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Abstract—Precision agriculture has emerged as a vital 

approach for optimizing crop yield prediction, enabling data-

driven decision-making to improve agricultural productivity. 

Traditional forecasting methods encounter difficulties due to 

extreme complexity within environmental factors while operating 

under dynamic farming conditions. An AI framework combining 

NAS and GBM serves as the solution to address these issues 

through enhancing predictive capabilities. This study works to 

produce an automated system which selects optimal models 

through optimization processes for more accurate crop yield 

forecasts. Through NAS component exploration the optimal 

neural network architecture can be identified whereas GBM 

component effectively analyzes non-linear dependencies in data 

which leads to superior predictive capabilities. Data processing 

techniques precede model development by using Recursive 

Feature Elimination (RFE) for feature selection which leads to 

training NAS-optimized deep learning architectures together with 

GBM. The researchers applied the model to real agriculture 

datasets which included essential agricultural variables 

comprising soil conditions and weather elements and crop health 

measurements. The experimental results prove that the developed 

NAS-GBM framework achieves superior performance compared 

to standard models across three major aspects including 

predictive accuracy and computation efficiency in addition to 

generalization capability. The research project uses TensorFlow 

and Scikit-learn alongside Optuna for model optimization while it 

depends on cloud-based computational resources for extensive 

processing requirements. AI-driven hybrid models based on the 

research demonstrate their capability to improve decision-making 

capabilities for farmers together with agronomists. 

Keywords—Network sensor; crop yield prediction; neural 

architecture search; Gradient Boosting Machine (GBM) 

I. INTRODUCTION 

Agriculture has always been the backbone of human 
civilization, driving food production, economic growth, and 
rural development [1]. With the global population projected to 
exceed nine billion by 2050, ensuring food security has become 
a critical challenge [2]. Traditional farming methods, 
characterized by fixed planting schedules and generalized 
practices, often fail to adapt to varying environmental and soil 
conditions [3]. The contemporary agricultural method of 
precision agriculture develops solutions through advanced 
technological integration combined with data-based techniques. 
Participating farmers enhance crop yield through modern 
technological applications alongside data analytics to manage 
resources optimally. and resource utilization [4]. With real-time 
monitoring the farm data combined with actionable insights 
enables farmers to achieve their goals. These farmers receive 
tools which help them generate superior choices that produce 
better results. productivity measures 5].  Precision agriculture 
relies heavily Basic farming data requires predictive analytics to 
create actionable insights. into actionable intelligence [6]. Using 
statistical models and machine learning techniques, predictive 
analytics facilitates Crop yield forecasting and crop type 
recommendation form key tasks enabled through these analytics 
systems. recommendation, and resource allocation [7]. These 
methods Farmers can reduce uncertainty by receiving 
empowered tools that enable quick responses. Strategic action 
toward environmental modifications leads to better productivity 
and sustainability. efficiency and sustainability [8]. For instance, 
accurate crop Precision yield forecasts improve operational 
planning throughout harvesting periods together with storage 
management. Crop recommendations emerge from analyzing 
soil conditions which guide farmers to improve their storage 
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facilities. conditions optimize fertilizer and water use. Sensor 
networks serve as essential building blocks of modern 
agricultural systems. Sensor networks serve precision 
agriculture through field data transmissions which improve 
decision accuracy in real time. improve decision-making 
accuracy [9]. These networks The system gathers fundamental 
data about environmental conditions and soil properties soil 
moisture, temperature, humidity, and nutrient levels (e.g., 
Nitrogen, Phosphorus, Potassium) [10]. For instance, soil the 
technology incorporates soil moisture sensors for understanding 
irrigation requirements and other precision farming needs 
Temperature sensors play a critical role by monitoring field 
matter to detect both frost conditions as well as heat excess. 
Stress [11]. Soil sensors operating in different fields enable the 
recording of detailed data measurements. Sensor networks 
create site-specific analysis through their capacity to collect data 
from different areas of a field. Site-specific management proves 
essential for best utilization of resources alongside maximum 
yield outputs reducing resource wastage [12]. However, the data 
dimensionality meets challenges alongside heterogeneity 
alongside the extensive volume of generated information The 
generation of data by these networks produces substantial 
challenges to data handling. integration and analysis [13]. To 
address these challenges, the adoption of machine learning 
techniques increases steadily across various agricultural 
applications. employed in precision agriculture [14]. This study 
explores a A novel method utilizes Neural Architecture Search 
together with Gradient Boosting Machines to improve 
predictive capabilities. This research adopts Neural Architecture 
Search (NAS) and Gradient Boosting Machines (GBM) as 
advanced solutions to advance agricultural system prediction. 
the predictive capabilities of agricultural systems [15]. NAS, 
Neural network architecture optimization occurs through an 
automated framework. Through its systems architecture search 
NAS selects the most appropriate models for data extraction. 
extracting features from complex data sources [16]. Unlike NAS 
breaks away from standard manually designed architectures to 
automatically discover networks that match specific tasks which 
enhances model performance across both tasks and scalability. 
The discovery of task-specific neural networks through NAS 
improves both model accuracy while extending its capabilities. 
and scalability [17]. In the context of precision agriculture, NAS 
can extract temporal patterns, soil nutrient interactions, and 
seasonal variations from raw sensor data [18]. 

An ensemble learning technique named GBM has become 
popular because of its ability to predict. popular choice for 
predictive modeling in agriculture due to NA provides 
unpredictable combinations of neural architecture topologies 
which excel with diverse input types [19]. XGBoost, Light GBM 
and Cat Boost make up a group of algorithms The models 
demonstrate excellence in extracting non-linear connection 
points across datasets. between environmental factors and crop 
outcomes. GBM Models maintain interpretability which reveals 
important factors through their analysis. variables driving 
predictions, such as soil nutrient levels or rainfall patterns. The 
marriage of GBM and NAS enables a dual stage prediction 
system. NAS acts as a two-phase predictive platform to collect 
sensory data features before GBM utilizes these features for 
yield prediction and classification tasks. Subsequent GBM 
analyses these extracted features from sensors used for crop 

yield prediction. prediction and crop suitability classification 
[20]. This This research has set two major goals to achieve. A 
prediction system is under development that uses sensor 
networks together with NAS and GBM algorithms. A system 
uses NAS alongside GBM and meteorological data and sensor 
readings to determine the best crop selection based on soil 
conditions. soil and environmental conditions [21]. In addition, 
Precision agriculture strategies will benefit from better 
performance through enhanced accuracy. The research goal 
involves enhancing crop yield predictions through precise 
forecasting and cutting down resource requirements. usage. The 
system integrates NAS and the predictive strengths of GBM, this 
hybrid The combined approach effectively analyzes complex 
agricultural data while maintaining operational capability. 
delivering actionable insights [22]. Furthermore, it addresses 
practical challenges in agriculture, such as over-irrigation, Real-
time recommendations through this system identify and resolve 
under-fertilization cases alongside addressing crop failures to 
improve field conditions. The system generates personalized 
field recommendations suitable for individual agricultural 
settings. In This research demonstrates why combining NAS 
technology with GBM algorithm holds great promise. The 
combination of sensor networks with modern machine learning 
structures creates powerful systems. techniques to advance 
precision agriculture [22]. By The hybrid NAS-GBM model 
enables farmers to efficiently integrate it This system enables 
data-driven optimization of resources through strategic decision 
platforms. The system enables operations that lead to higher 
productivity alongside sustainability in agricultural farming. 
The adoption of these practices leads to global food security 
improvements [23]. 

II. LITERATURE REVIEW 

Mgendi [4] explores the multifaceted landscape of precision 
agriculture, focusing on its tangible benefits, challenges, and 
future directions. Today's farming operations achieve better 
resource mobilization through precision agriculture techniques. 
Efficient resource utilization through precision agriculture 
systems enhances both yield production and conservation of 
sustainability levels maintain sustainability levels. 

Elbasi et al., [7] investigates the potential benefits of 
integrating machine learning algorithms in modern agriculture. 
The main focus of these algorithms is to help optimize crop 
production and reduce waste through informed decisions 
regarding planting, watering, and harvesting crops. Sensor 
networks combined Predictive analytics along with sensor 
networks supports fundamental decision Projects derive support 
from actionable insights which enable strategic decision 
making. decision making. The combination of machine learning 
tools Modern farming platforms employs the combination of 
support vector machines (SVMs) random forests and neural 
networks. Analysis with neural networks and support vector 
machines functions along with random forests under data 
science techniques to detect patterns within big data. Analyzing 
crop forecasting and soil recommendation information 
accurately becomes possible. 

Rana et al., [24] undertakes a comparative analysis of tree-
based models and deep learning architectures concerning their 
performance disparities in handling tabular data. Sensor network 
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technology generates site-specific recommendations while 
enabling real-time parameter The system tracks three elements 
of soil conditions which include moisture content alongside 
temperature and atmospheric moisture. Soil assessments 
through these technologies help farmers make better decisions 
about resource use efficiency. in precision agriculture 
operations. 

Tiwari et al., [25] explores the Neural Architecture Pan's 
NAS tool designs powerful deep learning algorithms 
autonomously Through architecture automation NAS optimizes 
deep learning features extraction from highly complex datasets. 
agricultural datasets. The research approach of NAS revealed 
valuable insights regarding temporal dynamics. The discovery 
of temporal and spatial patterns through NAS produces more 
precise estimates for crop yields and drought assessments.  

Shah and Wu [26] Gradient Boosting Machines (GBM), 
XGBoost together with Light GBM and Cat Boost make up a 
group of algorithms specifically designed for precision 
agriculture applications. Insights from the Cat Boost and Light 
GBM and XGBoost algorithms enable superior detection of 
non-linear patterns in agricultural datasets. These methods 
conduct automated optimal deep learning architecture design 
which extracts features from complex agricultural datasets with 
categorical and continuous variables features. 

Benti et al., [24] GBM's interpretability tools, such as SHAP 
(Shapley Additive explanations), provide valuable insights into 
key factors driving predictions. Combining NAS and GBM into 
a hybrid model offers a robust solution for precision agriculture, 
with NAS focusing on feature extraction and GBM on accurate 
predictions. This approach, powered by sensor networks and 
advanced machine learning techniques, significantly improves 
agricultural optimization, addressing challenges in productivity 
and sustainability [27]. 

Time deficiency affected the early NAS methods that used 
Reinforcement Learning-based NAS developed by Zeph and Le 
[3] , and its reinforcement learning agents that searched neural 
network design spaces. These methods provided effective 
results but demanded significant computational effort that 
needed extensive computer resources to assess new architecture 
candidates. With Differentiable NAS Liu et al. [28] researchers 
implemented gradient-based optimization which streamlined 
computational overhead while accelerating convergence. CPU-
powered NAS systems optimize network designs to reveal 
important patterns contained in input data. The recurrent 
algorithms of Long Short-Term Memory (LSTM) and Gated 
Recurrent Units (GRUs) are commonly incorporated by NAS 
frameworks for time-series data modeling purposes found in 
Elsken et al.[29]. NAS optimization of fully connected networks 
enables them to uncover feature relationships which manual 
engineering methods would otherwise miss. Research findings 
show NAS-based models outperform traditional feature 
extraction mechanisms. 

Yu et . [30] established that NAS algorithms successfully 
eliminated domain-specific feature engineering needs while 
maintaining sharp prediction accuracy levels. Research findings 

demonstrate agreement across multiple domains which include 
health care together with energy systems and ecological 
surveillance. NAS brings numerous benefits to neural network 
design yet both computational expense and overfitting concerns 
arise with limited datasets. Researchers have introduced search 
space pruning together with multi objective optimization 
techniques Tan et al. [31], to solve these NAS difficulties. 
Domain knowledge integration in NAS processes leads to 
percentage [32]. 

III. PROBLEM STATEMENT 

Advanced technology systems including sensor networks 
together with machine learning and deep learning enable 
precision agriculture to deliver enhanced resource utilization 
and improved crop yield predictions and better decision-making. 
The difficulty in optimizing crop yield forecasting continues 
because agricultural datasets present challenges through their 
combination of categorical and continuous variables [7]. The 
current machine learning models that include tree-based 
algorithms and deep learning frameworks face challenges when 
applying features and model generalization to precision 
agriculture. The automated deep learning model design ability 
of NAS results in better feature extraction capabilities. The 
established NOS approaches face two major limitations 
including extravagant computational requirements as well as 
susceptibility to overfitting problems with restricted dataset 
sizes [25]. GBM shows stronger capabilities to detect complex 
patterns between variables yet it does not possess built-in 
structure optimization attributes [26]. A merged NAS-GBM 
model structure has potential to solve prediction problems 
through NAS-based feature selection and GBM-based accuracy 
improvement. The research establishes a time-efficient  [30], AI 
model which brings enhanced precision agriculture outcomes 
via forecasted crop yields while solving data processing issues 
along with overfitting conditions. 

IV. METHODOLOGY 

The methodology for this research leverages a hybrid 
approach combining Neural Architecture Search (NAS) for 
feature extraction and Gradient Boosting Machines (GBM) for 
predictive modeling [33]. This two-stage approach aims to 
optimize precision agriculture by extracting relevant 
environmental features from raw data and then making accurate 
predictions regarding crop yield, suitability, and resource 
optimization. The process consists of three core stages: feature 
extraction using NAS, predictive modeling with GBM, and the 
integration of NAS and GBM in a hybrid iterative framework. 
In Fig. 1. represents agricultural sensor data collection which 
leads to preprocessing activities for data cleaning and 
normalization and missing value handling. The NAS-GBM 
framework optimizes extracted features along with selected ones 
before assessing their performance level. 

Different from common models, NAS-GBM adapts the 
optimal network architecture, which improves the feature 
extraction. It makes it all the more applicable to necessarily 
complicated agricultural data including both date and 
categorical features. 
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Fig. 1. Architecture of AI-powered predictive analytics and sensor network for agriculture. 

A. Data Collection 

Data collection and preparation play a crucial role in 
ensuring the effectiveness of the hybrid NAS-GBM approach 
for precision agriculture [34]. The integrated database merges 
current soil nutrient measurements of NPK elements with 
weather data about temperature and rainfall amounts together 
with documented historical yield statistics and land suitability 
assessments. Additional sources provide climate data together 
with fertilizer assessments to enhance the article's contents. The 
preprocessing stage of GBM uses imputation for missing data 
while normalization alongside scaling prepare the features 
before encoding categorical data types. The extraction of time-
series patterns leads to high-quality standardized data that builds 
up a reliable framework for predictive modeling applications in 
precision agriculture. 

B. Data Preprocessing 

The successful utilization of raw data demands a 
fundamental preprocessing step A data cleanup process for 
machine learning models transforms unprepared datasets into 
usable entities. suitable for analysis. In the hybrid NAS-GBM 
model for the hybrid NAS-GBM model implements data 
collection from sources as its initial element for precision 
agriculture. The predictive system obtains its data through 
sensor networks combined with weather stations and historical 
raw data sources. crop data. The processing approach fills in 
gaps in data through statistical replacement techniques. or 
removal of affected data points. Cleaning involves the process 
identifies mistakes within the data and fixes them along with 
removing any case that appears to be an outlier. Feature 

selection Engineering processes are used to determine which 
inputs offer the maximum relevance. Automated features 
identification through NAS enabled this step. process. 
Standardization techniques normalize continuous variables. 
Standardization or normalization methods scale continuous 
variables until they align on a common framework while 
categorical data receives numeric encoding. encoded into 
numerical formats. The dataset is split into Most modeling 
methods split the database for training-over-testing into training 
data blocks which constitute 70-80% of the entire database. and 
the remainder for testing. For imbalanced data, the approach of 
both oversampling and under sampling provides necessary 
techniques for data management fairness when used within the 
process. fairness. The methodology of data augmentation serves 
as one solution to handle these tasks. A data expansion technique 
adds more information before applying necessary 
transformations to the dataset. to enhance distribution. These 
preprocessing steps ensure the When training processes begin 
the model can utilize the prepared data. accurately and 
effectively on new data. 

C. Feature Extraction Using NAS 

The Neural Architecture Search methodology provides 
automated design capabilities. Optimal neural network 
architectures must be designed through an automated process 
named NAS because it functions as the process of extracting 
meaningful qualities from original sensor and environmental 
measurements constitutes a fundamental step in feature 
extraction. environmental data. A NAS exploration method 
investigates sequence options within its allowable design arena. 
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Through thorough optimization of possible neural network 
designs the system performs best on target tasks. performance 
on a given task. 

Input: 

 Input data (e.g., sensor measurements, environmental 
data). 

 Target labels or outputs (e.g., crop yield, suitability). 

 S: Search space of possible neural network architectures. 

 LNAS(F(X), Y): Loss function to evaluate model F. 

 T: Total iterations for NAS optimization. 

Objective Function: 

 Minimize the NAS loss function:  

                   LNAS=L(Fmodel(X), Y)                         (1) 

 Fmodel: Neural network architecture being optimized. 

Initialize Search: 

 Define initial set of candidate architectures {A1, A2…, 
An}. 

 Set learning parameters (e.g., learning rate η\ epochs).  

NAS Iteration: 

 For each iteration t from 1 to T: 

Sample architecture Fmodel,t from S\mathcal{S}S. 

Train Fmodel,t on input (X,Y):  

θt=argθminL(Fmodel,t(X;θ),Y)                (2) 

Where θ represents model parameters. 

Evaluate performance on the validation dataset: 

Lval=L(Fmodel,t(Xval),Yval)              (3) 

Select Best Architecture 

Choose the architecture Fmodel∗ with the lowest validation 
loss: 

Fmodel∗=argiminLval,i                    (4) 

D. Predictive Modeling with GBM 

Once the features are extracted by NAS, they serve as inputs 
to a Gradient Boosting Machine (GBM), a powerful ensemble 
learning method that excels at handling complex relationships in 
the data. The general form of a GBM model is: 

f(x)=m=1∑Mαmhm(x)                          (5) 

Where: 

 f(x) is the final prediction. 

 αm are the weights for each weak model. 

 hm(x) represents the individual decision trees (weak 
learners) at the mmm-th stage. 

 M is the total number of trees. 

In this context, f(x) could be the predicted crop yield or a 
classification indicating crop suitability, while the weak models 
hm(x)h capture various patterns within the data. 

E. Hyperparameter Tuning 

Hyperparameter tuning is performed to improve the 
accuracy and performance of the GBM model. The key 
hyperparameters for GBM include the learning rate η\etaη, the 
number of trees MMM, and the maximum depth of trees DDD. 
The objective is to minimize the loss function, typically Mean 
Squared Error (MSE) for regression tasks: 

LGBM=N1i=1∑N(yi−f(xi))2                                (6) 

Where: 

 N is the number of data points. 

 iyi is the true value. 

 f(xi) is the predicted value. 

During hyperparameter tuning, grid search or random search 
methods can be used to find the optimal values for these 
hyperparameters by evaluating performance on a validation 
dataset. 

F. Model Evaluation 

Once the GBM model has been trained, its performance is 
evaluated using appropriate metrics such as Mean Squared Error 
(MSE) for regression tasks or Accuracy for classification tasks. 
Cross-validation (e.g., k-fold cross-validation) is employed to 
ensure that the model generalizes well across different datasets. 

For regression: 

MSE=N1i=1∑N(yi−y^i)2                 (7) 

Where: 

 y^i is the predicted value from the model. 

For classification, accuracy is defined as: 

Accuracy=∑i=1NI (yi=y^i)                (8) 

Where I am an indicator function that is 1 if the prediction 
matches the true label. 

G. Hybrid Approach 

The hybrid NAS-GBM model integrates the feature 
extraction and predictive modeling stages into a two-stage 
framework. In this approach, NAS focuses on designing the 
optimal architecture for feature extraction, while GBM is 
responsible for making accurate predictions based on those 
features. The iterative nature of this hybrid model allows for 
continuous optimization by refining both the feature extraction 
process and the predictive model. 

At each iteration, feedback from the GBM model can be 
used to improve the feature extraction process of NAS. This 
iterative loop helps in improving model performance by 
continually enhancing the quality of the features extracted by 
NAS and fine-tuning the prediction capabilities of GBM. This 
process can be expressed as: 

Foptimized=LNASminLGBM (Fmodel∗(X), Y)  (9) 
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Where: 

Foptimized is the final, optimized hybrid model. 

LNAS is the loss function for NAS, and LGBM is the loss 
function for GBM. By optimizing the two models iteratively, 
this hybrid methodology improves the predictive accuracy for 
tasks such as crop yield prediction, crop suitability 
classification, and resource optimization, addressing the key 
challenges in precision agriculture. 

V. RESULT AND ANALYSIS 

A. Training and Testing Accuracy 

During the training and testing phases the hybrid NAS-GBM 
was exceeded its competitors and it includes the Support Vector 
Machine and Random Forest and Linear Regression. The hybrid 
NAS-GBM model reached 95% for training accuracy and 92% 
for testing accuracy performance. The hybrid NAS-GBM model 
exhibited a strong Mean Squared Error performance during the 
training with 0.120 and testing with 0.123. The SVM returned 
testing accuracy of 89% alongside a higher testing MSE yet its 
training accuracy reached 90%. Random Forest reached a 92% 
training success rate and 90% testing rate while maintaining a 
0.143 training MSE. The performance metrics of Linear 
Regression proved inferior to the other models by delivering 
85% training results and 85% testing results and maintaining a 
high MSE value of 0.212. The results indicate that the NAS-
GBM hybrid model delivers advanced predictive accuracy at 
reduced MSE values thus representing a robust option for 
precision agriculture implementations.  NAS-GBM achieved 
95%, while for testing accuracy, it reached 92%. In terms of the 
MSE, the hybrid model demonstrated the impressive results with 
a training MSE of 0.120 and testing MSE of 0.123. Comparing 
both the SVM had a training accuracy of 90% and testing 
accuracy of 89%, with a higher testing MSE. The Random 
Forest model delivers 92% training accuracy alongside 90% of 
testing accuracy while maintaining a training MSE of 0.143. 
Linear Regression yielded the worst results where testing and 
training accuracy stopped at 85% while MSE rose to 0.212. 
Experimental results prove that this NAS-GBM hybrid system 
delivers effective accuracy metrics and reduces Mean Squared 
Error which positions it strongly for precision agriculture 
applications. Fig. 2 shows how the hybrid NAS-GBM model 
achieves better performance during training and testing than 
traditional methods while demonstrating higher accuracy and 
lower MSE. 

B. Model Performance Evaluation 

The hybrid NAS-GBM model’s prediction accuracy is 
compared to the other recently used methods in agricultural 
predictive tasks, like support vector machines, random forests, 
and traditional linear regression. The main goal is to highlight 
the advantages of combining NAS for feature extraction with 
GBM for predictive modeling. The Table I compares model 
performance, showing Hybrid NAS-GBM achieving the lowest 
MSE (0.123) and highest accuracy (92%). It outperforms SVM, 
Random Forest, and Linear Regression, demonstrating superior 
predictive precision in regression and classification. 

 
Fig. 2. Hybrid NAS-GBM training and testing accuracy. 

TABLE I.  MODEL PERFORMANCE EVALUATION 

Model 
MSE 

(Regression) 

Accuracy 

(Classification) 

Hybrid NAS-GBM 0.123 92% 

Support Vector Machine (SVM) 0.185 89% 

Random Forest 0.143 90% 

Linear Regression 0.212 85% 

C. Comparison with Conventional Methods 

The base models, includes the SVM, random forests, and 
traditional linear regression, are implemented and evaluated to 
utilized the same dataset. The performance of each model is 
monitored by the metrics like Mean Squared Error for regression 
tasks and Accuracy for classification tasks. The results are 
summarized in the following Table II. 

TABLE II.  COMPARISON WITH CONVENTIONAL METHODS  

Model 
MSE 

(Regression) 

Accuracy 

(Classification) 

Hybrid NAS-GBM 0.123 92% 

Support Vector Machine (SVM) 0.185 89% 

Random Forest 0.143 90% 

Linear Regression 0.212 85% 

From this table, it is evident that the hybrid NAS-GBM 
model outperforms the conventional methods in terms of both 
prediction accuracy and generalization. The hybrid model 
achieves the lower MSE and the higher accuracy, demonstrating 
its ability to capture the complex relationships between the 
environmental variables and crop outcomes. 

D. Feature Importance Evaluation 

To properly evaluate model’s users must identify what key 
characteristics impact prediction outputs the most. SHAP 
(Shapley Additive explanations) functions to determine 
important characteristic weights that impact model prediction 
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results. A specific algorithm called SHAP enables quantitative 
assessment of each feature effect on output results when 
processing a specific dataset. SHAP analysis reveals the crop 
yield prediction task central features which include soil nutrient 
measurements apart from temperature and rainfall information. 
The following bar chart shows the top five most influential 
features based on their average SHAP values: 

Soil moisture together with temperature establish the top two 
factors that influence crop yield prediction while nitrogen and 
phosphorus ratings fall in third place. The findings confirmed 
previous agricultural research through a model that effectively 
recognizes environmental factors affecting crop development 
patterns. 

E. Prediction Accuracy 

The table demonstrates that the hybrid NAS-GBM 
methodology achieves superior performance than traditional 
methods regarding both prediction accuracy and overall 
generalization ability. Numerical evidence indicates that hybrid 
methods obtained reduced MSE values together with advanced 
prediction accuracy thus showing their capacity to detect 
intricate environmental variable-crop outcome correlations. 

F. ValidationUsing K-Fold Cross-Validation 

The model requires k-fold cross-validation for robust 
operation. A dataset segmentation forms k partitions into which 
the model undergoes training and testing using various subset 
collections. Cross-validation calculations are combined to 
establish a more accurate model performance assessment. As 
demonstrated by 5-fold cross-validation the hybrid NAS-GBM 
model delivered an average MSE of 0.125 while exhibiting a 
standard deviation of 0.03 across data partition. Entity points 
forecast modeling using the hybrid NAS-GBM system reveals 
pronounced ability to generalize across diverse agriculturally-
inclined data partitions. Performing validation across multiple 
data partitions reduces model bias and enables the system to 
predict clear outcomes for unrecognized datasets. The Fig. 3. 
illustrates the K-Fold cross validation. 

 
Fig. 3. K-Fold cross validation. 

G. Conclusion of Results 

The hybrid NAS-GBM framework proved superior to other 
methods based on its ability to deliver better predictive. Outputs 

as well as understandable insights. The convergence of NAS 
technique for feature extraction and GBM technique for 
prediction leads to superior crop yield predictions with enhanced 
crop identity detection beyond traditional algorithms. Through 
SHAP analysis users gain insights about which variables 
strongly affect model prediction results thus enabling improved 
comprehension of agricultural activities. The model achieves 
robust generalizability based on strong performance results 
across multiple validation tests along with k-fold cross-
validation assessments. These findings demonstrate the hybrid 
NAS-GBM approach holds the significant potential for 
enhancing the precision agriculture, enabling farmers to make 
more informed decisions, optimize resource use, and improve 
crop management strategies. 

H. Experimental Outcomes 

The research article "Predicted Results from Crop 
Recommendation System" examines in detail the modeling 
outputs produced by precision agriculture systems. The system 
functions by suggesting optimal crops for agricultural land using 
essential environmental measurements and soil information. A 
specific Farm ID identifies each row in the table which displays 
fundamental farm input metrics such as soil nutrient levels and 
weather conditions and soil properties. The table combines a 
forecasted crop selection with confidence percentage data 
alongside predicted yield measurements expressed in 
kg/hectare, providing meaningful information about system 
applications and performance outcomes. The Fig. 4. Shows the 
Crop-wise Yield Predictions. 

 
Fig. 4. Crop-wise yield predictions. 

The input parameters are divided into three categories: Soil 
nutrients interact with weather conditions as well as properties 
of the soil. All plant growth and health depend directly on 
essential soil nutrients which consist of nitrogen (N) 
phosphorous (P) and potassium (K). The essential nutrient N 
enables photosynthesis and leaf development complexity yet the 
essential nutrient P supports root development and seed 
production and the essential nutrient K enhances water 
regulation and disease protection. Soil-fitted crop productivity 
depends heavily on conditions ranging from temperature levels 
through humidity because individual plants thrive best under 
specific combinations of heat and moisture. The pH 
measurement and rainfall amount of each farm allow experts to 
create tailored recommendations about soil health. The Fig. 5. 
Illustrates the Nitrogen vs. Rainfall vs. Yield Prediction. 
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Fig. 5. Nitrogen vs. Rainfall vs. Yield prediction. 

The model generates three types of predictions including the 
recommended crop list together with model reliability data and 
projected yield levels. Farms receive crop recommendations 
comprising rice, wheat, maize, cotton, sugarcane, millet and 
sorghum prioritizing compatible planting conditions. Rice 
receives the recommendation for farming sites that experience 
both neutral soil pH and high rainfall conditions but farmers with 
balanced nutrient resources should grow maize as their main 
crop. The model predicts that farms with sufficient rainfall 
alongside moderate nitrogen levels should cultivate sugarcane 
for maximum yield expectancy at 5400 kg/hectare which yields 
a confidence level of 91%. The confidence scores generated by 
the model range from 87% to 95% demonstrating predictive 
reliability while maize obtains the highest prediction confidence 
at 95%. Predictions of yield allow farmers to assess potential 
farm output levels for recommended crops. 

The data points in the table display patterns which match 
current farming practices. Rice shows optimal growth behavior 
in farms characterized by high nitrogen support and rainfall 
conditions resulting in a yield range of 4150–4200 kg/hectare 
with strong confidence levels. Under cool conditions combined 
with moderate rainfall wheat plants reach an annual yield of 
3800 kg/hectare. Maize exhibits the maximum model certainty 
in agricultural conditions that offer balanced nutrient availability 
and high rainfall leading to 4500 kg/hectare harvests. Cotton 
cultivation produces 2000 kg/hectare yield in suitable farms 
with potassium-rich slightly alkaline soil conditions yet 
sugarcane reaches its highest yield potential because it requires 
water-rich environments. The drought-resistant plants milet and 
sorghum help farms with moderate rainfall produce 3500–4000 
kg/hectare. 

 

Fig. 6. Model Confidence vs. Yield production. 
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The data in Fig. 3, 4, 5 and 6 demonstrates how precision 
agriculture models can lead farmers toward decisions based on 
scientific data. The system examines environmental elements 
and soil composition to deliver customized suggestions which 
boost both agricultural production and efficiency of resource 
consumption. The integration of model confidence scores in the 
system elevates transparency and precision so that real-world 
applications become practical. Predicative tools enable farmers 
to use sustainable practices together with higher operational 
efficiency and environmental adaptability to achieve increased 
agricultural production and better resource management. 

I. Discussion 

The proposed AI-driven NAS-GBM framework effectively 
enhances crop yield prediction by integrating NAS for feature 
extraction and GBM for predictive modeling. NAS both 
enhances model structural design through automatic feature 
choice and achieves better performance results. GBM identifies 
and predicts non-linear patterns which produce accurate results 
that remain understandable to human interpretation. 
Experimental tests show that the NAS-GBM hybrid system 
surpasses traditional machine learning operations in precision 
agriculture through its efficient model optimization along with 
overfitting reduction mechanisms. Overall, the framework 
shows high capacity when working with extensive agricultural 
datasets while it selects important features including soil 
moisture temperature alongside environmental conditions. 

The combination of sensor network inputs strengthens 
prediction performance thus enabling the model to work in real-
time scenarios. NAS-GBM demonstrates superior 
generalization capabilities than typical deep learning systems to 
perform effective computation reduction while maintaining 
precise outcomes. The explanation capabilities of SHAP 
interpretability tools make this solution a trusted precision 
farming approach because they explain model decisions. The 
hybrid model reaches a perfect balance between eliminating 
features and maximizing efficiency which results in a scalable 
and computationally efficient result. Research demonstrates AI 
optimization's vital role in agriculture because the proposed 
model improves forecasting accuracy while following 
sustainable data-deriven decisions. Future research should work 
on implementing the system in real time while developing 
automated settings adjustments for future improvements. 
Although the NAS-GBM model enhances accuracy, it still 
depends much on computational power that may pose challenge 
to its implementation for small farmers. Future studies should 
consider simple techniques to ease the application space of the 
model. 

VI. CONCLUSION AND FUTURE WORK 

The study presents an innovative forecasting system for 
precision agriculture which absorbs sensor data in real-time as 
well as archival agricultural information alongside 
environmental elements. The system which uses advanced 
preprocessing alongside GBM models achieves superior crop 
yield prediction abilities beyond traditional methods. Soil 
predictions together with fertilizer optimization as well as 
resource distribution have reached higher accuracy according to 
experimental findings. The model delivers superior predictive 
accuracy than standard approaches since it successfully 

identifies and models time-dependent relationships among 
variables. The system provides trusted data-driven decision-
making functionality that makes it an important agricultural 
asset. Our research creates a substantial improvement in 
precision farming by providing sustainable crop management 
with an enhanced adaptive and efficient solution. Future 
investigations will incorporate deep learning methods for feature 
extraction enhancement and add real-time weather prediction 
capabilities and conduct tests across multiple agricultural zones 
for better effectiveness and generalization results. Subsequent 
studies will incorporate real-time IoT data streams for on-line 
model update to account for environmental variabilities 
impacting crop yield. 
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