
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 3, 2025 

716 | P a g e  

www.ijacsa.thesai.org 

Parameter Adaptation of Enhanced Ant Colony 

System for Water Quality Rules Classification

Husna Jamal Abdul Nasir1, Mohd Mizan Munif2, Muhammad Imran Ahmad3, 

Tan Shie Chow4, Ku Ruhana Ku-Mahamud5, Abu Hassan Abdullah6 

Faculty of Electronic Engineering and Technology, Universiti Malaysia Perlis, Perlis, Malaysia1, 2, 3, 4  

Institute of Sustainable Agrotechnology (INSAT), Universiti Malaysia Perlis, Perlis, Malaysia3 

Faculty of Business Management and Information Technology, Universiti Muhammadiyah Malaysia, Perlis, Malaysia5 

School of Computing, Universiti Utara Malaysia, Sintok, Kedah, Malaysia5 

Faculty of Electrical Engineering & Technology, Universiti Malaysia Perlis, Perlis, Malaysia6 

 

 
Abstract—Water quality monitoring in aquaculture involves 

classifying and analyzing the collected data to assess the water 

quality that is appropriate for breeding, rearing and harvesting 

aquatic organisms. Systematic data classification is essential when 

it comes to managing large amounts of data that are continuously 

sensed in real time and have various attributes in each instance of 

a sequence. Ant Colony System (ACS) has been employed in 

optimizing the data classification in smart aquaculture, where the 

majority of the research focuses on enhancing the classification 

procedure using predetermined parameters within a specified 

range. Nevertheless, this approach does not guarantee ideal 

performance. This paper enhances the ACS algorithm by 

introducing the Enhanced Ant Colony System-Rule Classification 

(EACS-RC) algorithm, which improves rule construction by 

integrating pheromone and heuristic values while incorporating 

advanced pheromone update techniques. The optimal parameter 

values to be used by the proposed algorithm are obtained from 

parameter adaptation experiments in which different values 

within the defined range were applied to obtain the optimal value 

for each parameter. Experiments were performed on the Kiribati 

water quality dataset and the results of the EACS-RC algorithm 

were evaluated against the AntMiner and AGI-AntMiner 

algorithms. Based on the results, the proposed algorithm 

outperforms the benchmark algorithms in classification accuracy 

and processing time. The output of this study can be adopted by 

the other ACS variants to achieve optimal performance for data 

classification in smart aquaculture. 

Keywords—Parameter adaptation; rules classification; water 

quality monitoring; ant colony system; pheromone update 

techniques 

I. INTRODUCTION 

Smart aquaculture refers to the implementation of intelligent 
aquaculture management systems, in which smart devices are 
utilized within a carefully designed ecosystem to continuously 
monitor environmental parameters in real-time. These devices 
collect data, which is then used to assist with decision-making 
processes. The automation and centralized management of smart 
aquaculture are made possible by big data, artificial intelligence 
(AI), the Internet of Things (IoT), and robotics [1]. These 
technologies work together to minimize human intervention in 
the operation of complete production systems through the 
control of facilities, machinery, and other devices. Sensor data 
is gathered by smart aquaculture, transmitted in real time to a 

database, and processed into useful information. All of these 
challenges can be resolved with a smart aquaculture system that 
can be remotely controlled and requires less labor [2]. Thus, 
smart aquaculture aims to develop the aquaculture industry in a 
manner that is both environmentally and economically 
sustainable. 

Traditional aquaculture involves the selection of seeds, the 
preparation of water, nourishment, and maintenance [3]. 
Aquaculture workers often struggle to maintain water quality 
because frequent water sample collection is required. Ponds and 
tanks must be kept clean, and any changes in the water quality 
that take place outside of the regular cleaning schedule can have 
several negative consequences. In some cases, diagnosis and 
treatment cannot be administered while the fish that live in 
ponds are still alive, presenting an additional challenge. 
Ultimately, these factors impact productivity and quality. 
Incorporating sophisticated technology including automation, 
data analytics, real-time monitoring, and many more, smart 
aquaculture solves traditional aquaculture issues with innovative 
production techniques [4, 5]. 

Dissolved Oxygen (DO), temperature, and pH (hydrogen 
potential) are key parameters in smart aquaculture water quality 
monitoring to determine whether the water is suitable for 
breeding, rearing, and harvesting aquatic animals [6,7]. 
Managing massive real-time data with varying properties for 
each sequence requires systematic data classification. Data 
classification is considered a Nondeterministic Polynomial 
(NP)-complete problem, meaning it cannot be solved in 
polynomial time by an exact algorithm. One of the most 
effective approaches to solving NP-complete problems is using 
metaheuristic algorithms, which explore various optimization 
options to identify the best-performing solution. 

Ant Colony Optimization (ACO), a metaheuristic algorithm, 
has successfully improved classification performance in terms 
of execution time, model size, and accuracy [8, 9]. ACO is 
inspired by the foraging behavior of real ants, which find the 
shortest route from their nest to a food source during foraging is 
the basis for ACO. To communicate, ants use chemical 
substances known as pheromones. As they traverse a path, they 
deposit pheromones, which may encourage more ants to follow 
the same path. Paths with higher pheromone concentrations are 
more likely to be reinforced, while paths with lower pheromone 
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levels fade more quickly due to evaporation [10]. Consequently, 
ants must continuously deposit pheromones to guide others 
toward the optimal path. Several ACO variations have been 
applied to NP-complete problems, including the Max-Min Ant 
System (MMAS), Ant System (AS), and Ant Colony System 
(ACS) [11]. 

ACO can be used for rule development in data classification 
to accurately classify dataset instances. Each rule is represented 
by an ant that follows pheromone trails. Rules with higher levels 
of pheromone concentration are more likely to be selected by 
ants. The ACO algorithm begins with a collection of randomly 
generated rules, each of which specifies the attributes and values 
that an instance must have to be classified into a particular class. 
Ants are distributed across the feature space. Next, each ant then 
selects a feature based on pheromone concentration and a 
heuristic function that evaluates the feature’s relevance to the 
classification task [12]. Fig. 1 shows the development of 
classification rules by ants where each term is represented as a 
node and possible paths connect the nodes. Consequently, each 
ant develops its own path, representing a classification rule. 

 IF attribute 1 = A1, 3 AND attribute 2 = A2, 1 AND 
attribute N = An, 2 THEN class = Class1. 

 IF attribute 1 = A1, 1 AND attribute 2 = A2, 2 AND 
attribute N = An, 1 THEN class = Class2. 

 
Fig. 1. Development of ant-based classification rules. 

A fitness function evaluates the current set of rules to 
determine the reliability of each rule in the classification model. 
Ants adjust their pheromone trace according to the strength of a 
feature. The potency of a pheromone trail is determined by how 
effectively the features contribute to classification accuracy. By 
encouraging ants to select the same features in subsequent 
iterations, the algorithm gradually converges on a refined subset 
of attributes. To prevent the algorithm from settling on a 
suboptimal solution, it is possible to eliminate weak features 
with low pheromone intensity from the subset [13, 14]. Once the 
most relevant features have been selected, a classification model 
can be developed. 

This paper analyzes parameter adaptation by the proposed 
algorithm to enhance the data classification process in smart 

aquaculture. The impact of each parameter is assessed by 
applying different values within a defined range to measure 
classification accuracy. The results demonstrate the 
effectiveness of the optimal parameter values, which can be 
applied to the proposed algorithm specifically and to other ACS 
variants more broadly, in the context of smart aquaculture. A 
final comparison is conducted by applying the optimal 
parameter values and evaluating them against other ACO-based 
classification algorithms. Section II discusses data classification 
in real-world applications, while Section III reviews recent ACO 
approaches in data classification. The proposed data 
classification algorithm is detailed in Section IV followed by 
experimental results and discussion in Section V and Section VI 
respectively. Lastly, Section VII provides concluding remarks. 

II. REAL-LIFE APPLICATIONS USING ANT-BASED DATA 

CLASSIFICATION 

Classifying data involves organizing information based on a 
set of policies and standards. Data classification is typically 
based on three criteria which are risk levels, sensitivity, and 
importance [15]. In general, data classification enables 
organizations to store, access, and retrieve data safely, 
efficiently, and effectively. ACO can be applied to rule 
construction in data classification, where it searches for a set of 
rules that accurately classify instances within a dataset [16]. An 
ant constructs a rule by following a pheromone trail, moving 
from one term to another. The pheromone trail represents the 
attractiveness of a term to ants, with more attractive terms 
having higher pheromone concentrations. The algorithm begins 
with a randomly generated set of basic rules. Each rule consists 
of a set of conditions that describe terms composed of attributes 
and values, determining classification into a specific class. The 
ants are initially dispersed randomly throughout the terms. Then, 
each ant selects a term based on a heuristic function and the 
pheromone concentration. 

The accuracy of the classification model is determined by 
evaluating the existing set of rules using a fitness function. Over 
time, ants modify their pheromone trails based on the quality of 
the selected terms. The effectiveness of these terms is directly 
correlated with pheromone concentration [17]. Ants are 
encouraged to select the same terms in subsequent iterations, 
leading the algorithm to converge on a specific set of attributes. 
Weak terms with low pheromone intensity can be eliminated to 
prevent the algorithm from selecting an unsuitable solution. 
Table I presents a list of ant-based data classification 
applications in real-world scenarios, categorized into five main 
domains which are agriculture, aquaculture, health and 
medicine, autonomous vehicles, and finance. 

Based on Table I, data classification plays a crucial role in 
various Real-world applications across multiple domains, 
including aquaculture systems. The classification challenge was 
successfully addressed in real-life scenarios using an ACO-
based classification technique. 
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TABLE I.  DATA CLASSIFICATION IN REAL-LIFE APPLICATION 

Domain Author(s) Application 

Agriculture 

[18] Reducing operational and seepage losses in agricultural water distribution systems by using ACO algorithm 

[19] Utilizing a hybrid of Hopfield Neural Networks and ACO for agricultural soil fertility analysis 

[20] Identifying cotton leaf diseases and forecasting yield with the use of support vector machines (SVM) and ACO algorithm 

[21] IACO refines the variables of the disease detection model by choosing features from the leaf images 

Aquaculture 

[22] ACO improves the feature selection procedure for classifying water quality 

[23] Improving the accuracy of models that predict groundwater nitrate concentrations by using ACO algorithm 

[24] ACO improves the fish disease identification system by optimizing feature selection. 

[25] Optimizing rule-based data classification technique to improve data classification in smart aquaculture 

Health and 
Medicine 

[26] Optimizing breast cancer classification by using hybrid ACO and Fisher’s method 

[27] Classifying depressive disorders by using an improved ACO algorithm 

[28] Integrating ACO and XGBoost for early diabetes detection 

[29] ACO improves the knee osteoarthritis severity classification framework 

Autonomous 

Vehicle 

[30] Enhanced ACO technique for autonomous surface vehicle local path planning 

[31] Improving lane detection with an adaptive ACO algortihm 

[32] Dynamic obstacle avoidance through the application of the Quantum Ant Colony Algorithm 

Financial 

[33] Utilizing ACO to develop a model for financial crisis prediction 

[34] Employing ACO to maximize high-frequency and dynamic pair trading in financial markets 

[35] Optimizing the classification of credit data by combining Random Forest and hybrid ACO algorithm 
 

III. RELATED WORK 

ACO has demonstrated promising results in optimizing data 
classification, where its effectiveness heavily depends on the 
accuracy of the features used for classification and the size of 
the dataset. Applying ACO to feature selection has enhanced 
classification performance and efficiency by reducing 
complexity, minimizing overfitting, and improving accuracy. A 
multi-label feature selection approach based on ACO (MLACO) 
was proposed by study [36] to identify the most relevant features 
with minimal redundancy. This approach combines supervised 
and unsupervised heuristic functions to refine feature selection 
over multiple iterations. According to experimental results, 
MLACO, which employs a global pheromone update to detect 
and eliminate redundant features, performed more efficiently 
and accurately than other algorithms. 

To optimize the process of rule generation and selection, 
[37] proposed a self-training utilizing associative classification 
using ant colony optimization (ST-AC-ACO). This method 
integrates a semi-supervised associative classification technique 
with ACO to enhance classification performance by leveraging 
both labeled and unlabeled data. The method incorporates 
unlabeled cases into the learning process, addressing the 
problem of limited labeled data. This enables the system to 
identify valuable patterns and rules that may not be apparent 
from labeled data alone. ACO is employed to optimize the rule 
generation and selection steps within the associative 
classification process. Using pheromone-based techniques, the 
system guides the search for high-quality classification rules. 
The proposed method was compared with existing supervised 
and semi-supervised classification algorithms. Experimental 
results demonstrated the advantages of integrating associative 
classification with ACO, showing improved classification 

robustness and accuracy, particularly when working with 
unlabeled data. 

Applying ACO algorithms for data classification in smart 
aquaculture presents an innovative approach to organizing and 
analyzing large and complex datasets. In this context, data 
classification refers to the process of structuring and analyzing 
data collected through advanced technologies to enhance the 
sustainability, efficiency, and management of aquaculture 
systems. Smart aquaculture optimizes various aspects of 
aquaculture operations by integrating technologies such as 
sensors, data analytics, machine learning, and automation. 

By integrating the ACO technique into a boosting 
framework, the study by [22] aims to develop an optimization-
based feature selection method to enhance the accuracy of water 
quality classification models. The proposed algorithm identifies 
key features within the dataset while eliminating irrelevant and 
redundant ones to optimize the classification process. ACO 
utilizes pheromone trails to select features during each iteration 
of the boosting process. Ants use heuristic information and 
updated pheromone levels to construct a new feature subset. To 
achieve optimal performance, ants identify the subsets with 
higher pheromone values. Additionally, pheromone updates are 
applied to balance the exploration and exploitation of potential 
feature subsets. Experimental results demonstrate that the 
proposed approach effectively improves accuracy, sensitivity, 
and precision compared to other classification algorithms. 

The integration of the ACO algorithm with the random forest 
algorithm was proposed by study [23] to enhance the accuracy 
of nitrate concentration mapping in groundwater within the 
multi-layer coastal aquifer system of the Mekong Delta. ACO is 
responsible for the feature selection process, identifying the 
most significant features that contribute to accurate groundwater 
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nitrate concentration predictions. Ants utilize heuristic 
information and pheromone levels to make probabilistic feature 
selections, facilitating the convergence of feature subsets that 
improve the prediction model's performance over multiple 
iterations. At the end of each iteration, pheromone levels are 
adjusted to reinforce effective feature subsets and suppress 
ineffective ones. This iterative process continues until an 
optimal feature subset is identified. By assisting in the selection 
of the most relevant features from a potentially large dataset, 
ACO enhances both the accuracy and efficiency of the random 
forest model. 

The study by [24] aims to optimize fish disease identification 
by integrating a Deep Convolutional Neural Network (DCNN) 
for feature extraction, ACO for feature selection, and a hybrid 
random forest for classification. ACO is employed to select a 
subset of relevant features based on pheromone concentrations, 
with the number of ants determining the extent of feature space 
exploration. Features with high pheromone values are selected, 
while an evaporation procedure is simultaneously applied to 
prevent convergence on a locally optimal solution. Experimental 
results demonstrated that the proposed algorithm achieved the 
highest accuracy compared to other classification algorithms. 

Based on the reviewed literature, ACO demonstrates 
significant potential in addressing classification challenges 
within the aquaculture domain. However, none of the prior 
studies explicitly highlight the significance of individual 
parameter values. The objective of this study is to identify the 
optimal parameter values that can be utilized by ACO for data 
classification in smart aquaculture. 

IV. ENHANCED ANT COLONY SYSTEM FOR DATA 

CLASSIFICATION IN SMART AQUACULTURE 

The proposed Enhanced Ant Colony System for Rules 
Classification (EACS-RC) algorithm is an adaptation of ACS, 
consisting of three main phases which are rule construction, 
pheromone update, and evaluation, as illustrated in Fig. 2. The 
new algorithm variant is revolutionized from the ACS [38] as an 
improvement to the AS for enhancing the classification 
performance. While both ACS and AS are based on foraging 
behavior, they differ in three key aspects which are rule 
construction, local pheromone update, and global pheromone 
update. ACS employs a more aggressive action-selection rule, 
where pheromone is partially removed from each visited path, 
and additional pheromone is only applied to the global best 
solution. 

The rule construction phase focuses on using ants to 
iteratively develop the model by constructing classification 
rules. These rules are formulated based on heuristic information 
and pheromone values obtained from previous iterations. The 
pheromone update phase consists of two key steps which are 
local pheromone update and global pheromone update. The local 
pheromone update acts as a control mechanism to prevent 
excessive accumulation of specific parameters and minimize the 
overfitting of noisy data, thereby reducing the runtime of the 
classification process. Conversely, the global pheromone update 
is applied to the most optimal rule identified by the ant during 
each iteration. This step ensures that the algorithm progressively 
converges toward a more accurate and effective model by 
selectively reinforcing high-quality rules. As a result, the overall 

classification solution is improved by the end of the process. In 
the final stage, the most optimal rule from each iteration is 
selected to form the classification model. The performance 
evaluation phase then assesses the effectiveness of the proposed 
classification algorithm by measuring the model's accuracy. 

Based on Fig. 2, each ant begins selecting terms to add to the 
rule during the rule construction phase. Two key factors 
considered when choosing terms are the pheromone value and 
heuristic information. The state transition rule is applied to 
balance the exploitation of prior terms and the exploration of 
new terms, as represented by the following equation. 

𝑆 = {
𝑎𝑟𝑔𝑚𝑎𝑥 ∈ 𝑈,            if      q≤𝑞0 (exploitation)     

𝑃,                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒(exploration)
    (1) 

 
Fig. 2. Framework of the proposed EACS-RC classification algorithm. 

where 𝑞 is a random number uniformly distributed between 
0 and 1 and 𝑞0 is a parameter value (0≤𝑞0≤ 1). When q is less 
than or equal to 𝑞0 , the ant makes a deterministic (greedy) 
choice by selecting the condition with the highest pheromone 
level or heuristic information. In this case, the probability is set 
to 1 for the selected variable and 0 for all other variables. 
Otherwise, when 𝑞  is greater than 𝑞0 , the ant follows a 
probabilistic path selection process, using pheromone and 
heuristic information to calculate the probability of selecting 
each rule.  

𝑈 represents the probability of selecting a specific value 
from available options and 𝑃  is the proposed equation to 
calculate the probability of term selection to be added to the 
current rule which is calculated using the following equation: 

𝑃 = 
[(𝜏𝑟𝑠(𝑡))

𝛼
.(𝜂𝑟𝑠)𝛽]

∑(𝑥 .∑[(𝜏𝑟𝑠(𝑡))
𝛼

.(𝜂𝑟𝑠)𝛽])
                 (2) 
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where the concentration of pheromones at any given time (𝑡) 
for each term is represented as [𝜏𝑟𝑠(𝑡)]  while the heuristic 

information or desirability is represented as [𝜂𝑟𝑠]  which 
considers the pH, temperature and DO value of water. The 
variable [𝑥]  represents the number of iterations. The outer 
summation (∑) iterates over the number of ants or iterations. 

Each rule created by an ant undergoes pruning by 
eliminating unnecessary terms during the rule pruning process. 
The proposed algorithm determines the predictive class of the 
pruned rules by assigning them to the majority of the cases they 
cover. This process is repeated iteratively to enhance the quality 
of the rules. To refine the discovered rules, a local pheromone 
update is applied using the following equation: 

𝜏𝑛(𝑡+1) = (1 − ). 𝜏𝑛(𝑡) + . 𝑆(𝑡)                           (3) 

In the given context,  represents the evaporation rate, which 
controls the accumulation of a specific parameter to prevent 
unlimited accumulation. For each threshold value, 𝜏𝑛(𝑡) denotes 

the quality level that determines the most probable selection. 
Meanwhile, 𝑆(𝑡) represents the quality of the discovered rule, 
which is defined as follows: 

𝑆𝑡= 
[𝑁𝑇][𝑃𝑇]

(𝑃𝑇+𝑁𝐹)(𝑁𝑇+𝑃𝐹)
    (4) 

where 𝑁𝑇 represents the total number of instances that do not 
belong to the expected class and are not covered by the 
discovered rule, while 𝑃𝑇  indicates the total number of instances 
that belong to the expected class and are covered by the 
discovered rule. On the other hand, 𝑁𝐹  signifies the Total 
number of instances covered by the discovered rule but 
classified incorrectly. Finally, 𝑃𝐹  indicates the total number of 
instances that are classified correctly by the rule but are not 
covered by the discovered rule. 

This process will continue until all the ants have learned the 
complete set of rules. The most effective rules discovered in 
each cycle will be added to the final list of classification rules. 
The best rule from each iteration is selected using the global 
pheromone update, calculated as follows: 

𝜏𝑛(𝑡𝑏𝑒𝑠𝑡) = (1 − ). 𝜏𝑛(𝑡𝑏𝑒𝑠𝑡) + . 𝑆(𝑡𝑏𝑒𝑠𝑡)             (5) 

where  represents the parameter responsible for the quality 
decay, while 𝑆(𝑡𝑏𝑒𝑠𝑡) denotes the quality of the best discovered 
rule at a given iteration. Once all steps completed, a new 
iteration will begin, following the same process. 

V. EXPERIMENTAL RESULTS 

The ideal parameters for EACS-RC in classifying data in 
smart aquaculture were determined through experiment. The  
value controls the influence of pheromone information on the 
ant’s decision-making process, while   value determines the 
importance of heuristic information or domain-specific 
knowledge used by the ants to make decisions. Additionally, 
pheromone trails evaporate over time at a rate determined by the 
evaporation rate ().The 𝑞0 value regulates the balance between 
exploration and exploitation, helping ants effectively navigate 
the search space. 

The optimal value for , 𝛽,  and 𝑞0 as well as their effects 
on the system were determined through experiments using 

Kiribati water quality monitoring data [39]. Classification 
accuracy was used as the evaluation metric for parameter 
adaptation. The EACS-RC algorithm was assessed using 
standard ACS parameters, including the number of ants, rule 
discovery criteria, number of iterations, and the experiment 
parameters. Table II presents the simulation parameters used in 
the experiment. 

TABLE II.  SIMULATION PARAMETERS 

Parameter , 𝜷,  and 𝒒𝟎 

Performance metric 
Classification 

accuracy 

Number of Ants 10 

Minimum number of cases that each rule must cover 5 

Maximum of uncovered cases by the discovered rule 10 

Number of iterations 100 

The optimal value of  , which determines the impact of 
pheromone value on the ant’s decision-making process, was 
evaluated in the first set of experiments. A range of values from 
1 to 10 was tested to assess the classification performance of 
EACS-RC. As shown in Fig. 3, the optimal   value is 3 
(highlighted in red) as it yields the highest classification 
accuracy. Selecting the optimal  value is crucial, as it directly 
influences the convergence speed of the algorithm. 

 

Fig. 3. Effect of  value on accuracy of EACS-RC. 

The second set of experiments aimed to determine the 
optimal value of   for EACS-RC, where 0 <   < 10. Fig. 4 
illustrates that the ideal value of  is 4 (highlighted in red), as it 
results in the highest classification accuracy based on the 
experimental results. The   parameter plays a crucial role in 
balancing the exploitation of pheromone trails and the use of 
problem-specific knowledge, ensuring an effective 
classification process. 

The third set of experiments aimed to determine the optimal 
value of 𝑞0 which serves as a threshold in the state transition rule 
to balance the exploration of new terms and the exploitation of 
previously selected terms. The impact of 𝑞0 on the classification 
performance of EACS-RC for the water quality index was 
evaluated using values ranging from 0.1 to 1. As shown in Fig. 
5 (highlighted in red), the optimal value of 𝑞0 is 0.5, yielding the 
highest classification accuracy. Identifying the optimal 𝑞0 value 
is crucial as it directly influences how the ACO algorithm 
balances exploration (random selection) and exploitation 
(pheromone-based selection), thereby affecting the overall 
performance of the classification process. 
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Fig. 4. Effect of  value on accuracy of EACS-RC. 

 

Fig. 5. Effect of 𝒒𝟎 value on accuracy of EACS-RC. 

In the next set of experiments, the optimal evaporation rate 
() value for pheromone decay was investigated. Pheromone 
decay is essential to prevent the excessive accumulation of 
pheromones, which could lead to stagnation or convergence 
toward suboptimal solutions. The experimental results, as shown 
in Fig. 6, indicate that the optimal () value is 0.5 (highlighted 
in red), yielding the highest classification accuracy. These 
findings emphasize the crucial role of () in the algorithm, as it 
ensures that ants continue exploring different terms while 
preventing them from being overly influenced by outdated 
information. 

 

Fig. 6. Effect of  value on accuracy of EACS-RC. 

The optimal value of  , 𝛽 ,  and 𝑞0  from the previous 
experiments were applied in next set of experiments to evaluate 
the performance of the proposed EACS-RC algorithm. The 
Kiribati Water Quality Monitoring dataset was used to assess its 
accuracy and processing time with two other classification 
algorithms, AntMiner [40] and AGI-AntMiner [41]. Fig. 7 
illustrates that the EACS-RC algorithm achieved an accuracy of 
83% with a processing time of 598 seconds. In comparison, the 
AGI-AntMiner algorithm attained a slightly lower accuracy of 
82%, with a processing time of 649 seconds. Meanwhile, the 
AntMiner algorithm recorded an accuracy of 77% and required 
700 seconds to complete the process. These findings highlight 
the efficiency and accuracy of the EACS-RC algorithm in 
analyzing the Kiribati Water Quality Monitoring dataset. 

 
Fig. 7. Comparison of accuracy results between EACS-RC, AGI-AntMiner 

and AntMiner. 

VI. DISCUSSION 

Four sets of experiments were conducted to determine the 
optimal parameter values for EACS-RC, and the results are 
summarized in Table III. 

 The optimal  value is 3, as it influences the convergence 
speed of the algorithm. A higher  may cause premature 
convergence to suboptimal solutions, while a lower  
can slow down the optimization process. 

 The optimal 𝛽 value is 4, balancing the use of heuristic 
information and pheromone influence. A higher 𝛽 gives 
more weight to problem-specific knowledge, while a 
lower 𝛽 prioritizes pheromone trails. 

 The optimal 𝑞0 value is 0.5, ensuring a balanced 
exploration-exploitation trade-off during the local 
pheromone update phase. 

 The optimal  value is 0.5, allowing pheromone trails to 
dissipate optimally. This prevents ants from being overly 
influenced by outdated information and encourages 
better exploration of feature subsets. 

These values are considered optimal for the EACS-RC 
algorithm in smart aquaculture systems for water quality 
classification. However, factors such as simulation settings, 
topology, environmental conditions, and dataset size may affect 
the need for further parameter tuning to achieve optimal 
performance. 
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TABLE III.  THE OPTIMAL VALUE FOR THE PARAMETERS TO GAIN BEST 

ACCURACY 

 3 

 4 

𝑞0 0.5 

 0.5 

VII. CONCLUSION 

While optimizing the efficiency of the ACS algorithm in 
smart aquaculture for water quality classification, it is 
undeniable that selecting the most suitable parameter values is 
essential. An algorithm functioning at peak efficiency ensures 
optimal performance. By fine-tuning the parameters, the 
proposed EACS-RC algorithm can effectively leverage 
available data, such as pheromone trails and heuristic 
information, to enhance classification accuracy. Compared to 
previous studies that overlooked parameter adaptation, refining 
these values can significantly improve the precision of water 
quality classification, which is vital for smart aquaculture 
management. This efficiency is particularly important in smart 
aquaculture, where timely and accurate water quality 
classification is crucial for effective decision-making and 
ensuring the well-being of aquatic organisms. The process of 
parameter adaptation plays a crucial role in improving algorithm 
performance and its applicability in real-world aquaculture 
scenarios. 

Future research could focus on fine-tuning parameters for 
other ACO algorithm variants across diverse application 
domains, topologies, and environments. Beyond parameter 
optimization, future research could explore the integration of 
adaptive and self-learning mechanisms into the EACS-RC 
algorithm. Incorporating machine learning techniques, such as 
reinforcement learning or metaheuristic-based adaptation, could 
enable the algorithm to dynamically adjust its parameters based 
on real-time environmental conditions. This adaptability would 
enhance its robustness and responsiveness to changing water 
quality factors in smart aquaculture systems. 
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