
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

759 | P a g e

www.ijacsa.thesai.org

AEDGAN: A Semi-Supervised Deep Learning Model

for Zero-Day Malware Detection

Abdullah Marish Ali1, Fuad A. Ghaleb2*, Faisal Saeed3

Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia1

College of Computing, Birmingham City University, Birmingham B4 7XG, UK2, 3

Abstract—Malware presents an increasing threat to

cyberspace, drawing significant attention from researchers and

industry professionals. Many solutions have been proposed for

malware detection; however, zero-day malware detection remains

challenging due to the evasive techniques used by malware authors

and the limitations of existing solutions. Traditional supervised

learning methods assume a fixed relationship between malware

and their class labels over time, but this assumption does not hold

in the ever-changing landscape of evasive malware and its

variants. That is malware developers intentionally design

malicious software to share features with benign programs,

making zero-day malware. This study introduces the AEDGAN

model, a zero-day malware detection framework based on a semi-

supervised learning approach. The model leverages a generative

adversarial network (GAN), an autoencoder, and a convolutional

neural network (CNN) classifier to build an anomaly-based

detection system. The GAN is used to learn representations of

benign applications, while the auto-encoder extracts latent

features that effectively characterize benign samples. The CNN

classifier is trained on an integrated feature vector that combines

the latent features from the autoencoder with hidden features

extracted by the GAN’s discriminator. Extensive experiments

were conducted to evaluate the model’s effectiveness. Results from

two benchmark datasets show that the AEDGAN model

outperforms existing solutions, achieving a 5% improvement in

overall accuracy and an 11% reduction in false alarms compared

to the best-performing related model.

Keywords—Malware detection; zero-day; anomaly detection;

generative adversarial network; autoencoder; convolutional neural

network

I. INTRODUCTION

This Malware, or malicious software, refers to any program
specifically designed to damage, disrupt, or exploit digital
systems. Common types include viruses, worms, Trojan horses,
ransomware, spyware, rootkits, and bots. Over the past decade,
malware threats have continuously evolved, posing a persistent
and growing challenge [1]. Cybercriminals employ advanced
techniques to disguise and distribute malicious code, often
using obfuscation and evasion tactics to bypass security
defenses, making detection and analysis increasingly difficult.
Attacks targeting critical infrastructure, including power plants,
financial institutions, and mobile networks, can have severe and
widespread consequences. A notable example is the 2021
ransomware attack on a major U.S. pipeline, which led to a
complete operational shutdown and substantial financial losses
[2]. As Internet of Things (IoT) technologies continue to
proliferate within critical infrastructure, it becomes
increasingly likely that malware attacks will exploit heightened

vulnerabilities. This susceptibility arises from the complexity
of modern attacks and the digital environment, rather than a
simple lack of security measures or computational resources
[3].

Many detection approaches were proposed and can be
categorized into signature, anomaly-based approaches [3-8].
Several previous malware detection systems have relied on the
signature-based approach [4, 6, 9], which effectively identifies
malicious patterns extracted from static or dynamic malware
analysis. This method has proven particularly successful when
combined with supervised machine learning (ML) techniques,
enhancing its ability to detect known threats based on
predefined signatures. These techniques learn to distinguish
between benign and malicious samples, leading to significant
improvements in detection accuracy [6, 10-14]. However, the
signature-based approach has a significant disadvantage in that
it only concentrates on well-known malware patterns, which
severely restricts its use. In addition, supervised based solutions
assume such patterns are static to both malware and benign
software, limiting detection to known malware manifestations.
As a result, it is inefficient in identifying zero-day
vulnerabilities, which are previously unknown or extremely
complex threats that deviate from existing signatures.
Automated malware development toolkits provide techniques
like packing, obfuscation, and polymorphism to conceal
malicious code and mimic normal patterns, making it relatively
easy to create new malware variants or modified versions that
can evade machine learning-based detection. This underscores
the importance of identifying previously unseen malware in-
stances to effectively combat emerging novel threats.

Anomaly detection is a powerful method for identifying
abnormal patterns or behaviors that deviate from expected
norms. Many malware detection solutions have leveraged one-
class classification, which focuses on modeling benign data to
capture its essential characteristics. This approach enables the
system to effectively distinguish malicious instances by
detecting deviations from the learned benign profile [15-17].
Consequently, any sample not aligning with the acquired model
representation is classified as a potential malware occurrence.
However, this approach has two major drawbacks. First, it tends
to generate a high false alarm rate because benign samples are
often significantly outnumbered by malware samples during
training. This imbalance creates biased learning, leading to an
increased likelihood of misclassifications. Second, due to the
use of evasive and obfuscation techniques by malware
developers, the learned representation of benign samples often
overlaps with malicious features. This overlap makes it

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

760 | P a g e

www.ijacsa.thesai.org

challenging to distinguish between benign and malicious in-
stances, resulting in a high degree of uncertainty in
classification decisions.

To address these challenges, this study aims to design and
develop a zero-day malware detection model using a semi-
supervised learning approach for anomaly detection. Semi-
supervised learning effectively utilizes a limited amount of
labeled data combined with a larger set of unlabeled malware
samples. The benign samples were used to train an anomaly
detection model. Anomaly detection works by identifying
abnormal patterns that deviate from expected norms. In the
context of malware detection, many traditional systems use a
one-class classification approach, which models benign data to
capture its essential characteristics and detects deviations from
this benign profile as potential malware. This method enables
the model to capture diverse and evolving malware patterns,
enhancing its ability to generalize to unseen threats. Learning
deviations from known behaviors improves the detection of
novel attacks, enabling the proposed approach to identify
threats that traditional methods may fail to recognize. However,
this approach has two significant drawbacks. First, there is
often a data imbalance between benign and malware samples,
leading to a high false alarm rate due to biased learning. Second,
malware frequently uses evasive techniques, causing overlap
between benign and malicious features, making it difficult to
distinguish between them and leading to misclassifications.

To overcome these limitations, the proposed model, named
AEDGAN, combines generative adversarial network (GAN),
autoencoder (AE), and convolutional neural network (CNN)
architectures. To mitigate the data imbalance caused by the
limited availability of benign samples, the GAN model
generates more accurate representations of benign applications,
thereby enhancing the ability to distinguish them from evolving
malware. Meanwhile, the autoencoder is customized to extract
latent features that best characterize benign samples. Finally,
the CNN model is trained on a consolidated feature vector
derived from both the latent attributes obtained from the
autoencoder and the hidden features extracted by the
discriminator within the GAN model. Extensive experiments
were conducted to assess and validate the proposed model's
performance. These experiments employed two datasets,
encompassing evasive and novel malware attacks, for
validation. The model's efficacy was evaluated by
benchmarking it against state-of-the-art solutions. This study
presents the following contributions:

1) Develop AEDGAN, an advanced architecture

integrating Generative Adversarial Networks (GAN), deep

autoencoding, and Convolutional Neural Networks (CNN) to

create a zero-day malware detection model based on semi-

supervised learning and anomaly detection.

2) Design and implement a GAN architecture, trained

exclusively on benign instances, to generate realistic

representations of normal samples. This approach is grounded

in the hypothesis that benign software exhibits lower dynamism

compared to malware, making it well-suited for GAN-based

generation to enhance the modeling of normal behavior.

3) Construct an anomaly-based detection model, utilizing

deep autoencoding to improve feature representation and

detection accuracy. The auto-encoder leverages benign samples

generated by the GAN to refine the distinction between normal

and malicious behavior.

4) Develop a CNN model to reduce false positives

produced by the autoencoder, specifically addressing the

challenge of feature overlap between benign and malicious

instances. The CNN is trained on a combined feature set,

integrating latent features from the autoencoder and outputs

from the GAN discriminator, to strengthen its ability to

differentiate be-tween benign and malware samples.

The remainder of this paper is structured as follows: Section
II reviews related work, while Section III elaborates on the
proposed model. Section IV provides comprehensive details on
the experimental design, encompassing dataset selection,
performance metrics, validation, and evaluation procedures.
Section V presents the results and Section VI includes the
discussions of the results, as well as the limitations of the
proposed solution, while Section VII offers concluding
remarks.

II. RELATED WORKS

Please Zero-day malware refers to previously unknown or
newly discovered malware that exploits vulnerabilities for
which no patch or signature exists [18]. Detecting zero-day
malware is a significant challenge for existing solutions [19].
Traditional signature-based detection methods rely on known
patterns or signatures of malware, making them ineffective
against zero-day malware [3, 18]. However, there are several
approaches and techniques that have been proposed to address
this issue.

One approach is the use of behavioural analysis, which
focuses on the actions and behaviour of software to identify
malicious activities [9, 11, 13, 20]. This technique can detect
zero-day malware by analysing the behaviour of an application
during its execution. By monitoring system calls and analysing
their patterns, it is possible to identify suspicious or malicious
behaviour [13]. However, this approach has limitations, as
some malware can evade detection by modifying their
behaviour or using obfuscation techniques [19]. Authors in
study [4] proposed a CNN architecture for zero-day malware
detection based on static analysis. CNN is employed to extract
a small binary fragment from the text section of the Portable
Executable (PE) malware file. However, the limitation of this
model is that these small fragments may not be available due to
the use of the obfuscation and evasion techniques by malware
authors. Authors in study [5] presents the Cyber Resilience
Recovery Model (CRRM), an epidemiological model designed
to combat zero-day outbreaks in closed networks. Authors in
study [7] pro-posed a zero-day malware detection model based
on multiple views learning with convolutional method. Three
sources of information were integrated to increase the chance
of recognition of the malicious patterns with the hope of
detecting zero-day malware. The main drawback of such an
approach is the reliance of static analysis where it is complex to
extract representative patterns due to the use of obfuscations
and evasive techniques. Authors in study [8] proposes a novel
method, the transferred deep-convolutional generative
adversarial network (tDCGAN), to robustly detect malware,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

761 | P a g e

www.ijacsa.thesai.org

including zero-day attacks, by generating fake malware and
using deep autoencoders for feature extraction, achieving
95.74% average classification accuracy and demonstrating
superior stability and resilience against zero-day attacks
compared to other models. However, the reliance on generating
fake malware data to train the model will not resolve the
inherent issue of overlapping malware features with benign
features, which arises from unrepresentative benign samples
and the obfuscation and evasive techniques used by malware
authors, potentially leading to lower generalization capabilities
for unseen or novel attacks.

Many researchers used machine learning techniques, such
as supervised machine learning and random forest algorithms
[6, 10, 12, 14, 21-24]. These techniques can learn from existing
information and detect new malware apps, including zero-day
malware [25]. Machine learning models can be trained on
known malware samples and then used to classify unknown
samples based on their features. This approach has shown
promising results in detecting zero-day malware that cannot be
detected by conventional methods. Authors in study [6]
proposes Malware-SMELL, a zero-shot learning method for
classifying malware using visual representation and a new S-
Space representation, achieving 80% recall and outperforming
other methods by 9.58% in classifying malware with a model
trained solely on goodware code. Authors in study [26] argued
that the use of sandboxing techniques can help detect zero-day
malware. Sandboxing involves running an application in a
controlled environment to observe its behaviour and identify
any malicious activities. According to authors in study [26]
analysing the interactions between the application and the
sandbox make it possible to detect zero-day malware based on
its behaviour. However, detecting zero-day malware remains a
challenge [19]. Zero-day malware often employs obfuscation
techniques to evade detection, making it difficult for existing
solutions to identify them. Furthermore, some techniques may
have limitations in terms of accuracy or the ability to detect
complex malware [27].

Anomaly detection approach also have been utilized for
detecting zero-day mal-ware by characterizing typical patterns
and identifying malicious actions based on their deviation from
normal patterns [28]. These techniques aim to identify
anomalies or deviations from expected behavior, which can
indicate the presence of zero-day attacks or malware. By
comparing the behavior of an application or system to a base-
line or normal profile, any deviations or anomalies can be
flagged as potentially malicious. Hybrid methods that combine
both anomaly detection and anomaly identification techniques
have been proposed for detecting zero-day attacks. These
methods leverage the strengths of both approaches to improve
the accuracy and effectiveness of detection. Anomaly detection
techniques can identify deviations from normal behavior, while
anomaly identification techniques can classify these deviations
as malicious or benign.

Unsupervised anomaly detection algorithms have also
shown potential in detecting zero-day attacks [29]. These
algorithms do not require labeled training data and can
automatically learn patterns and identify anomalies in data. By
analyzing the be-haviour of applications or systems,
unsupervised algorithms can detect deviations from normal

behavior and flag them as potential zero-day attacks. However,
it is important to note that the performance of unsupervised
algorithms for zero-day detection can be influenced by the
availability of quantitative analyses and me-ta-learning
techniques. Authors in study [3] proposed autoencoder
architecture based on neural network for anomaly detection.
The model was trained based on the benign instances. The aim
is to create a model with no idea of high to reconstruct the
malware instances as the model originally trained based on
benign instances. Although autoencoder method is promising
for binary classification, selecting proper threshold is
challenging.

Generative adversarial networks (GANs) have been widely
used for anomaly detection in various domains, including time
series data, image processing, and network analysis [30-32]. In
the context of anomaly detection, GANs have shown promise
in capturing the normal patterns of data and identifying
deviations from these patterns as anomalies. GAN was used in
two approaches: unsupervised and semi-supervised anomaly
detection. In the unsupervised anomaly detection GAN is
trained solely on normal data without any labeled anomalies
while in semi-supervised the GAN is trained on both normal
and anomalous where a small portion of anomalous labels are
minority class. Kolosnjaji et al. [33] leveraged data extracted
from malware samples, including header fields, instruction
sequences, and raw bytes, to train models that discriminate
between benign and malicious software. By using GANs, they
aimed to enhance the detection of adversarial malware binaries
that can evade traditional deep learning-based detection
methods. Although, GANs offer a promising avenue for
anomaly detection by capturing the underlying patterns and
distributions of data, the effectiveness of GANs for anomaly
detection can be influenced by factors such as the quality and
representativeness of the training data, the architecture and
hyperparameters of the GAN, and the choice of anomaly
scoring or thresholding methods. In mal-ware detection
domain, GAN has not been investigated much in the literature
for detecting malware threats. Some works focused on
generating adversarial mal-ware samples [34]. Accordingly, a
model is trained to classify the benign samples including the
synthesis generated benign samples from the malware samples.
Authors in study [8] proposed a zero-day malware detection
model by training a generative adversarial network with deep
autoencoder (DAE) using transfer learning.

In conclusion, existing zero-day malware detection
solutions employ various approaches including signature and
anomaly analysis. Various techniques are used in the machine
learning and sandboxing analysis. These approaches aim to
identify malicious patterns either based on static features or
based on behavior that can indicate the presence of novel
malware pattern. The signature based static features were the
most employed form of zero-day detection in malware domain.
While these techniques have shown promise in detecting zero-
day malware, this approach assume that the zero-day malware
is a malware variant that have known characteristics with the
previous one. Such assumption is not accurate because zero-day
malware may show different treats and might not follow any
known patters due to the use of obfuscation techniques by
malware authors. Few researchers employ the concept of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

762 | P a g e

www.ijacsa.thesai.org

anomaly detection to device zero-day malware detection model
by identifying deviations from normal patterns or behavior.
Unsupervised and semi-supervised learning was utilized to
train the anomaly detection models. Research using
autoencoders [3, 8], GAN [8, 18], and CCN [4, 24, 35]
architectures showed promise in detecting zero-day attacks.
However, the selection of proper threshold that can
discriminate the malware from benign is challenging task due
to the overlapping features between the benign and malware in-
stances caused using the obfuscation and evasion techniques.
Though further research is needed to enhance their performance
through quantitative analyses and meta-learning techniques.

To this end, this study devised a zero-day malware detection
(Fig. 1) model through de-signing an architecture that
incorporate GAN, deep autoencoding, and CCN to improve the
detection rate while reduce the false alarm rate. The GAN
architecture was trained on normal instances, to generate
realistic benign samples. Our hypothesis is that benign samples
exhibit less dynamism compared to malware samples, making
them suitable for GAN-based generation to represent normal
instances effectively. The deep autoencoding is trained to
model benign distribution for anomaly detection leveraging the
benign samples generated by the GAN networks to enhance
representation and improve detection performance. To reduce
the false alarm rate resulted from con-figuration of the anomaly
detection threshold. A CNN architecture aimed at mitigating
false positives generated by the autoencoder, particularly
addressing the issue of feature overlap between benign and
malware representations was designed and developed. The

latent features extracted by the autoencoders were fused with
the GAN discriminator's output to train the CNN model for
robust differentiation between benign and malware instances.
The detailed description of the proposed model is presented in
the following section.

III. THE PROPOSED MODEL

The proposed model has been constructed through five main
phases features ex-traction and pre-processing, data
representation, GAN model, the autoencoder model, and the
CNN classifier. In the first phase, the malware features are
extracted and pre-processed for the training. In the second
phase, the GAN model is constructed using semi-supervised
approach. The GAN model consists of two adversarial modules,
a generator and a discriminator. The Generator and
Discriminator always competes against each other. The
generator tries to generate a fake sample look like benign
software while discriminator try to recognize real sample as real
and generated sample as fake. Autoencoders consist of two
integral components: the encoder and the decoder. The encoder
is responsible for transforming input data, which can
encompass various types such as images or text, into a
condensed representation known as a bottleneck or latent code,
characterized by lower dimensions. Subsequently, the decoder's
role is to utilize this latent code to perform an optimal
reconstruction of the initial input data. The fundamental goal of
an autoencoder is to minimize the reconstruction error,
quantified as the disparity between the input data and the
reconstructed output.

Fig. 1. The proposed zero-day malware detection model.

A. Features Extraction Phase

In this phase, malware features are extracted by monitoring
and analyzing the interactions between an application (whether
malicious or benign) and the operating system during runtime,
specifically when API calls are made. Dynamic analysis is per-
formed using the Cuckoo sandbox, which employs a technique
called hooking to intercept and track API calls. Hooking works
by injecting code into an application's execution flow, allowing
the system to capture function calls to APIs. These intercepted
calls are then logged into files, with each log file containing the
recorded API calls of a specific application. For each
application, the API calls are extracted from the log file and
arranged sequentially based on their occurrence during
execution. Each API function call is then treated as a distinct
feature.

To enhance feature representation and capture behavioral
patterns, n-gram analysis is applied to extract meaningful API
call sequences. N-grams help identify important patterns in API
sequences, making them a valuable technique for feature ex-
traction. Numerous studies have validated the effectiveness of
n-grams across various domains, including malware detection,
where they improve classification accuracy by providing richer
contextual information [36].

B. Data Representation Phase

In this study, each API calls and API sequence extracted
using n-gram is used as a feature (term). Then the TF-IDF
which is a well-established technique for feature ex-traction
from text data, was used for representing the APIs features. TF-
IDF considers both the frequency of terms (API calls in this
case) within a sequence and their importance across multiple
sequences [37]. It assigns higher weights to terms that are

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

763 | P a g e

www.ijacsa.thesai.org

frequent within a sequence but relatively rare across all
sequences. This is useful in identifying unique or significant
API call patterns associated with specific malware samples. TF-
IDF helps in reducing the dimensionality of the feature space
by focusing on the most relevant terms (API calls). This can
make subsequent analysis and machine learning tasks more
computationally efficient and interpretable. Rare or unique API
calls that are common in malware but rare in legitimate
applications can be weighted more heavily [10].

The TF/IDF vectors then are converted to image format.
The process typically begins by reshaping the TF-IDF feature
matrix into a grid-like structure, where each cell represents the
TF-IDF score of a specific term (word) in a document. This
grid, often referred to as a term-document matrix, forms the
basis of the 2D image representation. To generate the image,
TF-IDF scores are mapped to pixel intensities, converting the
continuous values into values. Once the TF-IDF values are
transformed into pixel values, the image is ready for the
classification. According to study [10], the Inverse Document
Frequency (IDF), which measures the global importance of an
API across the entire corpus, can be calculated as follows:

𝑖𝑑𝑓𝑖 = 𝑙𝑜𝑔 (
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑐𝑎𝑙𝑙 𝑡ℎ𝑒 𝐴𝑃𝐼 𝑖 + 1)
) (1)

where the 𝑖𝑑𝑓𝑖 is the inverse document frequency. TF-IDF
is calculated by multiplying the TF (term frequency) and IDF
(inverse document frequency) values for each term in each
document. This results in a TF-IDF score for each API or API
sequence in each document. It quantifies how unique or
common a term is in the corpus. Next, for each feature in the
corpus, the term frequency-inverse term frequency (𝑡𝑓_𝑖𝑑𝑓) is
calculated as follows.

𝑡_𝑖𝑑𝑓𝑖 = 𝑡𝑓𝑖 ∗ 𝑖𝑑𝑓𝑖 (2)

The 𝑡_𝑖𝑑𝑓𝑖 score for a term in a document is higher if the
term appears frequently in that document but is relatively rare
across the entire corpus. The 𝑡_𝑖𝑑𝑓𝑖 features are scaled using
min-max normalization as follows.

𝑠𝑐𝑎𝑙𝑙𝑒𝑑𝑡𝑓𝑖𝑑𝑓𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
=

𝑡𝑓_𝑖𝑑𝑓_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠−𝑚𝑖𝑛 (𝑡𝑓_𝑖𝑑𝑓_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)

𝑚𝑎𝑥 (𝑡𝑓_𝑖𝑑𝑓_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) −𝑚𝑖𝑛 (𝑡𝑓_𝑖𝑑𝑓_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
 (3)

Finally, the features vector is created from the unique terms
of the corpus. The maximum length of the feature vector is n
features. These features vector was converted to 𝑤 × ℎ image
size as follows.

𝑖𝑚𝑎𝑔𝑒_𝑤𝑖𝑑𝑡ℎ 𝑤 = 𝑓𝑙𝑜𝑜𝑟(√𝑛) ((4)

𝑖𝑚𝑎𝑔𝑒_ℎ𝑖𝑔ℎ𝑡 ℎ = 𝑓𝑙𝑜𝑜𝑟 ((
(𝑛 −1)

𝑤
) + 1) (5)

Where 𝑤 and ℎ are the width and height of the represented
images and 𝑛 is the max length of the features vector.

C. GAN Model Construction Phase

In this phase, the Generative Adversarial Network (GAN)
model is constructed. GANs are a type of deep learning model
that consists of a generator and a discriminator. The generator
aims to generate synthetic data that resembles the real data,

while the discriminator tries to distinguish between real and
synthetic data. When the discriminator is no longer able to
distinguish between real data and synthetic data, then the model
is converging and can be used in the production. In this study
the GAN is trained on the benign data samples. By training the
GAN on a dataset of normal data (benign samples), it learns to
capture the underlying distribution of the normal data [38].
GANs have emerged as a promising approach in the anomaly
detection [38, 39]. The aim is to measure the anomaly score of
given samples based on its deviation from the learned
distribution of normal samples. This is done by comparing the
reconstruction error of a given sample with the reconstruction
error of the benign samples. This approach is promising and
have been widely adopted by many researchers in the anomaly
detection field [38, 39, 40].

The Generator was trained based on the benign samples as
represented by images in the previous phase. The generator
network learns to generate synthetic images that resemble the
benign images, while the discriminator network learns to
distinguish between real and synthetic images. Once the GAN
is trained, the constructed GAMN uses an iterative process to
find the latent vector in the generator network that best re-
constructs a given test image. This is done by optimizing the
latent vector to minimize the difference between the
reconstructed image and the original test image. The anomaly
score is then calculated based on the reconstruction loss and the
loss between the intermediate discriminator feature of the test
image and the reconstructed image. The generator is trained to
reconstruct the samples represented by 1D vector extracted
randomly from latent space and map them to 2D images in the
image space created from the applications samples. The
generator network is architected using stack of convolutional
decoder equivalent to a convolutional decoder. The
Discriminator D is constructed using standard CNN layers that
maps 2D images to a single scalar represent the anomaly score
of the sample. Fig. 2 shows the architecture of the proposed
GAN network.

Fake Benign Samples

Real Benign
Samples

Generator

Discriminator

Anomaly
Score

Anomaly
Score

Fig. 2. The proposed semi-supervised GAN network.

The generator network of the GAN is trained to produce
synthetic samples that look similar to the fraud samples, while
the discriminator network is trained to distinguish between the
original and the synthetic samples. For the learning, let 𝐺 and
𝐷 denote the generator and the discriminator, respectively, and
let 𝑍 = {𝑧1, 𝑧2, . . 𝑧𝑛} and 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} denote the
distribution of latent and problem space, respectively. 𝐺 and 𝐷

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

764 | P a g e

www.ijacsa.thesai.org

G(z) are the output of the generator (the fake sample) and
𝐷(𝐺(𝑧)) is the output of the discriminator, which is the
probability of getting 𝐺(𝑧) belonging to real data. The error 𝑒 =
𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)) should be minimized to generate a fake
sample that is drawn from the distribution of the real data. The
error 𝑒 is also used to penalize the generator 𝐺 and thus to
minimize log (𝐷(x)). Thus, based on [38], the following min-
max game must be played by 𝐺 and 𝐷 to minimize the generator
error and maximize the divergence.

𝑚𝑖𝑛⏟
𝐺

 𝑚𝑎𝑥⏟
𝐷

𝑉(𝐺, 𝐷) = 𝐸𝑥(𝑙𝑜𝑔(𝐷(𝑥))) + 𝐸𝑧(𝑙𝑜𝑔(1 −

𝐷(𝐺(𝑧)))) (6)

The training of the GAN model continues until the
generator can fool the discriminator into believing that the
generated samples are real, namely when adversarial loss
converges, indicating that the generator is producing realistic
fraudulent samples.

D. Deep Autoencoder Construction Phase

It is widely believed by researchers that the performance of
the anomaly detection using one class learning fall behind the
supervised learning approach. This is because the classification
approach does not relay much on selecting the classification
thresholds as the model learn automatically the best
discrimination threshold [3, 8]. The ability of neural network in
performing abstractions is attractive. Considering this, it is
reasonable to assume that autoencoders, a type of neural
network specializing in encoding input data, would yield a
latent representation that faithfully represents the specific
attributes of input data samples. As a result, our strategy in this
work relies on autoencoding to gain the benefits of strong
abstraction and one class model to make judgments
automatically and without the need for thresholds. In this study
the auto-encoder based model was trained based on the benign
samples. As shown in Fig. 3, the data with latent distribution
was used to construct one class model for anomaly detection.
The autoencoder learns how to minimize the reconstruction
errors.

Benign
Samples

D
eco

d
e

rEn
co

d
er Late

n
t

Fea
tu

re
s

CNN Based
Classification

Malware
Generative
Adversarial

Network (GAN)
Training

Anomaly Based

Testing

Fig. 3. The training and testing bath of the Autoencoder Anomaly based

model.

E. CNN Classification Phase

In this stage, the latent features extracted from the
autoencoder was used to develop a CNN classifier that can
effectively distinguished between benign and malware samples.
Fig. 4 shows the proposed CNN model for Decision Making
about the anomaly status of the sample normal for benign
samples and anomaly for malware samples.

Input

Reshape
Layer

Conv2D

MaxPooling
2D

Flatten 128

Dense Layers

Fig. 4. The proposed CNN model for decision making.

The CNN Model consists of eight layers. The CNN model
in this stage is designed for binary classification, where the
sigmoid activation function is suitable for producing binary
output probabilities (0 or 1) zero for normal and one for
anomalies. The first layer defines the input shape, indicating
that the model expects input data with a dimension of 256. The
input layers are taken form the last hidden layer (the flatten
layer) of the discriminator and concatenated with the latent
layer form the discriminator to form the 256 input dimension.
The second layer is used to transform the input data into a
16x16 grid with a single channel (grayscale image). The third
layer is a 2D convolutional layer with 32 filters and a 3x3 kernel
size. It uses the ReLU (Rectified Linear Unit) activation
function, which introduces non-linearity into the model. The
fourth layer performs max-pooling with a 2x2 pool size. Max-
pooling reduces the spatial dimensions of the feature maps,
helping to capture essential information while reducing
computational complexity. The fifth layer is the flatten layer
which reshapes the output from the previous layer into a one-
dimensional vector. This prepares the data for fully connected
layers. The sixth layer is a fully connected dense layer with 128
units and ReLU activation. The seventh layer is fully connected
dense layer with 64 units and ReLU activation. The output layer
with a single neuron and sigmoid activation.

IV. EXPERIMENTAL DESIGN AND PERFORMANCE

EVALUATION

The dataset, the experimental procedures, and the
performance evaluation are described in the following sub-
sections.

A. Datasets

In this study, two datasets were used to validate and
evaluate the proposed model. The first dataset, which is referred
to Dataset I, is the API call sequences have been extracted form
dynamic analysis environment. The malware samples were
originally collected by [41, 42]. The extracted API call
sequence represents behaviours of 7208 evasive malware
sample. The benign samples, namely 3,848 benign, were
collected from a newly installed copy of Windows 7 and from
[43]. Fig. 5(a) illustrates the distribution of samples in Datasets
I. The dataset was split into two parts 70% for training and 30%
for testing. The 30% of the real benign samples represents the
unseen benign samples while the whole malware samples were
hidden during the training of the anomaly-based models in this
study. As shown in Table I the model is trained based on the
real and synthesized benign samples. For CNN model 70% of
the malware samples were used in the training and 30% for the
testing.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

765 | P a g e

www.ijacsa.thesai.org

The second dataset referred as Dataset II which is publicly
available online and can be downloaded from IEEEDataPort
Web portal [44]. The dataset contains 10,654 samples 3,097 are
benign samples while 7557 are malware samples. The malware
samples distributed as follows, 451 ransomware, 1,051miner,
797 DDoS Trojan, 89 worm, 3353 infective virus, 454
backdoor, and 1362 trojan (see Fig. 5(b)). Table I presents the
distribution of samples in Datasets I and II for training and
testing, including both real and generated benign and malware
samples. To enrich the datasets, the GAN model was used to
generate diverse sets of benign samples, enhancing the training
process and improving model performance. Accordingly, 2469
benign samples were used for the training of the GAN network
and 14814 benign samples used for the training of the deep
autoencoding model.

B. Performance Measures

To evaluate the detection performance of the proposed
model, we utilized five key performance metrics, namely
overall accuracy, detection rate (recall), precision, F1 score,
false-positive rate (FPR), and false-negative rate (FNR). These
metrics are widely acknowledged and commonly employed in
the assessment of malware detection solutions within the

existing body of literature. The performance metrics utilized in
this study were computed using the following formulas.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (7)

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑃+𝐹𝑁
 (8)

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑁+𝐹𝑃
 (9)

𝐷𝑅 (𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (10)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (11)

F1 Score =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (12)

The F1 score measures the balance between accuracy and
recall to assess the model's overall performance. True positives
(TP), true negatives (TN), false positives (FP), and false
negatives (FN) are all equally considered by MCC. As a result,
it provides additional information about the model's
performance. Table 1 lists the samples used for Fig. 5.

TABLE I. DATASETS I AND II SAMPLES DISTRIBUTION

Dataset I Dataset II

Training
Testing

Training
Testing

Real Generated Real Generated

Benign 4694 9388 1154 2469 12345 1503

Malware 5045 (for CNN only) - 2162 6054 (for CNN only) - 628

Total 19127 3316 20868 2131

Fig. 5. (a) Dataset I samples distribution (b) Dataset II samples distribution.

C. Evaluation Procedure

In this study, extensive experiments were conducted to
evaluate the proposed model. Because CNN was reported by
many researchers to have promising classification performance,
two different anomaly models were trained for the comparison.
The benign samples were used to train the CNN model. The
input is the features vector represented as image based on n-
gram and TF/IDF features extraction and presentation schemes.

The output of these models are the anomaly scores of the
samples. The autoencoder model which can be considered a
type of semi supervised learning to con-struct anomaly
detection model was implemented in this study for the
evaluation. The autoencoder model is trained based on the
benign samples. The aim is to minimize the reconstruction error
of the benign samples. However, in case of the malware which
is considered zero-day attack for the anomaly-based model the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

766 | P a g e

www.ijacsa.thesai.org

construction error likely to be greater than the errors generated
by reconstructing the benign samples because the model has not
been learnt to represent the malware instances [3]. Although
autoencoder is promising for the anomaly detection, selecting
proper threshold is challenging task. Therefore, in this study,
the autoencoder model was implemented according to the
model presented in study [3]. The autoencoder was also
cascaded with the CNN model for the comparison. Both one-
and two-dimensions image representation were used in the
experiments. The autoencoder model firstly trained using the
normal samples and then the latent space features were used to
train the CNN classifier. Generative Adversarial Network
(GAN) based model with autoencoder were also implemented
for the comparison. GAN models were widely used for anomaly
detection in literature due to their ability of generating samples
similar the minority class instances and their ability to model
high dimensional data distribution [32]. The GAN model is
trained to regenerate the normal samples and the autoencoder
was trained based on the data generated by the GAN model. In
doing so, a variety of noise that resample the normal data is
included in the representation.

V. RESULTS

Table II and Fig. 6 (a)-(f) present a comparison of the
performance of the pro-posed model with other models using
dataset I. The proposed AEDGAN outperforms all other
models, achieving a remarkable 95% accuracy and precision, a
93% detection rate (recall), and an impressive 94% overall
accuracy. The false positive rate is only 5%, with a
corresponding 5% reduction in the false negative rate. Notably,
the CNN models with 2D representation exhibit superior
performance compared to the other models studied. It is worth
noting that the CNN model without the autoencoder out-
performs the CNN model with autoencoder, primarily because
the CNN model's supervised learning approach enables
effective discrimination between benign and malware samples.

Table III and Fig. 7 (a)-(f) present the classification
performance of the proposed model compared to the other
models using Dataset II. The proposed model AEDGAN
achieved the highest performance, attaining an 88% overall
accuracy in terms of F1 Score, while all the other models scored
lower than 84% overall performance. Notably, the proposed
AEDGAN significantly reduces the false positive rate to 10%,
compared to 26%, 21%, 23%, and 35% for AEGAN,
AECNN(2D), AECNN(1D), and AE models, respectively.

TABLE II. PERFORMANCE COMPARISON BASED ON DATASET I

Accurac

y

Precisio

n

Recal

l

F1

Score

FN

R

FP

R

CNN(1D) 0.90 0.94 0.82 0.88 0.12 0.06

CNN(2D) 0.92 0.95 0.86 0.90 0.09 0.05

AE 0.84 0.79 0.83 0.81 0.13 0.21

AECNN(1

D)
0.90 0.87 0.91 0.89 0.07 0.13

AECNN(2

D)
0.91 0.88 0.92 0.90 0.06 0.12

AEGAN 0.87 0.85 0.84 0.85 0.11 0.15

AEDGAN 0.95 0.95 0.93 0.94 0.05 0.05

TABLE III. PERFORMANCE COMPARISON BASED ON DATASET II

Accurac

y

Precisio

n

Recal

l

F1

Score

FN

R

FP

R

CNN(1D) 0.89 0.89 0.70 0.78 0.12 0.11

CNN(2D) 0.90 0.90 0.76 0.82 0.09 0.10

AE 0.80 0.65 0.71 0.68 0.13 0.35

AECNN(1

D)
0.88 0.77 0.83 0.80 0.07 0.23

AECNN(2

D)
0.89 0.79 0.86 0.83 0.06 0.21

AEGAN 0.84 0.74 0.72 0.73 0.11 0.26

AEDGAN 0.93 0.90 0.87 0.88 0.05 0.10

Fig. 6. Comparison of the detection performance (Dataset I) in terms of (a)

Accuracy, (b) Precision, (c) Recall, (d) F-measure, (e) False negative rate, and

(f) False positive rate.

Fig. 7. Comparison of the detection performance (Dataset II) in terms of (a)

Accuracy, (b) Precision, (c) Recall, (d) F-measure, (e) False negative rate, and

(f) False positive rate.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

767 | P a g e

www.ijacsa.thesai.org

VI. DISCUSSION

The results indicate that the autoencoder exhibited the
poorest performance compared to the other models under study.
This can be attributed to the possibility that the features learned
by the autoencoder may not adequately represent benign
samples, resulting in low detection accuracy, as indicated by the
precision score for the AE model in Table 2. Furthermore, the
output of the autoencoder requires additional analysis, and the
detection relies on identifying an appropriate threshold for the
constructed error. In contrast, the CNN models outperform the
autoencoder model due to their capability to learn high-level
features that effectively discriminate benign samples from
malware samples.

In terms of the false alarm rate, the proposed model
outperforms the others, achieving a low 5% rate for both false
positives and false negatives. In contrast, the AE and AECNN
models fail to strike a balance between false positives and false
negatives, with high false positive rates due to the challenge of
determining an appropriate threshold for distinguishing
between benign and malware instances. The overlapping
features of malware and benign samples, caused by the
obfuscation nature of malware, hinder effective discrimination.
Even with adversarial networks enhancing the representation of
benign instances, the AEGAN still exhibits high false positives.
Notably, the proposed AEDGAN substantially reduces the false
positive rate to 5%, compared to 15%, 12%, 13%, and 21% for
AEGAN, AECNN (2D), AECNN(1D), and AE models,
respectively.

It can be observed from both Table II and Table III that the
proposed model outperforms all other models studied for both
datasets. However, the model's performance with Dataset II is
inferior to its performance with Dataset I. The reason behind
this discrepancy is that in Dataset I, the benign samples were
extracted from the Windows 7 operating system, which
exhibited distinguishable traits compared to the malware
samples. On the other hand, the benign samples in Dataset II
were derived from applications developed by a more diverse
range of developers. Applications developed by Microsoft or
integrated into the Windows OS by Microsoft may possess
distinct API call sequences, especially in areas such as
authentication and error handling, when compared to those
developed by other software development firms.

Despite its promise, the proposed model has several
limitations. One major challenge is the higher false positive rate
(10%, as shown in Table II). This is because the second dataset
contains a diverse set of malware samples from different
families, leading to greater feature variability and overlap
between benign and malicious applications. Such diversity
makes it more difficult for the model to accurately distinguish
between benign and malware instances, increasing the
likelihood of false positives. Additionally, the model exhibits a
lower detection rate for certain types of malwares, particularly
those that employ obfuscation or evasive techniques, resulting
in significant feature overlap with benign applications. This
overlap makes it difficult for the model to reliably distinguish
between malicious and non-malicious behavior. Moreover,
while GAN-based data augmentation enhances generalization,
the generated synthetic data may not fully capture the

complexity of real-world benign applications, potentially
introducing biases. The computational complexity of training
GANs, autoencoders, and CNNs together also poses a
challenge, making real-time malware detection in resource-
constrained environments difficult. Furthermore, the model’s
effectiveness in practical, real-world scenarios remains
uncertain, as it has not been extensively tested against evolving
malware threats outside controlled environments. To address
these issues, incorporating ensemble methods, leveraging
diverse feature sets, and conducting real-world evaluations
could further enhance the model’s accuracy and robustness.
Another key limitation is the dataset itself. The datasets used in
this study may be quite obsolete (Windows 7), and based on our
best knowledge, there is a lack of newly available datasets for
malware detection. This limitation may affect the
generalizability of our findings to more recent threats. In the
future, we plan to collect datasets from newer versions of
Windows to enhance the relevance and effectiveness of our
detection methods.

VII. CONCLUSION

In this study, an anomaly-based zero-day anomaly-based
malware detection model utilizing semi-supervised deep
learning has been designed and developed. The model's
development comprises three main phases: In the initial phase,
we trained a Generative Adversarial Network (GAN) to acquire
representations of benign applications, enabling the detection
of malware and malicious applications. Given the relative
stability of benign application behavior compared to malicious
behavior, GAN-based data augmentation contributes to the
generality and stability of the detection model. Furthermore,
GAN is leveraged to generate a diverse set of synthetic data
closely resembling real-world benign samples, thereby
enhancing the model's capability to distinguish malware
instances in subsequent learning stages. The second phase
involved the development of an autoencoder, aimed at learning
latent representations of benign samples and capturing essential
features that characterize benign applications. In the third and
final phase, we concatenated the latent representation with the
last hidden layer of the GAN discriminator, representing them
as an image. Subsequently, a Convolutional Neural Network
(CNN) classifier was constructed to classify samples as either
benign or malicious. This CNN model obviates the need for
threshold selection to identify anomalous instances. The results
indicate that the proposed model holds promise for detecting
zero-day malware. In the worst-case scenario, it achieved an
overall performance of 88% accuracy with a 10% false positive
rate, surpassing the best existing solution by 5% in overall
performance and reducing the false positive rate by 11%.

Despite its promise, the proposed model exhibits a lower
detection rate and a higher false positive rate. The primary
challenge lies in the inherent overlap between benign and
malware features. The obfuscation and evasive characteristics
of malware often lead to feature overlap between these classes.
To address this challenge, we advocate for the use of a diverse
set of features in the representation. Furthermore, we propose
an ensemble approach involving anomaly detection models
trained on diverse feature sets, incorporating both GAN and
Autoencoder models, to enhance detection accuracy and
mitigate false alarms.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

768 | P a g e

www.ijacsa.thesai.org

ACKNOWLEDGMENT

This Project was funded by the Deanship of Scientific
Research (DSR) at King Abdulaziz University, Jeddah, under
grant no. (GPIP: 1826-611-2024). The authors, therefore,
acknowledge with thanks DSR for technical and financial
support.

FUNDING

This Project was funded by the Deanship of Scientific
Research (DSR) at King Abdulaziz University, Jeddah, under
grant no. (GPIP: 1826-611-2024). The authors, therefore,
acknowledge with thanks DSR for technical and financial
support.

REFERENCES

[1] AVTEST. "Malware Statistics and Trends Report," 5/10/2023, 2024;
https://www.av-test.org/en/statistics/malware/.

[2] NPR. "What we know about the ransomware attack on a Critical u.s.
pipeline," 5/10/2023, 2023;
https://www.npr.org/2021/05/10/995405459/what-we-know-about-the-
ransomware-attack-on-a-critical-u-s-pipeline.

[3] C. Kim, S. Y. Chang, J. Kim, D. Lee, and J. Kim, “Automated, Reliable
Zero-day Malware Detection based on Autoencoding Architecture,” IEEE
Transactions on Network and Service Management, pp. 1-1, 2023.

[4] Q. Wen, and K. P. Chow, “CNN based zero-day malware detection using
small binary segments,” Forensic Science International: Digital
Investigation, vol. 38, pp. 301128, 2021/10/01/, 2021.

[5] H. Tran, E. Campos-Nanez, P. Fomin, and J. Wasek, “Cyber resilience
recovery model to combat zero-day malware attacks,” Computers &
Security, vol. 61, pp. 19-31, 2016/08/01/, 2016.

[6] P. H. Barros, E. T. C. Chagas, L. B. Oliveira, F. Queiroz, and H. S. Ramos,
“Malware‐SMELL: A zero‐shot learning strategy for detecting zero‐day
vulnerabilities,” Computers & Security, vol. 120, pp. 102785,
2022/09/01/, 2022.

[7] S. Millar, N. McLaughlin, J. Martinez del Rincon, and P. Miller, “Multi-
view deep learning for zero-day Android malware detection,” Journal of
Information Security and Applications, vol. 58, pp. 102718, 2021/05/01/,
2021.

[8] J.-Y. Kim, S.-J. Bu, and S.-B. Cho, “Zero-day malware detection using
transferred generative adversarial networks based on deep autoencoders,”
Information Sciences, vol. 460-461, pp. 83-102, 2018/09/01/, 2018.

[9] N. Kumar, S. Mukhopadhyay, M. Gupta, A. Handa, and S. K. Shukla,
"Malware Classification using Early Stage Behavioural Analysis." pp. 16-
23.

[10] F. A. Aboaoja, A. Zainal, F. A. Ghaleb, N. S. Alghamdi, F. Saeed, and H.
Alhuwayji, “A Kullback-Liebler di-vergence-based representation
algorithm for malware detection,” PeerJ Computer Science, vol. 9, pp.
e1492, 2023.

[11] A. A. Al-Hashmi, F. A. Ghaleb, A. Al-Marghilani, A. E. Yahya, S. A.
Ebad, M. Saqib, and A. A. Darem, “Deep-Ensemble and Multifaceted
Behavioural Malware Variant Detection Model,” IEEE Access, vol. 10,
pp. 42762-42777, 2022.

[12] J. Palša, N. Ádám, J. Hurtuk, E. Chovancová, B. Madoš, M. Chovanec,
and S. Kocan, “MLMD—A Mal-ware-Detecting Antivirus Tool Based on
the XGBoost Machine Learning Algorithm,” Applied Sciences, vol. 12,
no. 13, pp. 6672, 2022.

[13] A. A. Darem, F. A. Ghaleb, A. A. Al-Hashmi, J. H. Abawajy, S. M.
Alanazi, and A. Y. Al-Rezami, “An Adaptive Behavioural-Based
Incremental Batch Learning Malware Variants Detection Model Using
Concept Drift Detec-tion and Sequential Deep Learning,” IEEE Access,
vol. 9, pp. 97180-97196, 2021.

[14] S. Baek, J. Jeon, B. Jeong, and Y.-S. Jeong, “Two-stage hybrid malware
detection using deep learning,” Hu-man-centric Computing and
Information Sciences, vol. 11, no. 27, pp. 10.22967, 2021.

[15] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G.
Langs, "Unsupervised anomaly detection with generative adversarial
networks to guide marker discovery." pp. 146-157.

[16] A. Abusitta, G. H. de Carvalho, O. A. Wahab, T. Halabi, B. C. Fung, and
S. Al Mamoori, “Deep learning-enabled anomaly detection for IoT
systems,” Internet of Things, vol. 21, pp. 100656, 2023.

[17] N.-A. Stoian, “Machine learning for anomaly detection in iot networks:
Malware analysis on the iot-23 data set,” University of Twente, 2020.

[18] D. O. Won, Y. N. Jang, and S. W. Lee, “PlausMal-GAN: Plausible
Malware Training Based on Generative Ad-versarial Networks for
Analogous Zero-Day Malware Detection,” IEEE Transactions on
Emerging Topics in Computing, vol. 11, no. 1, pp. 82-94, 2023.

[19] M. A. Ashawa, and S. Morris, “Analysis of android malware detection
techniques: a systematic review,” 2019.

[20] E. Amer, I. Zelinka, and S. El-Sappagh, “A Multi-Perspective malware
detection approach through behavioural fusion of API call sequence,”
Computers & Security, vol. 110, pp. 102449, 2021/11/01/, 2021.

[21] J.-Y. Kim, and S.-B. Cho, “Obfuscated Malware Detection Using Deep
Generative Model based on Global/Local Features,” Computers &
Security, vol. 112, pp. 102501, 2022/01/01/, 2022.

[22] S. Srinivasan, R. Vinayakumar, A. Arunachalam, M. Alazab, and K.
Soman, "DURLD: Malicious URL Detection Using Deep Learning-Based
Character Level Representations," Malware Analysis Using Artificial
Intelligence and Deep Learning, pp. 535-554: Springer, 2021.

[23] R. Elnaggar, L. Servadei, S. Mathur, R. Wille, W. Ecker, and K.
Chakrabarty, “Accurate and Robust Malware Detection: Running
XGBoost on Runtime Data From Performance Counters,” IEEE
Transactions on Comput-er-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 7, pp. 2066-2079, 2021.

[24] S. Saadat, and V. Joseph Raymond, "Malware classification using cnn-
xgboost model," Artificial Intelligence Techniques for Advanced
Computing Applications, pp. 191-202: Springer, 2021.

[25] T. A. A. Abdullah, W. Ali, and R. Abdulghafor, “Empirical Study on
Intelligent Android Malware Detection Based on Supervised Machine
Learning,” International Journal of Advanced Computer Science and
Applica-tions, 2020.

[26] F. Alhaidari, and A. Rahman, “ZeVigilante: Detecting Zero-Day Malware
Using Machine Learning and Sand-boxing Analysis Techniques,”
Computational Intelligence and Neuroscience, 2022.

[27] A. Arfeen, Z. H. Khan, R. Uddin, and U. Ahsan, “Toward Accurate and
Intelligent Detection of Malware,” Concurrency and Computation
Practice and Experience, 2021.

[28] S. Manimurugan, S. Almutairi, M. Aborokbah, N. Chilamkurti, S.
Ganesan, and R. Patan, “Effective Attack Detection in Internet of Medical
Things Smart Environment Using a Deep Belief Neural Network,” Ieee
Access, 2020.

[29] T. Zoppi, A. Ceccarelli, and A. Bondavalli, “Unsupervised Algorithms to
Detect Zero-Day Attacks: Strategy and Application,” Ieee Access, 2021.

[30] M. Dietrichstein, D. Major, M. Wimmer, D. Lenis, P. Winter, A. Berg, T.
Neubauer, and K. Bühler, “Anomaly Detection Using Generative Models
and Sum-Product Networks in Mammography Scans,” 2022.

[31] X. Gong, X. Wang, and N. Li, “Research on DUAL-ADGAN Model for
Anomaly Detection Method in Time-Series Data,” Computational
Intelligence and Neuroscience, 2022.

[32] X. Xia, X. Pan, N. Li, X. He, L. Ma, X. Zhang, and N. Ding, “GAN-based
anomaly detection: A review,” Neu-rocomputing, vol. 493, pp. 497-535,
2022/07/07/, 2022.

[33] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto, C.
Eckert, and F. Roli, “Adversarial Malware Binaries: Evading Deep
Learning for Malware Detection in Executables,” 2018.

[34] D. Li, and Q. Li, “Adversarial deep ensemble: Evasion attacks and
defenses for malware detection,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 3886-3900, 2020.

[35] J. Zhang, Z. Qin, H. Yin, L. Ou, and K. Zhang, “A feature-hybrid malware
variants detection using CNN based opcode embedding and BPNN based
API embedding,” Computers & Security, vol. 84, pp. 376-392,
2019/07/01/, 2019.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

769 | P a g e

www.ijacsa.thesai.org

[36] B. M. Khammas, A. Monemi, I. Ismail, S. M. Nor, and M. Marsono,
“Metamorphic malware detection based on support vector machine
classification of malware sub-signatures,” TELKOMNIKA
(Telecommunication Com-puting Electronics and Control), vol. 14, no. 3,
pp. 1157-1165, 2016.

[37] B. A. S. Al-Rimy, M. A. Maarof, M. Alazab, F. Alsolami, S. Z. M. Shaid,
F. A. Ghaleb, T. Al-Hadhrami, and A. M. Ali, “A Pseudo Feedback-Based
Annotated TF-IDF Technique for Dynamic Crypto-Ransomware Pre-
Encryption Boundary Delineation and Features Extraction,” IEEE
Access, vol. 8, pp. 140586-140598, 2020.

[38] F. Di Mattia, P. Galeone, M. De Simoni, and E. Ghelfi, “A Survey on
GANs for Anomaly Detection,” 2019.

[39] H. Zenati, M. Romain, C. S. Foo, B. Lecouat, and V. Chandrasekhar,
“Adversarially Learned Anomaly Detec-tion,” 2018.

[40] C. P. Ngo, A. A. Winarto, C. K. K. Li, S. J. Park, F. Akram, and H. K.
Lee, “Fence GAN: Towards Better Anomaly Detection,” 2019.

[41] N. Galloro, M. Polino, M. Carminati, A. Continella, and S. Zanero, “A
Systematical and longitudinal study of evasive behaviours in windows
malware,” Computers & Security, vol. 113, pp. 102550, 2022/02/01/,
2022.

[42] D. Kirat, and G. Vigna, “MalGene: Automatic Extraction of Malware
Analysis Evasion Signature,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver,
Colorado, USA, 2015, pp. 769–780.

[43] C. Wei, Q. Li, D. Guo, and X. Meng, “Toward Identifying APT Malware
through API System Calls,” Security and Communication Networks, vol.
2021, pp. 8077220, 2021/12/09, 2021.

[44] Z. Zhang. "MALWARE_API_CLASSIFICATION," 12/06/2023, 2023;
https://ieee-dataport.org/documents/malwareapiclassification

