
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 3, 2025 

759 | P a g e  

www.ijacsa.thesai.org 

AEDGAN: A Semi-Supervised Deep Learning Model 

for Zero-Day Malware Detection 

Abdullah Marish Ali1, Fuad A. Ghaleb2*, Faisal Saeed3 

Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia1 

College of Computing, Birmingham City University, Birmingham B4 7XG, UK2, 3 

 

 
Abstract—Malware presents an increasing threat to 

cyberspace, drawing significant attention from researchers and 

industry professionals. Many solutions have been proposed for 

malware detection; however, zero-day malware detection remains 

challenging due to the evasive techniques used by malware authors 

and the limitations of existing solutions. Traditional supervised 

learning methods assume a fixed relationship between malware 

and their class labels over time, but this assumption does not hold 

in the ever-changing landscape of evasive malware and its 

variants. That is malware developers intentionally design 

malicious software to share features with benign programs, 

making zero-day malware. This study introduces the AEDGAN 

model, a zero-day malware detection framework based on a semi-

supervised learning approach. The model leverages a generative 

adversarial network (GAN), an autoencoder, and a convolutional 

neural network (CNN) classifier to build an anomaly-based 

detection system. The GAN is used to learn representations of 

benign applications, while the auto-encoder extracts latent 

features that effectively characterize benign samples. The CNN 

classifier is trained on an integrated feature vector that combines 

the latent features from the autoencoder with hidden features 

extracted by the GAN’s discriminator. Extensive experiments 

were conducted to evaluate the model’s effectiveness. Results from 

two benchmark datasets show that the AEDGAN model 

outperforms existing solutions, achieving a 5% improvement in 

overall accuracy and an 11% reduction in false alarms compared 

to the best-performing related model. 
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I. INTRODUCTION 

This Malware, or malicious software, refers to any program 
specifically designed to damage, disrupt, or exploit digital 
systems. Common types include viruses, worms, Trojan horses, 
ransomware, spyware, rootkits, and bots. Over the past decade, 
malware threats have continuously evolved, posing a persistent 
and growing challenge [1]. Cybercriminals employ advanced 
techniques to disguise and distribute malicious code, often 
using obfuscation and evasion tactics to bypass security 
defenses, making detection and analysis increasingly difficult. 
Attacks targeting critical infrastructure, including power plants, 
financial institutions, and mobile networks, can have severe and 
widespread consequences. A notable example is the 2021 
ransomware attack on a major U.S. pipeline, which led to a 
complete operational shutdown and substantial financial losses 
[2]. As Internet of Things (IoT) technologies continue to 
proliferate within critical infrastructure, it becomes 
increasingly likely that malware attacks will exploit heightened 

vulnerabilities. This susceptibility arises from the complexity 
of modern attacks and the digital environment, rather than a 
simple lack of security measures or computational resources 
[3]. 

Many detection approaches were proposed and can be 
categorized into signature, anomaly-based approaches [3-8]. 
Several previous malware detection systems have relied on the 
signature-based approach [4, 6, 9], which effectively identifies 
malicious patterns extracted from static or dynamic malware 
analysis. This method has proven particularly successful when 
combined with supervised machine learning (ML) techniques, 
enhancing its ability to detect known threats based on 
predefined signatures. These techniques learn to distinguish 
between benign and malicious samples, leading to significant 
improvements in detection accuracy [6, 10-14]. However, the 
signature-based approach has a significant disadvantage in that 
it only concentrates on well-known malware patterns, which 
severely restricts its use. In addition, supervised based solutions 
assume such patterns are static to both malware and benign 
software, limiting detection to known malware manifestations. 
As a result, it is inefficient in identifying zero-day 
vulnerabilities, which are previously unknown or extremely 
complex threats that deviate from existing signatures. 
Automated malware development toolkits provide techniques 
like packing, obfuscation, and polymorphism to conceal 
malicious code and mimic normal patterns, making it relatively 
easy to create new malware variants or modified versions that 
can evade machine learning-based detection. This underscores 
the importance of identifying previously unseen malware in-
stances to effectively combat emerging novel threats. 

Anomaly detection is a powerful method for identifying 
abnormal patterns or behaviors that deviate from expected 
norms. Many malware detection solutions have leveraged one-
class classification, which focuses on modeling benign data to 
capture its essential characteristics. This approach enables the 
system to effectively distinguish malicious instances by 
detecting deviations from the learned benign profile [15-17]. 
Consequently, any sample not aligning with the acquired model 
representation is classified as a potential malware occurrence. 
However, this approach has two major drawbacks. First, it tends 
to generate a high false alarm rate because benign samples are 
often significantly outnumbered by malware samples during 
training. This imbalance creates biased learning, leading to an 
increased likelihood of misclassifications. Second, due to the 
use of evasive and obfuscation techniques by malware 
developers, the learned representation of benign samples often 
overlaps with malicious features. This overlap makes it 
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challenging to distinguish between benign and malicious in-
stances, resulting in a high degree of uncertainty in 
classification decisions. 

To address these challenges, this study aims to design and 
develop a zero-day malware detection model using a semi-
supervised learning approach for anomaly detection. Semi-
supervised learning effectively utilizes a limited amount of 
labeled data combined with a larger set of unlabeled malware 
samples. The benign samples were used to train an anomaly 
detection model. Anomaly detection works by identifying 
abnormal patterns that deviate from expected norms. In the 
context of malware detection, many traditional systems use a 
one-class classification approach, which models benign data to 
capture its essential characteristics and detects deviations from 
this benign profile as potential malware. This method enables 
the model to capture diverse and evolving malware patterns, 
enhancing its ability to generalize to unseen threats. Learning 
deviations from known behaviors improves the detection of 
novel attacks, enabling the proposed approach to identify 
threats that traditional methods may fail to recognize. However, 
this approach has two significant drawbacks. First, there is 
often a data imbalance between benign and malware samples, 
leading to a high false alarm rate due to biased learning. Second, 
malware frequently uses evasive techniques, causing overlap 
between benign and malicious features, making it difficult to 
distinguish between them and leading to misclassifications. 

To overcome these limitations, the proposed model, named 
AEDGAN, combines generative adversarial network (GAN), 
autoencoder (AE), and convolutional neural network (CNN) 
architectures. To mitigate the data imbalance caused by the 
limited availability of benign samples, the GAN model 
generates more accurate representations of benign applications, 
thereby enhancing the ability to distinguish them from evolving 
malware. Meanwhile, the autoencoder is customized to extract 
latent features that best characterize benign samples. Finally, 
the CNN model is trained on a consolidated feature vector 
derived from both the latent attributes obtained from the 
autoencoder and the hidden features extracted by the 
discriminator within the GAN model. Extensive experiments 
were conducted to assess and validate the proposed model's 
performance. These experiments employed two datasets, 
encompassing evasive and novel malware attacks, for 
validation. The model's efficacy was evaluated by 
benchmarking it against state-of-the-art solutions. This study 
presents the following contributions: 

1) Develop AEDGAN, an advanced architecture 

integrating Generative Adversarial Networks (GAN), deep 

autoencoding, and Convolutional Neural Networks (CNN) to 

create a zero-day malware detection model based on semi-

supervised learning and anomaly detection. 

2) Design and implement a GAN architecture, trained 

exclusively on benign instances, to generate realistic 

representations of normal samples. This approach is grounded 

in the hypothesis that benign software exhibits lower dynamism 

compared to malware, making it well-suited for GAN-based 

generation to enhance the modeling of normal behavior. 

3) Construct an anomaly-based detection model, utilizing 

deep autoencoding to improve feature representation and 

detection accuracy. The auto-encoder leverages benign samples 

generated by the GAN to refine the distinction between normal 

and malicious behavior. 

4) Develop a CNN model to reduce false positives 

produced by the autoencoder, specifically addressing the 

challenge of feature overlap between benign and malicious 

instances. The CNN is trained on a combined feature set, 

integrating latent features from the autoencoder and outputs 

from the GAN discriminator, to strengthen its ability to 

differentiate be-tween benign and malware samples. 

The remainder of this paper is structured as follows: Section 
II reviews related work, while Section III elaborates on the 
proposed model. Section IV provides comprehensive details on 
the experimental design, encompassing dataset selection, 
performance metrics, validation, and evaluation procedures. 
Section V presents the results and Section VI includes the 
discussions of the results, as well as the limitations of the 
proposed solution, while Section VII offers concluding 
remarks. 

II. RELATED WORKS 

Please Zero-day malware refers to previously unknown or 
newly discovered malware that exploits vulnerabilities for 
which no patch or signature exists [18]. Detecting zero-day 
malware is a significant challenge for existing solutions [19]. 
Traditional signature-based detection methods rely on known 
patterns or signatures of malware, making them ineffective 
against zero-day malware [3, 18]. However, there are several 
approaches and techniques that have been proposed to address 
this issue. 

One approach is the use of behavioural analysis, which 
focuses on the actions and behaviour of software to identify 
malicious activities [9, 11, 13, 20]. This technique can detect 
zero-day malware by analysing the behaviour of an application 
during its execution. By monitoring system calls and analysing 
their patterns, it is possible to identify suspicious or malicious 
behaviour [13]. However, this approach has limitations, as 
some malware can evade detection by modifying their 
behaviour or using obfuscation techniques [19]. Authors in 
study [4] proposed a CNN architecture for zero-day malware 
detection based on static analysis. CNN is employed to extract 
a small binary fragment from the text section of the Portable 
Executable (PE) malware file.  However, the limitation of this 
model is that these small fragments may not be available due to 
the use of the obfuscation and evasion techniques by malware 
authors. Authors in study [5] presents the Cyber Resilience 
Recovery Model (CRRM), an epidemiological model designed 
to combat zero-day outbreaks in closed networks. Authors in 
study [7] pro-posed a zero-day malware detection model based 
on multiple views learning with convolutional method. Three 
sources of information were integrated to increase the chance 
of recognition of the malicious patterns with the hope of 
detecting zero-day malware. The main drawback of such an 
approach is the reliance of static analysis where it is complex to 
extract representative patterns due to the use of obfuscations 
and evasive techniques. Authors in study [8] proposes a novel 
method, the transferred deep-convolutional generative 
adversarial network (tDCGAN), to robustly detect malware, 
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including zero-day attacks, by generating fake malware and 
using deep autoencoders for feature extraction, achieving 
95.74% average classification accuracy and demonstrating 
superior stability and resilience against zero-day attacks 
compared to other models. However, the reliance on generating 
fake malware data to train the model will not resolve the 
inherent issue of overlapping malware features with benign 
features, which arises from unrepresentative benign samples 
and the obfuscation and evasive techniques used by malware 
authors, potentially leading to lower generalization capabilities 
for unseen or novel attacks. 

Many researchers used machine learning techniques, such 
as supervised machine learning and random forest algorithms 
[6, 10, 12, 14, 21-24]. These techniques can learn from existing 
information and detect new malware apps, including zero-day 
malware [25]. Machine learning models can be trained on 
known malware samples and then used to classify unknown 
samples based on their features. This approach has shown 
promising results in detecting zero-day malware that cannot be 
detected by conventional methods. Authors in study [6] 
proposes Malware-SMELL, a zero-shot learning method for 
classifying malware using visual representation and a new S-
Space representation, achieving 80% recall and outperforming 
other methods by 9.58% in classifying malware with a model 
trained solely on goodware code.  Authors in study [26] argued 
that the use of sandboxing techniques can help detect zero-day 
malware. Sandboxing involves running an application in a 
controlled environment to observe its behaviour and identify 
any malicious activities. According to authors in study [26] 
analysing the interactions between the application and the 
sandbox make it possible to detect zero-day malware based on 
its behaviour. However, detecting zero-day malware remains a 
challenge [19]. Zero-day malware often employs obfuscation 
techniques to evade detection, making it difficult for existing 
solutions to identify them. Furthermore, some techniques may 
have limitations in terms of accuracy or the ability to detect 
complex malware [27]. 

Anomaly detection approach also have been utilized for 
detecting zero-day mal-ware by characterizing typical patterns 
and identifying malicious actions based on their deviation from 
normal patterns [28]. These techniques aim to identify 
anomalies or deviations from expected behavior, which can 
indicate the presence of zero-day attacks or malware. By 
comparing the behavior of an application or system to a base-
line or normal profile, any deviations or anomalies can be 
flagged as potentially malicious. Hybrid methods that combine 
both anomaly detection and anomaly identification techniques 
have been proposed for detecting zero-day attacks. These 
methods leverage the strengths of both approaches to improve 
the accuracy and effectiveness of detection. Anomaly detection 
techniques can identify deviations from normal behavior, while 
anomaly identification techniques can classify these deviations 
as malicious or benign. 

Unsupervised anomaly detection algorithms have also 
shown potential in detecting zero-day attacks [29]. These 
algorithms do not require labeled training data and can 
automatically learn patterns and identify anomalies in data. By 
analyzing the be-haviour of applications or systems, 
unsupervised algorithms can detect deviations from normal 

behavior and flag them as potential zero-day attacks. However, 
it is important to note that the performance of unsupervised 
algorithms for zero-day detection can be influenced by the 
availability of quantitative analyses and me-ta-learning 
techniques. Authors in study [3] proposed autoencoder 
architecture based on neural network for anomaly detection. 
The model was trained based on the benign instances. The aim 
is to create a model with no idea of high to reconstruct the 
malware instances as the model originally trained based on 
benign instances. Although autoencoder method is promising 
for binary classification, selecting proper threshold is 
challenging. 

Generative adversarial networks (GANs) have been widely 
used for anomaly detection in various domains, including time 
series data, image processing, and network analysis [30-32]. In 
the context of anomaly detection, GANs have shown promise 
in capturing the normal patterns of data and identifying 
deviations from these patterns as anomalies. GAN was used in 
two approaches: unsupervised and semi-supervised anomaly 
detection. In the unsupervised anomaly detection GAN is 
trained solely on normal data without any labeled anomalies 
while in semi-supervised the GAN is trained on both normal 
and anomalous where a small portion of anomalous labels are 
minority class. Kolosnjaji et al. [33] leveraged data extracted 
from malware samples, including header fields, instruction 
sequences, and raw bytes, to train models that discriminate 
between benign and malicious software. By using GANs, they 
aimed to enhance the detection of adversarial malware binaries 
that can evade traditional deep learning-based detection 
methods. Although, GANs offer a promising avenue for 
anomaly detection by capturing the underlying patterns and 
distributions of data, the effectiveness of GANs for anomaly 
detection can be influenced by factors such as the quality and 
representativeness of the training data, the architecture and 
hyperparameters of the GAN, and the choice of anomaly 
scoring or thresholding methods. In mal-ware detection 
domain, GAN has not been investigated much in the literature 
for detecting malware threats. Some works focused on 
generating adversarial mal-ware samples [34]. Accordingly, a 
model is trained to classify the benign samples including the 
synthesis generated benign samples from the malware samples. 
Authors in study [8] proposed a zero-day malware detection 
model by training a generative adversarial network with deep 
autoencoder (DAE) using transfer learning. 

In conclusion, existing zero-day malware detection 
solutions employ various approaches including signature and 
anomaly analysis. Various techniques are used in the machine 
learning and sandboxing analysis. These approaches aim to 
identify malicious patterns either based on static features or 
based on behavior that can indicate the presence of novel 
malware pattern. The signature based static features were the 
most employed form of zero-day detection in malware domain. 
While these techniques have shown promise in detecting zero-
day malware, this approach assume that the zero-day malware 
is a malware variant that have known characteristics with the 
previous one. Such assumption is not accurate because zero-day 
malware may show different treats and might not follow any 
known patters due to the use of obfuscation techniques by 
malware authors. Few researchers employ the concept of 
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anomaly detection to device zero-day malware detection model 
by identifying deviations from normal patterns or behavior. 
Unsupervised and semi-supervised learning was utilized to 
train the anomaly detection models. Research using 
autoencoders [3, 8], GAN [8, 18], and CCN [4, 24, 35] 
architectures showed promise in detecting zero-day attacks. 
However, the selection of proper threshold that can 
discriminate the malware from benign is challenging task due 
to the overlapping features between the benign and malware in-
stances caused using the obfuscation and evasion techniques. 
Though further research is needed to enhance their performance 
through quantitative analyses and meta-learning techniques. 

To this end, this study devised a zero-day malware detection 
(Fig. 1) model through de-signing an architecture that 
incorporate GAN, deep autoencoding, and CCN to improve the 
detection rate while reduce the false alarm rate. The GAN 
architecture was trained on normal instances, to generate 
realistic benign samples. Our hypothesis is that benign samples 
exhibit less dynamism compared to malware samples, making 
them suitable for GAN-based generation to represent normal 
instances effectively. The deep autoencoding is trained to 
model benign distribution for anomaly detection leveraging the 
benign samples generated by the GAN networks to enhance 
representation and improve detection performance. To reduce 
the false alarm rate resulted from con-figuration of the anomaly 
detection threshold. A CNN architecture aimed at mitigating 
false positives generated by the autoencoder, particularly 
addressing the issue of feature overlap between benign and 
malware representations was designed and developed. The 

latent features extracted by the autoencoders were fused with 
the GAN discriminator's output to train the CNN model for 
robust differentiation between benign and malware instances. 
The detailed description of the proposed model is presented in 
the following section. 

III. THE PROPOSED MODEL 

The proposed model has been constructed through five main 
phases features ex-traction and pre-processing, data 
representation, GAN model, the autoencoder model, and the 
CNN classifier. In the first phase, the malware features are 
extracted and pre-processed for the training. In the second 
phase, the GAN model is constructed using semi-supervised 
approach. The GAN model consists of two adversarial modules, 
a generator and a discriminator. The Generator and 
Discriminator always competes against each other. The 
generator tries to generate a fake sample look like benign 
software while discriminator try to recognize real sample as real 
and generated sample as fake. Autoencoders consist of two 
integral components: the encoder and the decoder. The encoder 
is responsible for transforming input data, which can 
encompass various types such as images or text, into a 
condensed representation known as a bottleneck or latent code, 
characterized by lower dimensions. Subsequently, the decoder's 
role is to utilize this latent code to perform an optimal 
reconstruction of the initial input data. The fundamental goal of 
an autoencoder is to minimize the reconstruction error, 
quantified as the disparity between the input data and the 
reconstructed output.

 

Fig. 1. The proposed zero-day malware detection model. 

A. Features Extraction Phase 

In this phase, malware features are extracted by monitoring 
and analyzing the interactions between an application (whether 
malicious or benign) and the operating system during runtime, 
specifically when API calls are made. Dynamic analysis is per-
formed using the Cuckoo sandbox, which employs a technique 
called hooking to intercept and track API calls. Hooking works 
by injecting code into an application's execution flow, allowing 
the system to capture function calls to APIs. These intercepted 
calls are then logged into files, with each log file containing the 
recorded API calls of a specific application. For each 
application, the API calls are extracted from the log file and 
arranged sequentially based on their occurrence during 
execution. Each API function call is then treated as a distinct 
feature.  

To enhance feature representation and capture behavioral 
patterns, n-gram analysis is applied to extract meaningful API 
call sequences. N-grams help identify important patterns in API 
sequences, making them a valuable technique for feature ex-
traction. Numerous studies have validated the effectiveness of 
n-grams across various domains, including malware detection, 
where they improve classification accuracy by providing richer 
contextual information [36]. 

B. Data Representation Phase 

In this study, each API calls and API sequence extracted 
using n-gram is used as a feature (term). Then the TF-IDF 
which is a well-established technique for feature ex-traction 
from text data, was used for representing the APIs features. TF-
IDF considers both the frequency of terms (API calls in this 
case) within a sequence and their importance across multiple 
sequences [37]. It assigns higher weights to terms that are 
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frequent within a sequence but relatively rare across all 
sequences. This is useful in identifying unique or significant 
API call patterns associated with specific malware samples. TF-
IDF helps in reducing the dimensionality of the feature space 
by focusing on the most relevant terms (API calls). This can 
make subsequent analysis and machine learning tasks more 
computationally efficient and interpretable. Rare or unique API 
calls that are common in malware but rare in legitimate 
applications can be weighted more heavily [10]. 

The TF/IDF vectors then are converted to image format. 
The process typically begins by reshaping the TF-IDF feature 
matrix into a grid-like structure, where each cell represents the 
TF-IDF score of a specific term (word) in a document. This 
grid, often referred to as a term-document matrix, forms the 
basis of the 2D image representation. To generate the image, 
TF-IDF scores are mapped to pixel intensities, converting the 
continuous values into values. Once the TF-IDF values are 
transformed into pixel values, the image is ready for the 
classification. According to study [10], the Inverse Document 
Frequency (IDF), which measures the global importance of an 
API across the entire corpus, can be calculated as follows:  

𝑖𝑑𝑓𝑖  =  𝑙𝑜𝑔 (
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠  

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑐𝑎𝑙𝑙 𝑡ℎ𝑒 𝐴𝑃𝐼 𝑖 + 1)
 )   (1) 

where the 𝑖𝑑𝑓𝑖   is the inverse document frequency. TF-IDF 
is calculated by multiplying the TF (term frequency) and IDF 
(inverse document frequency) values for each term in each 
document.  This results in a TF-IDF score for each API or API 
sequence in each document. It quantifies how unique or 
common a term is in the corpus. Next, for each feature in the 
corpus, the term frequency-inverse term frequency (𝑡𝑓_𝑖𝑑𝑓) is 
calculated as follows. 

𝑡_𝑖𝑑𝑓𝑖 =  𝑡𝑓𝑖 ∗  𝑖𝑑𝑓𝑖                          (2) 

The 𝑡_𝑖𝑑𝑓𝑖  score for a term in a document is higher if the 
term appears frequently in that document but is relatively rare 
across the entire corpus. The 𝑡_𝑖𝑑𝑓𝑖 features are scaled using 
min-max normalization as follows. 

𝑠𝑐𝑎𝑙𝑙𝑒𝑑𝑡𝑓𝑖𝑑𝑓𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
= 

𝑡𝑓_𝑖𝑑𝑓_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠−𝑚𝑖𝑛 (𝑡𝑓_𝑖𝑑𝑓_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)

𝑚𝑎𝑥 (𝑡𝑓_𝑖𝑑𝑓_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)  −𝑚𝑖𝑛 (𝑡𝑓_𝑖𝑑𝑓_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
              (3) 

Finally, the features vector is created from the unique terms 
of the corpus. The maximum length of the feature vector is n 
features. These features vector was converted to 𝑤 × ℎ image 
size as follows. 

𝑖𝑚𝑎𝑔𝑒_𝑤𝑖𝑑𝑡ℎ  𝑤 =  𝑓𝑙𝑜𝑜𝑟(√𝑛) (              (4) 

𝑖𝑚𝑎𝑔𝑒_ℎ𝑖𝑔ℎ𝑡  ℎ =  𝑓𝑙𝑜𝑜𝑟 ((
(𝑛 −1)

𝑤
)  +  1)       (5) 

Where 𝑤 and ℎ are the width and height of the represented 
images and 𝑛 is the max length of the features vector. 

C. GAN Model Construction Phase 

In this phase, the Generative Adversarial Network (GAN) 
model is constructed. GANs are a type of deep learning model 
that consists of a generator and a discriminator.  The generator 
aims to generate synthetic data that resembles the real data, 

while the discriminator tries to distinguish between real and 
synthetic data. When the discriminator is no longer able to 
distinguish between real data and synthetic data, then the model 
is converging and can be used in the production. In this study 
the GAN is trained on the benign data samples. By training the 
GAN on a dataset of normal data (benign samples), it learns to 
capture the underlying distribution of the normal data [38]. 
GANs have emerged as a promising approach in the anomaly 
detection [38, 39]. The aim is to measure the anomaly score of 
given samples based on its deviation from the learned 
distribution of normal samples. This is done by comparing the 
reconstruction error of a given sample with the reconstruction 
error of the benign samples. This approach is promising and 
have been widely adopted by many researchers in the anomaly 
detection field [38, 39, 40]. 

The Generator was trained based on the benign samples as 
represented by images in the previous phase. The generator 
network learns to generate synthetic images that resemble the 
benign images, while the discriminator network learns to 
distinguish between real and synthetic images. Once the GAN 
is trained, the constructed GAMN uses an iterative process to 
find the latent vector in the generator network that best re-
constructs a given test image. This is done by optimizing the 
latent vector to minimize the difference between the 
reconstructed image and the original test image. The anomaly 
score is then calculated based on the reconstruction loss and the 
loss between the intermediate discriminator feature of the test 
image and the reconstructed image. The generator is trained to 
reconstruct the samples represented by 1D vector extracted 
randomly from latent space and map them to 2D images in the 
image space created from the applications samples. The 
generator network is architected using stack of convolutional 
decoder equivalent to a convolutional decoder. The 
Discriminator D is constructed using standard CNN layers that 
maps 2D images to a single scalar represent the anomaly score 
of the sample. Fig. 2 shows the architecture of the proposed 
GAN network. 

Fake Benign Samples

Real Benign 
Samples

Generator

Discriminator

Anomaly 
Score

Anomaly 
Score

 

Fig. 2. The proposed semi-supervised GAN network. 

The generator network of the GAN is trained to produce 
synthetic samples that look similar to the fraud samples, while 
the discriminator network is trained to distinguish between the 
original and the synthetic samples. For the learning, let 𝐺 and 
𝐷 denote the generator and the discriminator, respectively, and 
let 𝑍 = {𝑧1, 𝑧2, . . 𝑧𝑛} and 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} denote the 
distribution of latent and problem space, respectively. 𝐺 and 𝐷 
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G(z) are the output of the generator (the fake sample) and 
𝐷(𝐺(𝑧)) is the output of the discriminator, which is the 
probability of getting 𝐺(𝑧) belonging to real data. The error 𝑒 =
𝑙𝑜𝑔(1 −  𝐷(𝐺(𝑧)) should be minimized to generate a fake 
sample that is drawn from the distribution of the real data. The 
error 𝑒 is also used to penalize the   generator 𝐺 and thus to 
minimize log (𝐷(x)). Thus, based on [38], the following min-
max game must be played by 𝐺 and 𝐷 to minimize the generator 
error and maximize the divergence. 

𝑚𝑖𝑛⏟
𝐺

 𝑚𝑎𝑥⏟
𝐷

𝑉(𝐺, 𝐷) = 𝐸𝑥(𝑙𝑜𝑔(𝐷(𝑥))) +  𝐸𝑧(𝑙𝑜𝑔(1 −

𝐷(𝐺(𝑧))))                                (6) 

The training of the GAN model continues until the 
generator can fool the discriminator into believing that the 
generated samples are real, namely when adversarial loss 
converges, indicating that the generator is producing realistic 
fraudulent samples. 

D. Deep Autoencoder Construction Phase 

It is widely believed by researchers that the performance of 
the anomaly detection using one class learning fall behind the 
supervised learning approach. This is because the classification 
approach does not relay much on selecting the classification 
thresholds as the model learn automatically the best 
discrimination threshold [3, 8]. The ability of neural network in 
performing abstractions is attractive. Considering this, it is 
reasonable to assume that autoencoders, a type of neural 
network specializing in encoding input data, would yield a 
latent representation that faithfully represents the specific 
attributes of input data samples. As a result, our strategy in this 
work relies on autoencoding to gain the benefits of strong 
abstraction and one class model to make judgments 
automatically and without the need for thresholds. In this study 
the auto-encoder based model was trained based on the benign 
samples. As shown in Fig. 3, the data with latent distribution 
was used to construct one class model for anomaly detection. 
The autoencoder learns how to minimize the reconstruction 
errors. 
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Fig. 3. The training and testing bath of the Autoencoder Anomaly based 

model. 

E. CNN Classification Phase 

In this stage, the latent features extracted from the 
autoencoder was used to develop a CNN classifier that can 
effectively distinguished between benign and malware samples.  
Fig. 4 shows the proposed CNN model for Decision Making 
about the anomaly status of the sample normal for benign 
samples and anomaly for malware samples. 

Input

Reshape 
Layer

Conv2D

MaxPooling
2D

Flatten 128

Dense Layers 

 

Fig. 4. The proposed CNN model for decision making. 

The CNN Model consists of eight layers. The CNN model 
in this stage is designed for binary classification, where the 
sigmoid activation function is suitable for producing binary 
output probabilities (0 or 1) zero for normal and one for 
anomalies. The first layer defines the input shape, indicating 
that the model expects input data with a dimension of 256. The 
input layers are taken form the last hidden layer (the flatten 
layer) of the discriminator and concatenated with the latent 
layer form the discriminator to form the 256 input dimension. 
The second layer is used to transform the input data into a 
16x16 grid with a single channel (grayscale image). The third 
layer is a 2D convolutional layer with 32 filters and a 3x3 kernel 
size. It uses the ReLU (Rectified Linear Unit) activation 
function, which introduces non-linearity into the model. The 
fourth layer performs max-pooling with a 2x2 pool size. Max-
pooling reduces the spatial dimensions of the feature maps, 
helping to capture essential information while reducing 
computational complexity.  The fifth layer is the flatten layer 
which reshapes the output from the previous layer into a one-
dimensional vector. This prepares the data for fully connected 
layers. The sixth layer is a fully connected dense layer with 128 
units and ReLU activation. The seventh layer is fully connected 
dense layer with 64 units and ReLU activation. The output layer 
with a single neuron and sigmoid activation. 

IV. EXPERIMENTAL DESIGN AND PERFORMANCE 

EVALUATION 

The dataset, the experimental procedures, and the 
performance evaluation are described in the following sub-
sections. 

A. Datasets 

In this study, two datasets were used to validate and 
evaluate the proposed model. The first dataset, which is referred 
to Dataset I, is the API call sequences have been extracted form 
dynamic analysis environment. The malware samples were 
originally collected by [41, 42]. The extracted API call 
sequence represents behaviours of 7208 evasive malware 
sample. The benign samples, namely 3,848 benign, were 
collected from a newly installed copy of Windows 7 and from 
[43]. Fig. 5(a) illustrates the distribution of samples in Datasets 
I. The dataset was split into two parts 70% for training and 30% 
for testing. The 30% of the real benign samples represents the 
unseen benign samples while the whole malware samples were 
hidden during the training of the anomaly-based models in this 
study. As shown in Table I the model is trained based on the 
real and synthesized benign samples. For CNN model 70% of 
the malware samples were used in the training and 30% for the 
testing. 
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The second dataset referred as Dataset II which is publicly 
available online and can be downloaded from IEEEDataPort 
Web portal [44]. The dataset contains 10,654 samples 3,097 are 
benign samples while 7557 are malware samples. The malware 
samples distributed as follows, 451 ransomware, 1,051miner, 
797 DDoS Trojan, 89 worm, 3353 infective virus, 454 
backdoor, and 1362 trojan (see Fig. 5(b)). Table I presents the 
distribution of samples in Datasets I and II for training and 
testing, including both real and generated benign and malware 
samples. To enrich the datasets, the GAN model was used to 
generate diverse sets of benign samples, enhancing the training 
process and improving model performance. Accordingly, 2469 
benign samples were used for the training of the GAN network 
and 14814 benign samples used for the training of the deep 
autoencoding model. 

B. Performance Measures 

To evaluate the detection performance of the proposed 
model, we utilized five key performance metrics, namely 
overall accuracy, detection rate (recall), precision, F1 score, 
false-positive rate (FPR), and false-negative rate (FNR). These 
metrics are widely acknowledged and commonly employed in 
the assessment of malware detection solutions within the 

existing body of literature. The performance metrics utilized in 
this study were computed using the following formulas. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                          (7) 

𝐹𝑃𝑅 =  
𝐹𝑃

𝑇𝑃+𝐹𝑁
                             (8) 

𝐹𝑁𝑅 =  
𝐹𝑁

𝑇𝑁+𝐹𝑃
                             (9) 

𝐷𝑅 (𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                    (10) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                  (11) 

F1 Score =  
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
               (12) 

The F1 score measures the balance between accuracy and 
recall to assess the model's overall performance. True positives 
(TP), true negatives (TN), false positives (FP), and false 
negatives (FN) are all equally considered by MCC. As a result, 
it provides additional information about the model's 
performance. Table 1 lists the samples used for Fig. 5. 

TABLE I. DATASETS I AND II SAMPLES DISTRIBUTION 

 

Dataset I Dataset II 

Training 
Testing 

Training 
Testing 

Real Generated Real Generated 

Benign 4694 9388 1154 2469 12345 1503 

Malware 5045 (for CNN only) - 2162 6054 (for CNN only) - 628 

Total 19127 3316 20868 2131 

 
Fig. 5. (a) Dataset I samples distribution (b) Dataset II samples distribution. 

C. Evaluation Procedure 

In this study, extensive experiments were conducted to 
evaluate the proposed model. Because CNN was reported by 
many researchers to have promising classification performance, 
two different anomaly models were trained for the comparison. 
The benign samples were used to train the CNN model. The 
input is the features vector represented as image based on n-
gram and TF/IDF features extraction and presentation schemes. 

The output of these models are the anomaly scores of the 
samples. The autoencoder model which can be considered a 
type of semi supervised learning to con-struct anomaly 
detection model was implemented in this study for the 
evaluation. The autoencoder model is trained based on the 
benign samples. The aim is to minimize the reconstruction error 
of the benign samples. However, in case of the malware which 
is considered zero-day attack for the anomaly-based model the 
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construction error likely to be greater than the errors generated 
by reconstructing the benign samples because the model has not 
been learnt to represent the malware instances [3]. Although 
autoencoder is promising for the anomaly detection, selecting 
proper threshold is challenging task. Therefore, in this study, 
the autoencoder model was implemented according to the 
model presented in study [3]. The autoencoder was also 
cascaded with the CNN model for the comparison. Both one- 
and two-dimensions image representation were used in the 
experiments. The autoencoder model firstly trained using the 
normal samples and then the latent space features were used to 
train the CNN classifier. Generative Adversarial Network 
(GAN) based model with autoencoder were also implemented 
for the comparison. GAN models were widely used for anomaly 
detection in literature due to their ability of generating samples 
similar the minority class instances and their ability to model 
high dimensional data distribution [32]. The GAN model is 
trained to regenerate the normal samples and the autoencoder 
was trained based on the data generated by the GAN model. In 
doing so, a variety of noise that resample the normal data is 
included in the representation. 

V. RESULTS 

Table II and Fig. 6 (a)-(f) present a comparison of the 
performance of the pro-posed model with other models using 
dataset I. The proposed AEDGAN outperforms all other 
models, achieving a remarkable 95% accuracy and precision, a 
93% detection rate (recall), and an impressive 94% overall 
accuracy. The false positive rate is only 5%, with a 
corresponding 5% reduction in the false negative rate. Notably, 
the CNN models with 2D representation exhibit superior 
performance compared to the other models studied. It is worth 
noting that the CNN model without the autoencoder out-
performs the CNN model with autoencoder, primarily because 
the CNN model's supervised learning approach enables 
effective discrimination between benign and malware samples. 

Table III and Fig. 7 (a)-(f) present the classification 
performance of the proposed model compared to the other 
models using Dataset II. The proposed model AEDGAN 
achieved the highest performance, attaining an 88% overall 
accuracy in terms of F1 Score, while all the other models scored 
lower than 84% overall performance. Notably, the proposed 
AEDGAN significantly reduces the false positive rate to 10%, 
compared to 26%, 21%, 23%, and 35% for AEGAN, 
AECNN(2D), AECNN(1D), and AE models, respectively. 

TABLE II. PERFORMANCE COMPARISON BASED ON DATASET I 

 
Accurac

y 

Precisio

n 

Recal

l 

F1 

Score 

FN

R 

FP

R 

CNN(1D) 0.90 0.94 0.82 0.88 0.12 0.06 

CNN(2D) 0.92 0.95 0.86 0.90 0.09 0.05 

AE 0.84 0.79 0.83 0.81 0.13 0.21 

AECNN(1

D) 
0.90 0.87 0.91 0.89 0.07 0.13 

AECNN(2

D) 
0.91 0.88 0.92 0.90 0.06 0.12 

AEGAN 0.87 0.85 0.84 0.85 0.11 0.15 

AEDGAN 0.95 0.95 0.93 0.94 0.05 0.05 

TABLE III. PERFORMANCE COMPARISON BASED ON DATASET II 

 
Accurac

y 

Precisio

n 

Recal

l 

F1 

Score 

FN

R 

FP

R 

CNN(1D) 0.89 0.89 0.70 0.78 0.12 0.11 

CNN(2D) 0.90 0.90 0.76 0.82 0.09 0.10 

AE 0.80 0.65 0.71 0.68 0.13 0.35 

AECNN(1

D) 
0.88 0.77 0.83 0.80 0.07 0.23 

AECNN(2

D) 
0.89 0.79 0.86 0.83 0.06 0.21 

AEGAN 0.84 0.74 0.72 0.73 0.11 0.26 

AEDGAN 0.93 0.90 0.87 0.88 0.05 0.10 

 
Fig. 6. Comparison of the detection performance (Dataset I) in terms of (a) 

Accuracy, (b) Precision, (c) Recall, (d) F-measure, (e) False negative rate, and 

(f) False positive rate. 

 
Fig. 7. Comparison of the detection performance (Dataset II) in terms of (a) 

Accuracy, (b) Precision, (c) Recall, (d) F-measure, (e) False negative rate, and 

(f) False positive rate. 
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VI. DISCUSSION 

The results indicate that the autoencoder exhibited the 
poorest performance compared to the other models under study. 
This can be attributed to the possibility that the features learned 
by the autoencoder may not adequately represent benign 
samples, resulting in low detection accuracy, as indicated by the 
precision score for the AE model in Table 2. Furthermore, the 
output of the autoencoder requires additional analysis, and the 
detection relies on identifying an appropriate threshold for the 
constructed error. In contrast, the CNN models outperform the 
autoencoder model due to their capability to learn high-level 
features that effectively discriminate benign samples from 
malware samples. 

In terms of the false alarm rate, the proposed model 
outperforms the others, achieving a low 5% rate for both false 
positives and false negatives. In contrast, the AE and AECNN 
models fail to strike a balance between false positives and false 
negatives, with high false positive rates due to the challenge of 
determining an appropriate threshold for distinguishing 
between benign and malware instances. The overlapping 
features of malware and benign samples, caused by the 
obfuscation nature of malware, hinder effective discrimination. 
Even with adversarial networks enhancing the representation of 
benign instances, the AEGAN still exhibits high false positives. 
Notably, the proposed AEDGAN substantially reduces the false 
positive rate to 5%, compared to 15%, 12%, 13%, and 21% for 
AEGAN, AECNN (2D), AECNN(1D), and AE models, 
respectively. 

It can be observed from both Table II and Table III that the 
proposed model outperforms all other models studied for both 
datasets. However, the model's performance with Dataset II is 
inferior to its performance with Dataset I. The reason behind 
this discrepancy is that in Dataset I, the benign samples were 
extracted from the Windows 7 operating system, which 
exhibited distinguishable traits compared to the malware 
samples. On the other hand, the benign samples in Dataset II 
were derived from applications developed by a more diverse 
range of developers. Applications developed by Microsoft or 
integrated into the Windows OS by Microsoft may possess 
distinct API call sequences, especially in areas such as 
authentication and error handling, when compared to those 
developed by other software development firms. 

Despite its promise, the proposed model has several 
limitations. One major challenge is the higher false positive rate 
(10%, as shown in Table II). This is because the second dataset 
contains a diverse set of malware samples from different 
families, leading to greater feature variability and overlap 
between benign and malicious applications. Such diversity 
makes it more difficult for the model to accurately distinguish 
between benign and malware instances, increasing the 
likelihood of false positives. Additionally, the model exhibits a 
lower detection rate for certain types of malwares, particularly 
those that employ obfuscation or evasive techniques, resulting 
in significant feature overlap with benign applications. This 
overlap makes it difficult for the model to reliably distinguish 
between malicious and non-malicious behavior. Moreover, 
while GAN-based data augmentation enhances generalization, 
the generated synthetic data may not fully capture the 

complexity of real-world benign applications, potentially 
introducing biases. The computational complexity of training 
GANs, autoencoders, and CNNs together also poses a 
challenge, making real-time malware detection in resource-
constrained environments difficult. Furthermore, the model’s 
effectiveness in practical, real-world scenarios remains 
uncertain, as it has not been extensively tested against evolving 
malware threats outside controlled environments. To address 
these issues, incorporating ensemble methods, leveraging 
diverse feature sets, and conducting real-world evaluations 
could further enhance the model’s accuracy and robustness. 
Another key limitation is the dataset itself. The datasets used in 
this study may be quite obsolete (Windows 7), and based on our 
best knowledge, there is a lack of newly available datasets for 
malware detection. This limitation may affect the 
generalizability of our findings to more recent threats. In the 
future, we plan to collect datasets from newer versions of 
Windows to enhance the relevance and effectiveness of our 
detection methods. 

VII. CONCLUSION 

In this study, an anomaly-based zero-day anomaly-based 
malware detection model utilizing semi-supervised deep 
learning has been designed and developed. The model's 
development comprises three main phases: In the initial phase, 
we trained a Generative Adversarial Network (GAN) to acquire 
representations of benign applications, enabling the detection 
of malware and malicious applications. Given the relative 
stability of benign application behavior compared to malicious 
behavior, GAN-based data augmentation contributes to the 
generality and stability of the detection model. Furthermore, 
GAN is leveraged to generate a diverse set of synthetic data 
closely resembling real-world benign samples, thereby 
enhancing the model's capability to distinguish malware 
instances in subsequent learning stages. The second phase 
involved the development of an autoencoder, aimed at learning 
latent representations of benign samples and capturing essential 
features that characterize benign applications. In the third and 
final phase, we concatenated the latent representation with the 
last hidden layer of the GAN discriminator, representing them 
as an image. Subsequently, a Convolutional Neural Network 
(CNN) classifier was constructed to classify samples as either 
benign or malicious. This CNN model obviates the need for 
threshold selection to identify anomalous instances. The results 
indicate that the proposed model holds promise for detecting 
zero-day malware. In the worst-case scenario, it achieved an 
overall performance of 88% accuracy with a 10% false positive 
rate, surpassing the best existing solution by 5% in overall 
performance and reducing the false positive rate by 11%. 

Despite its promise, the proposed model exhibits a lower 
detection rate and a higher false positive rate. The primary 
challenge lies in the inherent overlap between benign and 
malware features. The obfuscation and evasive characteristics 
of malware often lead to feature overlap between these classes. 
To address this challenge, we advocate for the use of a diverse 
set of features in the representation. Furthermore, we propose 
an ensemble approach involving anomaly detection models 
trained on diverse feature sets, incorporating both GAN and 
Autoencoder models, to enhance detection accuracy and 
mitigate false alarms. 
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