap stage, and aggregation 
is the second step. 

The dataset contains the following attributes: ID, Age, 
Blood Pressure (BP), Specific Gravity (SG), Albumin (AL), 
Sugar (SU), Red Blood Cells (RBC), Pus Cells (PC), Pus Cell 
Clumps (PCC), Bacteria (BA), Blood Glucose Random (BGR), 
Blood Urea (BU), Serum Creatinine (SC), Sodium (SOD), 
Potassium (POT), Hemoglobin (HGB), Packed Cell Volume, 
White Blood Cell Count (WBC), Red Blood Cell Count (RBC), 
Hypertension (HTN), Diabetes Mellitus (DM), Appetite 
(APPET), Pedal Edema (PE), and Anemia (ANE). 

III. RESULTS AND DISCUSSION 

Transforming raw or original data is the initial step in the 
data mining process. This dataset contains 400 records and 26 
attributes, sourced from Kaggle 
(https://www.kaggle.com/datasets/mahmoudlimam/preprocess
ed-chronic-kidney-disease-dataset). 

 

Fig. 2. Chronic kidney disease dataset. 

Table I presents the evaluation data that includes 
performance metrics from four studies using the Random Forest 
classification algorithm. 

TABLE I PERFORMANCE METRICS OF CLASSIFICATION OF THREE 

ALGORITHMS 

Algorithm Accuracy (%) Precision (%) Recall (%) 
Random Forest 98.75 98.04 98.67 
BNC  [37] 96.43 93.02 93.18 
KNN+PSO [36] 97.25 N/A N/A 
Fuzzy [38]] 98.28 N/A N/A 

From the evaluation results of the four classification 
algorithms, Random Forest stands out with the highest accuracy 
of 98.75%, precision of 98.04%, recall of 98.67%, and AUC of 
99.9%. The BNC model, while having a slightly lower accuracy 
(96.43%), still shows good performance with precision and 
recall, both reaching 93.02% and 93.18%, respectively. 
KNN+PSO achieves an accuracy of 97.25% and AUC of 99.9%, 
but precision and recall information are not available. 

https://www.kaggle.com/datasets/mahmoudlimam/preprocessed-chronic-kidney-disease-dataset
https://www.kaggle.com/datasets/mahmoudlimam/preprocessed-chronic-kidney-disease-dataset
https://www.kaggle.com/datasets/mahmoudlimam/preprocessed-chronic-kidney-disease-dataset
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Meanwhile, the Fuzzy model achieves a high accuracy of 
98.28%, but details on precision, recall, and AUC are not 
provided. Overall, Random Forest and BNC stand out as good 
choices with consistent performance, whereas KNN+PSO and 
Fuzzy require more information for comprehensive evaluation. 

Random Forest provides a high combination of accuracy, 
precision, recall, and AUC, making it a solid choice for 
classification problems. Although BNC has slightly lower 
accuracy, it still offers a good balance between precision and 
recall. KNN+PSO shows good results in terms of accuracy and 
AUC, but the lack of information on precision and recall limits 
accuracy, requires additional information to measure its 
prediction quality. Therefore, the selection of an algorithm 
should be based on the specific needs of the application, and 
further evaluation, especially on precision and recall, can 
provide deeper insights into the model's ability to handle 
positive and negative cases. 

Random Forest demonstrates superior performance with 
high levels of accuracy, precision, and recall, and an AUC of 
0.999, showcasing its skill in classifying data. The performance 
evaluation of the Random Forest, Naïve Bayes, and k-NN 
algorithms using the bagging method shown in Table II 
describes the performance metrics of the three different 
classification algorithms.  Table III shows the performance of 
the Random Forest algorithm after applying the bagging 
method. Random Forest with Bagging and Random Forest 
alone yield the same results, with accuracy, precision, and recall 
each at 98.75%, and AUC at 0.999. k-NN with Bagging shows 
improved performance compared to k-NN alone, with an 
accuracy of 74.25%, precision of 62.06%, recall of 83.33%, and 
AUC of 0.821. Meanwhile, Naïve Bayes with Bagging shows a 
decrease in performance, with an accuracy of 94.25%, precision 
of 87.21%, recall of 100.00%, and AUC of 0.996. 

The Random Forest model achieves high accuracy 
(98.75%), precision (98.04%), and recall (98.67%) in 
predicting outcomes, but its interpretability in medical 
applications remains a challenge. Unlike simpler models, 
Random Forest functions as an ensemble of decision trees, 
making it difficult to explain individual predictions. In 
healthcare, transparency is crucial for clinical trust and 
decision-making. Black-box models like Random Forest can 
hinder adoption due to limited explainability. However, 
techniques such as feature importance analysis, SHAP, and 
LIME can help interpret predictions by identifying key 
influencing factors, enabling clinicians to better understand, 
validate, and apply the model’s outputs effectively. 

The table presents the accuracy, precision, and recall of 
various classification algorithms for chronic kidney disease 
(CKD) diagnosis, emphasizing their strengths and potential 
misclassification errors. Among them, Random Forest (RF) 
achieves the highest accuracy at 98.75%, with a low false 
positive rate (precision: 98.04%) and low false negative rate 
(recall: 98.67%), making it the most reliable model. The 
Bayesian Network Classifier (BNC) has a lower accuracy 
(96.43%) and higher misclassification rates, as indicated by its 
93.02% precision and 93.18% recall, making it less reliable for 
high-risk CKD detection. K-Nearest Neighbours with Particle 
Swarm Optimization (KNN+PSO) achieves an accuracy of 

97.25%, but the lack of precision and recall data makes error 
assessment challenging. Similarly, the Fuzzy Logic model has 
a slightly lower accuracy than RF (98.28%), but without 
precision and recall metrics, misclassification errors remain 
unclear. Overall, Random Forest emerges as the most effective 
model due to its high accuracy and well-balanced false positive 
and false negative rates. 

The Random Forest algorithm demonstrates outstanding 
performance across key evaluation metrics, achieving an 
accuracy of 98.75%, which indicates that 98.75% of instances 
are classified correctly and reinforces the model's reliability. Its 
precision of 98.04% means that when the model predicts a 
positive outcome, it is accurate 98.04% of the time, leading to 
a low false positive rate, while a recall of 98.67% shows it 
accurately identifies 98.67% of actual positive cases, reflecting 
a low false negative rate. These metrics highlight the 
exceptional balance between precision and recall in the 
Random Forest algorithm, making it a reliable choice for 
classification tasks. Nevertheless, for real-world applications, it 
is crucial to evaluate the dataset's size and diversity, as 
validating the model on larger and more varied datasets would 
confirm its robustness and scalability. Incorporating additional 
metrics like the F1-score and AUC-ROC could also provide 
deeper insights into its overall effectiveness. However, the 
model's complexity, as it operates as an ensemble of trees, may 
hinder interpretability, particularly in medical settings where 
clear decision-making is essential. Furthermore, the lack of 
statistical significance tests in the results makes it difficult to 
determine if the performance differences among algorithms are 
meaningful, leaving reported improvements unvalidated. 

In addition, computational aspects and interpretability also 
need to be considered when choosing an algorithm. While 
Random Forest and BNC show good performance, they have 
high model complexity, which can be a consideration in terms 
of model readability. On the other hand, KNN+PSO and Fuzzy, 
although providing good results in some metrics, lack 
information on precision and recall, as well as AUC, which can 
be a hindrance to a deep understanding of their performance. It 
is important to continue exploring and understanding the 
characteristics of each algorithm and make necessary 
adjustments according to the specific needs of the application. 
A holistic evaluation, including an analysis of computational 
properties and interpretability, will help in selecting the most 
suitable algorithm for the given classification task. In 
conclusion, the selection of a classification algorithm should 
consider various factors, including accuracy, precision, recall, 
AUC, as well as computational and interpretability aspects, to 
ensure it fits the specific needs of a large-scale application. 

The performance of the four classification algorithms shows 

that Random Forest delivers excellent results with an accuracy 
of 98.75%, precision of 98.04%, recall of 98.67%, and AUC of 
99.9%. The BNC algorithm, although with slightly lower 
accuracy at 96.43%, still shows solid performance with 
precision and recall each reaching 93.02% and 93.18%, and an 
AUC of 93.2%. KNN+PSO achieves an accuracy of 97.25% 
and an AUC of 99.9%, but precision and recall information is 
not available. Meanwhile, the Fuzzy algorithm reaches a high 
accuracy of 98.28%, but information on precision, recall, and 
AUC cannot be evaluated based on the provided data. Generally, 
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Random Forest and BNC show consistent and reliable 
performance, while KNN+PSO and Fuzzy require more 
information for a thorough evaluation. It should be noted that 
the appropriate algorithm choice should be based on the 
specific application needs and desired analysis goals. 

Each algorithm has its strengths and weaknesses. Random 
Forest stands out in accuracy and ability to handle model 
complexity, while BNC shows a good balance between 
precision and recall. KNN+PSO provides high accuracy and 
good AUC, but the unavailability of information on precision 
and recall can be a limitation in understanding the overall model 
performance. On the other hand, the Fuzzy algorithm provides 
high accuracy, but the lack of other information makes 
performance interpretation more difficult. Algorithm selection 
should be carefully considered based on the dataset 
characteristics, sample size, and analysis objectives. Moreover, 
it is important to consider the trade-offs between accuracy, 
precision, and recall depending on the application needs. A 
holistic evaluation and deep understanding of performance 
metrics will help researchers and practitioners make the right 
decisions in choosing the classification algorithm that suits the 
context. Continuing to explore and understand the latest 
developments in this field is also important to ensure that the 
applied solutions remain relevant and effective over time. 

The research findings on chronic kidney disease prediction 
using the Random Forest algorithm with a Bagging approach 
based on Particle Swarm Optimization (PSO) have been 
presented. Therefore, it can be concluded that the use of the 
Bagging method with Particle Swarm Optimization (PSO) for 
feature selection can improve accuracy and kappa values across 
several algorithms, including Random Forest, Naïve Bayes, and 
k-NN. In testing, Random Forest with PSO-based Bagging 
achieved the highest performance with a precision of 98.12%, 
recall of 100.00%, and an AUC of 0.999. This indicates that the 
model built has a high level of agreement between the 
predictions made by the model and the actual values in the test 
data. In other words, the higher the AUC value, the better the 
model is at predicting the target class or variable. The research 
still requires further development to improve its performance. 
Future research and development can be conducted using more 
appropriate attributes and incorporating digital image objects. 
When considering the performance of classification algorithms, 
it is important to note that a deep understanding of the dataset's 
characteristics and the application context is key. Random 
Forest demonstrated impressive capabilities in handling 
complexity and providing accurate predictions. BNC, with a 
balance between precision and recall, is suitable for situations 
where it is important to detect most positive instances without 
compromising overall accuracy. KNN+PSO, although yielding 
good results, requires further information to fully understand its 
ability to handle both positive and negative cases. The Fuzzy 
algorithm, while having high accuracy, requires better 
interpretability through additional information. 

A dataset of 400 records may appear limited, however it can 
still be sufficient depending on the problem's complexity, the 
data's quality, and the consistency of patterns within the dataset. 
A well-curated and representative dataset can offer meaningful 
insights into the model’s performance. Furthermore, if the 

model exhibits stable and consistent results through cross-
validation or other robustness checks, this may suggest that the 
sample size is adequate for preliminary evaluation. In many 
research studies, smaller datasets effectively establish proof of 
concept before scaling up to larger datasets for further 
validation. 

TABLE II PERFORMANCE RESULTS OF RANDOM FOREST, 
NAÏVE BAYES, AND K-NN ALGORITHMS, AFTER APPLYING 

BAGGING METHOD AND OPTIMIZED BY PSO 

Algorithms 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) AUC 

Random Forest 
+ Bagging + 

PSO  

99.25 98.12 100.00 
     

0.999 

k-NN + 
Bagging + PSO  

94.50 92.87 93.3 0.973 

Naïve Bayes + 

Bagging + PSO  
97.25 93.73 100 0.995 

The XGBoost 

model  [39] 
95 97 98 97 

SVM model 

[40] 
91 N/A N/A 96 

Table II presents the performance results of the Random 
Forest, Naïve Bayes, and k-NN algorithms after applying the 
Bagging method and optimizing them with PSO. Each 
algorithm is enhanced using Bagging and PSO techniques. The 
Random Forest with Bagging and PSO delivers the best 
performance, achieving 99.25% accuracy, 98.12% precision, 
100.00% recall, and an AUC of 0.999. The k-NN algorithm 
with Bagging and PSO attains 94.50% accuracy, 92.87% 
precision, 93.33% recall, and an AUC of 0.973. Meanwhile, 
Naïve Bayes with Bagging and PSO records 97.25% accuracy, 
93.73% precision, 100.00% recall, and an AUC of 0.995. Thus, 
Random Forest with Bagging and PSO demonstrates the best 
performance across accuracy, precision, recall, and AUC, 
followed by Naïve Bayes with Bagging and PSO, and k-NN 
with Bagging and PSO. In addition to using matrices to evaluate 
the performance of this experiment, the ROC-AUC curve can 
also be utilized. The comparison of ROC-AUC curves between 
the Random Forest, Naive Bayes, and k-NN algorithms using 
the Bagging method optimized with PSO is shown in Fig. 3, 4,  
5 and 6. 

 

Fig. 3. The experimental results of the ROC-AUC curve for the Random 

Forest algorithm using the Bagging method optimized with PSO. 

The performance of this algorithm in identifying CKD is 
highly satisfactory. As shown in Fig. 3, the algorithm achieves 
an Area Under the Curve (AUC) of 0.999, which falls under the 
category of Excellent Classification. 
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Fig. 4. Experimental results of the ROC with AUC of 0.995 ± 0.008 curve 

for the Naïve Bayes algorithm using the PSO-based bagging method. 

The algorithm performs exceptionally well in identifying 
Chronic Kidney Disease (CKD). As shown in Fig. 4, it achieves 
an Area Under the Curve (AUC) of 0.995, which is classified 
as "Excellent Classification." Additionally, the algorithm 
maintains strong performance with an AUC of 0.973, also 
falling under the "Excellent Classification" category. 

 

Fig. 5. Experimental results of the ROC with AUC of 0.873 ± 0.014 curve 

for the Naïve Bayes algorithm using the bagging method optimized with PSO. 

Fig. 5 presents a comparison of the feature weights 
generated by the Random Forest, Naïve Bayes, and k-NN 
algorithms, utilizing the Bagging method optimized with 
Particle Swarm Optimization (PSO). It illustrates the 
experimental results of feature weights for the Random Forest 
algorithm when employing the Bagging method optimized with 
PSO. Whilst Fig. 6 displays the attributes of the Random Forest 
algorithm using the Bagging method optimized with PSO. The 
figure highlights 24 attributes, each accompanied by its 
corresponding weight. 

Moreover, the graph displays the performance of a binary 
classification model using the ROC (Receiver Operating 
Characteristic) and PRC (Precision-Recall Curve). With an 
ROC AUC of 0.873, the model effectively distinguishes 
between positive and negative classes, while the PRC AUC of 
0.913 highlights its strong performance in imbalanced datasets, 
particularly where the positive class is prioritized. The ROC 
curve (red line) shows the trade-off between the true positive 
rate and the false positive rate, with a steep increase early on, 
indicating strong performance at low false positive rates. 
Likewise, the PRC curve (blue line) focuses on the balance 
between precision and recall, demonstrating high precision 
even at higher recall levels, which is critical when false 
positives are costly. The narrow confidence bands at the start of 
both curves suggest consistent performance across thresholds. 
Overall, the model exhibits strong classification performance 
with high AUC values, making it well-suited for tasks requiring 
precise identification of positive instances, especially in 
imbalanced datasets. 

 

Fig. 6. Visualization of features generated by the Random Forest algorithm 
using the bagging method optimized with PSO. 

Fig. 6 displays the relative importance of various attributes 
within a dataset. The length of each bar represents the weight 
assigned to the corresponding attribute, indicating its influence 
or significance in the analysis. Attributes with longer bars, such 
as "cad", "sgot", and "alk", are deemed more crucial than those 
with shorter bars like "pc", "hba", and "alb." This visualization 
likely aids in feature selection for machine learning models, 
factor analysis to explain variance, or risk assessment to 
identify high-risk factors. 

The application of the Random Forest algorithm with the 
Bagging method optimized with PSO results in feature weights 
r the 24 attributes used, as shown in Fig. 5 and 6. The weights 
are as follows: rbc 0.529, pc 0.565, dm 1, cad 1, appet 0.932, pe 
1, bp 0.606, sg 0.640, al 0.687, su 0.664, bgr 1, bu 0.138, sc 
0.511, pot 0.841, hemo 0.212, wc 0.921. 

Fig. 6 visualizes the features generated by the Naïve Bayes 
algorithm using the Bagging method optimized with Particle 
Swarm Optimization (PSO). The application of the Naïve 
Bayes algorithm combined with the Bagging method, enhanced 
by PSO, produces feature weights for the 24 attributes, as 
illustrated also in Fig. 6. The weights are as follows: rbc (0.950), 
pc (0.981), pcc (1), dm (1), pe (0.414), age (1), bp (1), sg 
(0.831), al (0.531), bgr (0.323), bu (1), sc (0.467), sod (1), pot 
(0.489), hemo (0.826), pcv (1), wc (1), and rc (1). The 
application of the k-NN algorithm with the Bagging method 
optimized with PSO results in feature weights for the 24 
attributes used, as shown in Fig.6. The weights are as follows: 
pc 0.725, pcc 0.986, ba 1, htn 1, dm 1, appet 1, ane 1, bp 0.165, 
sg 1, su 0.642, sc 1, sod 0.139, pot 1, hemo 1, pcv 0.360. 

TABLE III COMPARISON OF FEATURE WEIGHTS BETWEEN RANDOM 

FOREST, NAÏVE BAYES, AND K-NN ALGORITHMS USING THE BAGGING 

METHOD OPTIMIZED WITH PSO 

Attribute 
k-NN + BG 

+ PSO 

Naïve 

Bayes + 

BG + PSO 

Random 

Forest + 

BG + 

PSO 

Albumin (al) 0 0.531 0.687 

Sugar (su) 0.642 0 0.664 

Red Blood Cells (rbc) 0 0.950 0.529 

Pus Cell (pc) 0.725 0.981 0.565 

Pus Cell clumps (pcc) 0.986 1 0 

Bacteria (ba) 1 0 0 

Blood Glucose Random (bgr) 0 0.323 1 

Blood Urea (bu) 0 1 0 

Serum Creatinine (sc) 1 0.467 0.138 

Sodium (sod) 0.139 1 0 

Potassium (pot) 1 0.489 0.841 

Haemoglobin (hemo) 1 0.826 0.212 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 3, 2025 

696 | P a g e  

www.ijacsa.thesai.org 

Packed Cell Volume (pcv) 0.360 1 0 

White Blood Cell Count (wc) 0 1 0.921 

Red Blood Cell Count (rc) 0 1 0 

Hypertension (htn) 1 0 0 

Diabetes Mellitus (dm) 1 1 1 

Coronary Artery Disease 

(cad) 
0 0 1 

Appetite (appet) 1 0 0.932 

Pedal Edema (pe) 0 0.414 1 

Anaemia (ane) 1 0 0 

Albumin (al) 0 0.531 0.687 

Sugar (su) 0.642 0 0.664 

Red Blood Cells (rbc) 0 0.950 0.529 

Pus Cell (pc) 0.725 0.981 0.565 

Pus Cell clumps (pcc) 0.986 1 0 

Bacteria (ba) 1 0 0 

Blood Glucose Random (bgr) 0 0.323 1 

Blood Urea (bu) 0 1 0 

Based on the weighting results, the feature weights for the 
three algorithms (k-NN, Naïve Bayes, and Random Forest) 
using the Bagging method optimized with PSO are shown. The 
Random Forest algorithm produces a weight combination that 
enhances model performance in classification. Note that several 
attributes (e.g., rbc 0.529, pc 0.565, dm 1, cad 1, appet 0.932, 
pe 1, bp 0.606, sg 0.640, al 0.687, su 0.664, bgr 1, bu 0.138, sc 
0.511, pot 0.841, hemo 0.212, wc 0.921) in the Random Forest 
feature weights are close to or equal to 1, indicating their 
significant influence on classification. Moreover, attributes 
with significant weights can provide valuable information for 
the classification model. The Random Forest algorithm 
improves accuracy, precision, and recall by finding the optimal 
weight combinations for relevant attributes using the Bagging 
method optimized with PSO. Additionally, some attributes with 

a weight of 0 are automatically discarded as they have no 
impact on the process. Thus, the feature weighting in the 
Random Forest algorithm using the Bagging method optimized 

with PSO proves to be superior in this case. 

In the evaluation phase of the research, a comparison of 
experimental results was conducted using three classification 
algorithms (Random Forest, Naïve Bayes, and k-NN) with the 
Bagging method optimized with Particle Swarm Optimization 
(PSO). The results show a significant difference when using 
PSO feature selection. Experiments without feature selection 
showed the highest accuracy for Random Forest (98.75%), 
followed by Naïve Bayes (94.75%) and k-NN (73.75%). After 
optimization with PSO and using the Bagging method, 
accuracy improved for all algorithms. Random Forest achieved 
the highest accuracy (99.25%) with a precision of 98.12%, 
recall of 100.00%, AUC of 0.999, and 16 features influencing 
the score. The high accuracy value is influenced by several 
factors, including parameters; the setting of parameters in the 
model affects accuracy. If the parameters used are not suitable 
for the data or cannot predict accurately, the accuracy value will 
decrease. The performance of the AUC [35] is classified into 
five categories, as shown in Table IV. 

TABLE IV CLASSIFICATION CATEGORIES BASED ON AUC VALUE 

AUC Value Classification Category 

0.90 - 1.00 Excellent 

0.80 - 0.90 Good 

0.70 - 0.80 Fair 

0.60 - 0.70 Poor 

0.50 - 0.60 Fail 

According to the AUC classification table, the Random 
Forest algorithm falls into the "Excellent" category with an 
AUC value of 0.999 and generates 15 feature weights, each 
with a corresponding value. This indicates that the Random 
Forest algorithm is highly effective for analysis. Based on the 
above classification, it can be concluded that the Random 
Forest algorithm optimized with Particle Swarm Optimization 
(PSO) and using the Bagging method is a Very Good algorithm 
and suitable for analysis. 

As describe on Table IV that Receiver Operating 
Characteristic (ROC) curve and its corresponding Area Under 
the Curve (AUC) value provide a quantitative measure of a 
model's classification performance. According to Table IV, 
which categorizes classification performance based on AUC 
values, the first model, with an AUC of 0.995 ± 0.008, falls into 
the "Excellent" category (0.90 - 1.00). This indicates that the 
model is highly effective at distinguishing between the positive 
(notckd) and negative (ckd) classes, with minimal 
misclassification. The near-perfect AUC score suggests high 
sensitivity and specificity, making it a highly reliable 
classification tool. 

In comparison, the second model, with an AUC of 0.873 ± 
0.014, falls into the "Good" category (0.80 - 0.90). While still 
strong, this AUC value reflects a slightly lower ability to 
differentiate between classes compared to the first model. The 
confidence intervals indicate some variability in performance, 
but the model remains effective for classification purposes. 
Overall, the first model demonstrates exceptional classification 
ability, making it particularly suitable for applications requiring 
high precision and reliability, such as medical diagnosis. The 
second model, though slightly less precise, still performs well 
and could benefit from further optimization through feature 
selection or model tuning to enhance its performance. 

IV. CONCLUSION AND RECOMMENDATION 

Optimized with PSO achieved the highest 
performance The research on predicting chronic kidney 
disease using the Random Forest, Naïve Bayes, and k-NN 
algorithms with the Bagging approach optimized with Particle 
Swarm Optimization (PSO) has been outlined. 

The use of the Bagging method with Particle Swarm 
Optimization (PSO) feature selection improves the accuracy, 
precision, recall, and AUC values for the Random Forest, Naïve 
Bayes, and k-NN algorithms. In testing, Random Forest with 
the Bagging method with an accuracy of 99.25%, precision of 
98.12%, recall of 100.00%, and an AUC of 0.999, all falling 
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into the "Excellent" category. This indicates that the model has 
a high level of agreement between the predictions made by the 
model and the actual values in the test data. In other words, the 
higher the AUC value, the better the model is at predicting the 
class or target variable. 

The Bagging approach with Particle Swarm Optimization 
(PSO) enhances the performance of Random Forest, Naïve 
Bayes, and k-NN in predicting chronic kidney disease, several 
limitations must be addressed. The model’s high accuracy, 
precision, recall, and AUC values come from a single dataset, 
limiting generalizability to diverse populations. Without 
external validation, its reliability in real-world settings remains 
uncertain. Additionally, potential biases, such as class 
imbalances, may affect performance. The study also lacks an 
assessment of the model’s clinical usability and interpretability. 
Future research should validate the model across diverse 
datasets, address biases, and ensure practical clinical 
integration. 
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